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Orientational phase transition in monolayers of multipolar straight rigid rods:
The case of 2-thiophene molecule adsorption on the Au(111) surface
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Monte Carlo simulations and finite-size scaling theory have been carried out to study the critical behavior
and universality for the isotropic-nematic (IN) phase transition in a system of straight rigid pentamers adsorbed
on a triangular lattice with polarized nonhomogeneous intermolecular interactions. The model was inspired
by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized
by experimental techniques and density functional theory. A nematic phase, observed experimentally by the
formation of a self-assembled monolayer of parallel molecules, is separated from the isotropic state by a
continuous transition occurring at a finite density. The precise determination of the critical exponents indicates
that the transition belongs to the three-state Potts universality class. The finite-size scaling analysis includes the
study of mutability and diversity. These two quantities are derived from information theory and they have not
previously been considered as part of the conventional treatment of critical phenomena for the determination
of critical exponents. The results obtained here contribute to the understanding of formation processes of
self-assembled monolayers, phase transitions, and critical phenomena from novel compression algorithms for
studying mutual information in sequences of data.
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I. INTRODUCTION

Molecular self-assembly has emerged in recent years as a
useful approach for designing and fabricating new materials
[1,2]. In addition, self-assembly has been considered to be
central to understanding structure formation in living systems
[3]. As a consequence, an increasing interest has been devoted
to enhance our understanding of the theoretical basis of the
fundamental mechanisms governing self-assembly and the
observables required to characterize the interactions driving
thermodynamic self-assembly transitions [4–7].

On the other hand, the study of orientational phase tran-
sitions in systems of large particles in solution is one of
the central problems in statistical mechanics and has been
attracting a great deal of interest since long ago. A seminal
contribution to this subject was made by Onsager [8], who
predicted that very long and thin rods interacting with only
excluded-volume interaction can lead to long-range orienta-
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tional (nematic) order. The nematic phase, characterized by
a big domain of parallel molecules, is separated from an
isotropic state by a phase transition occurring at a finite critical
density. This phase transition is called isotropic-nematic (IN)
phase transition.

In two dimensions, the nature of the IN phase transition
depends crucially on the particle interactions and a rich va-
riety of behaviors has been observed [9,10]. In the case of
lattice-gas models, which is the topic of this paper, a system
of straight rigid rods of length k (k-mers) on a square lattice,
with two allowed orientations, was studied by Ghosh and
Dhar [11]. Using Monte Carlo (MC) simulations and analyt-
ical arguments, the authors found strong numerical evidence
showing that the system presents nematic order at intermedi-
ate densities for k � 7 and provided a qualitative description
of a second phase transition (from a nematic order to a non-
nematic state) occurring at a density close to 1. This second
phase transition was called nematic-isotropic (NI) phase tran-
sition. The existence of the nematic phase was analytically
demonstrated by Disertorti and Giulani [12]. In addition,
the presence of the isotropic-nematic phase transition in a
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particular lattice, called random locally treelike layered lat-
tice, was rigorously demonstrated by Dhar et al. [13].

Based on the pioneering work of Ghosh and Dhar [11],
a series of papers have been produced pointing to the de-
tailed study of the orientational phase transitions occurring
in a system of long straight rigid rods on two-dimensional
(2D) lattices with discrete allowed orientations [14–25]. In
the case of the first phase transition, it was shown that (1)
the universality of the IN transition is consistent with the 2D
Ising class for square lattices and the three-state Potts class for
honeycomb and triangular lattices [14,15]; (2) the minimum
value of k which allows the formation of a nematic phase is
k = 7 for triangular lattices [16] and k = 11 for honeycomb
lattices [15]; (3) the orientational order survives in a wide
range of lateral interactions between the adsorbed k-mers
[17,18]; (4) the critical density characterizing the IN transition
θ1 follows a power law [16,19,20] as θ1(k) ∝ k−1; and (5) an
Ising behavior is found for a 2D Zwanzig fluid of hard line
segments which may orient either horizontally or vertically
[19]. With respect to the second NI phase transition, numerical
evidence was provided for the existence of this phenomenon
[21–23].

An alternative numerical method to treat orientational
phase transitions was applied to the hard-rod problem on 2D
lattices [24,25]. The approach is based on the application of
information theory using Shannon entropy and data compres-
sor WLZIP for the recognition of repetitive data in time series
such as those generated in MC simulations of magnetic sys-
tems [26–28]. In addition, new order parameters were defined,
which allow a better characterization of the phases occurring
in the system.

Very recently, the problem of straight rigid rods of length
k adsorbed on square lattices has been investigated in the
high coverage regime [29–31]. In Ref. [29], Dhar and Rajesh
showed that, in the limit of large k, the configurational en-
tropy per site of fully covered lattices tends to k−2 ln k. This
theoretical finding was confirmed numerically using MC sim-
ulations in the grand-canonical ensemble and thermodynamic
integration method [30]. The nature of the NI transition has
been addressed in Ref. [31]. Based on perturbation theory, the
authors found that, for large k, the second phase transition is
a first-order transition with a discontinuity in density in all
dimensions greater than 1.

Orientational phase transitions have also been observed in
monolayers of strongly anisotropic particles. Such “patchy”
particles offer the possibility to be used as building blocks of
specifically designed self-assembled structures. In this line,
an interesting model was introduced by Tavares et al. [32],
where effectively attractive patches induce the reversible self-
assembly of particles into chains. The system consists of
monomers with two attractive (sticky) poles that polymerize
reversibly into polydisperse chains and, at the same time,
undergo a continuous isotropic-nematic (IN) phase transition.
Using an approach in the spirit of the Zwanzig model [33], the
complete coverage-temperature phase diagram of the system
was obtained. The authors assumed that the IN phase transi-
tion for the polydisperse 2D Zwanzig model remains in the
2D Ising universality class.

From the work by Tavares et al. [32], several papers explor-
ing the self-assembled rigid rods (SARRs) model have been

published [34–40]. These studies confirmed that, in the case
of square lattices, the universality class of the SARRs model
is in the 2D Ising class, as in models of monodisperse rigid
rods [14,15]. A similar scheme was observed for triangular
lattices, where grand-canonical MC simulations indicated that
the IN transition of SARRs at intermediate density belongs to
the q = 3 Potts-type universality class. The same universality
class had been reported for monodisperse rigid k-mers on
triangular lattices [14,15].

In the papers mentioned so far, the studied models corre-
spond to highly idealized systems. The cost of introducing
these precursor models is the lack of some experimental fea-
tures presented by real systems. However, the obtained results
have been very useful as a help and a guide to establish a
general framework for the study of this kind of systems. In
this sense, one of the most important conclusions of this task
is that the interplay between the self-assembly process and
the nematic ordering is a distinctive characteristic of these
systems. This finding stimulates the development of more
sophisticated models which can be able to reproduce concrete
experimental situations.

In this context, we focus in the present paper on a system of
2-thiophene curcuminoid molecules adsorbed on the Au(111)
surface. In a recent paper from our group [41], this system
was modeled using a lattice-gas of linear pentamers adsorbed
onto a triangular lattice. The model includes intermolecular
multipolar interactions between neighboring pentamers, and
it was able to reproduce the interaction energies of the most
representative orientations of the 2-thiophene molecules over
the Au surface which were obtained from previous DFT cal-
culations [42]. By simulating the deposition process under a
MC scheme, an IN phase transition was identified, indicating
the formation of a self-assembled monolayer, reproducing the
experimental observations [42,43].

The lattice-gas model of interacting pentamers represents
an advance over previous work [32–40] in two main ways.
First, the adsorbate is a molecule formed by five units, each
occupying one adsorption site on the surface. Most adsorbates
involved in experiments, except noble gases, are polyatomic;
hence, the theoretical description of their thermodynamic
properties is a topic of much interest in adsorption theory. This
subject is generically called multisite-occupancy adsorption,
and it has been referred to as the prototype of the lattice
problem [44]. In Refs. [32–40], it is supposed that each ad-
sorbed molecule has spherical symmetry and occupies one
lattice site. In the limit of zero lateral interactions (infinite
temperature), the arrangement of the adsorption sites in space
is immaterial, and consequently, the single-occupancy model
does not distinguish between different lattice geometries. The
same does not happen with the multisite-occupancy scheme
presented here, where the thermodynamic properties of the
adlayer are significantly affected by the spatial correlations
between adsorption sites, even for molecules that do not in-
teract laterally. Second, the pentamers are considered to have
three interaction centers, both ends (heads), and the central
segment. The heads are of the same kind, while the segment
at the center is of a different kind. Such distribution leads
to three different basic interactions (head-head, head-center,
and center-center) and is capable to capture the high-polarity
nature of these 2-thiophene curcuminoid molecules. The
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numerical values of the interaction energies are set according
to DFT calculations performed by Flores et al. [42]. In the
case of Refs. [32–40], the lateral interaction scheme is very
simple: monomers with two attractive poles.

Despite these recent results there are remaining questions
to be answered: “What type of phase transition is it?,” “What
is its nature?,” “Does it belong to a known universality class?”
The objective of this paper is to provide a thorough study
in this direction. For this purpose, extensive MC simula-
tions supplemented by analysis using finite-size scaling (FSS)
theory [45–49] have been carried out to study the critical
behavior of the system introduced in Ref. [41]: interacting
linear pentamers adsorbed on triangular lattices. A nematic
phase, characterized by a big domain of parallel pentamers,
is separated from the disordered state by a continuous phase
transition occurring at a finite critical lattice coverage (or
density). Based on the strong axial anisotropy of the nematic
phase, an order parameter measuring the orientation of the
particles has been introduced. Taking advantage of its defi-
nition, we were able to study for the first time the universality
class of the IN phase transition occurring in the system. The
accurate determination of the critical exponents revealed that
the IN transition belongs to the 2D three-state Potts universal-
ity class.

The study was complemented by an alternative numerical
method to treat phase transitions. The approach is based on the
use of information theory using data compression techniques,
and it has already been successfully used to recognize ther-
modynamic phases [24–28,50], volatility and critical periods
in stock markets [51] and pension funds [52], vascular risk
[53], and earthquake risk [54]. In the present paper, quantities
derived from data compression algorithms will be used to
characterize the IN phase transition occurring at intermediate
densities. In particular, these quantities will be employed for
the first time for the determination of the critical exponents
under the conventional FSS treatment.

This paper is organized as follows. The lattice-gas model
and the simulation scheme are described in Secs. II A and II B,
respectively. In Sec. II C, the method of data compression to
obtain the critical densities is presented. Section III is devoted
to the main results of the application of our technique and
the comparison with previous results. A summary and general
conclusions are given in Sec. IV.

II. MODEL AND METHODS

A. Molecular deposition and lattice-gas model

The adsorption process of 2-thiophene molecules over
the Au(111) surface is studied trough a simplified lattice-
gas model. In this sense, the gold surface is discretized and
modeled as a 2D rhombus-shaped triangular lattice consisting
of M = L × L adsorptive lattice sites, where L is the linear
dimension of the lattice. Periodic boundary conditions are
considered over the three directions of the lattice.

The 2-thiophene curcuminoids are elongated molecules
having two sulfur atoms at each end of a carbon chain. Several
hydrogen atoms are distributed along the molecule, while
two separate oxygen atoms are located toward the middle,
equidistant from the center, see Fig. 1(a). According to pre-

FIG. 1. (a) Simplified schematic diagram showing two cur-
cuminoid molecules adsorbed on the gold surface. (b) Lattice-gas
representation of the situation in part (a). The FCC(111) surface is
represented by a triangular lattice and the 2-thiophene molecules
are modeled as pentamers. Inset: For each 2-thiophene molecule
(pentamer), three interaction centers are considered: two at the ends
and one at the center.

vious DFT studies [42], the sulfur atoms are responsible for a
strong adsorption energy (5.98 eV) as well for three equivalent
preferred directions of the molecules adsorbed in a flat manner
onto the Au(111) surface. Furthermore, once the curcuminoid
molecules are adsorbed onto the gold surface they experience
a charge redistribution. Such charge redistribution explains
the electrical multipole appearing on each molecule, which
is responsible for the different repulsive interaction intensities
depending on the segments of one molecule facing the seg-
ments of a neighboring molecule. For details of the molecular
structure and its electric charge distribution, see Fig. 1 in
Ref. [41].

Based on these aspects, the 2-thiophene molecules are
modeled as rigid linear k-mers, with k = 5. A linear k-mer
is an entity that will adsorb onto the lattice occupying ex-
actly k consecutive lattice sites, consequently we can speak of
pentamer adsorption in this case. In addition, when deposited
onto the lattice, the pentamers will interact with their nearest
neighbors (NN) in several different geometric configurations.
We develop here a simple model retaining the most important
aspects of these interactions.

Let us first consider proximity: We restrict to interactions
of pairs that are NN only. We then consider internal structure
and orientation. In order to capture the multipolar essence of
these molecules and their intermolecular interactions, three
different centers along the pentamers are defined, both ends
(heads) and the center element of the chain. The remaining
two intermediate elements of the chain are considered neutral,
see Fig. 1(b). In this way, the terminal monomers of the chain
(heads) will interact differently with the heads than with the
central element of another NN pentamer. Therefore, three
different interaction energies are defined: head-head (wHH),
head-center (wHC), and center-center (wCC).

Generally speaking, the carbon backbone of the molecule
tends to be positively charged while the outside is mostly
negative. This makes all proximity interaction energies as
repulsive or positive. In a simplified way we propose that these
interaction energies conveniently expressed in kBT (kB is the
Boltzmann constant) units, are wHH = 1.0, wHC = 0.5wHH =
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FIG. 2. 4 snapshots of the simulation in order of increasing coverage: (a) θ � θc, (b) θ just under θc, (c) θ just over θc, and (d) θ � θc.
The polar pentamers are sketched as rods of three segments, representing the two heads and the center element and are colored according to
their orientation.

0.5, and wCC = 1.5wHH = 1.5. As explained in our previous
paper [41] (see for example Fig. 2 of that paper and the
discussion around it), this set of values manages to reproduce
very well the interaction energies of two adsorbed 2-thiophene
molecules on its most representative relative orientations, as
calculated by Flores et al. [42] by DFT calculations.

To summarize, our model consist of a 2D rhombus-shaped
triangular lattice of adsorption sites in contact with a gas
of interacting k-mers with k = 5, more specifically polar
pentamers. The distance between adjacent segments of a pen-
tamer is equal to the lattice constant a. Under this framework
we will consider reversible monolayer adsorption, meaning
that the pentamers will adsorb and desorb from the lattice until
equilibrium is reached, and a lattice site can host only one
segment of a molecule. In addition, the linear pentamers are
adsorbed or desorbed without considering any dissociation,
reorganization, distortion, or self-diffusion.

The Hamiltonian of this system can be written defining
an occupation variable ci for each lattice site. In this way,
ci = 0 if adsorption site i is empty and ci = 1 if it is hosting a
segment of a molecule,

H =
∑

〈i, j〉
wi jcic j − μN + ε0

M∑

i=0

ci. (1)

The summation of the first term runs over all nearest-
neighbor sites (〈i, j〉) and wi j is the interaction energy that
may take the values wi j = wHH,wHC,wCC depending on the
nature of the monomers adsorbed on the corresponding pair of
NN sites as defined above. N is the total number of adsorbed
molecules. Finally, the last term represents the adsorption
energy of the system, with ε0 being the adsorption energy of
each lattice site. When homogeneous lattices are considered,
as is the case of this work, the last term can be dropped without
loss of generality.

B. Monte Carlo simulations

The system was studied by means of grand-canonical MC
simulations. In this statistical ensemble the free parameters to
be set and varied are the chemical potential μ and the inter-
action energies wHH, wHC, and wCC. We have implemented a
typical particle-vacancy adsorption-desorption algorithm ac-
cording to the Metropolis scheme [55]. Instead of varying
the chemical potential sequentially, we have implemented a
parallel tempering algorithm [56–58]. Under this framework,
several replicas of the system (Nrep) are simulated in parallel,
each replica having a different value of chemical potential μ

between some extreme values μ0 and μ f . The difference in
chemical potential between adjacent replicas is given simply
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by �μ = (μ f − μ0)/Nrep; equivalently, two replicas are con-
sidered adjacent if their difference in chemical potential is
equal to �μ. The key aspect of this algorithm is that after
a fixed number of simulation iterations the configurations of
two adjacent replicas are swapped with certain probability. As
it will be detailed below, this swapping probability depends
on the difference of the total number of adsorbed molecules
N and the chemical potential μ between the two replicas
to be swapped. This procedure increases the efficiency of
the simulations, allowing us to reduce considerably the equi-
librium and calculation times, being particularly efficient in
unblocking frozen states where the system is occasionally
trapped in local energy minimums. The number of replicas
in this algorithm is typically chosen such that it generates an
exchange probability between adjacent replicas greater than
(or on the order of) 50%. In our case we choose Nrep = 100.

The degree of order in the adsorbed monolayer is calcu-
lated introducing an orientational order parameter δ,

δ = |N1�v1 + N2�v2 + N3�v3|
N1 + N2 + N3

. (2)

Each vector �vi is a unitary vector associated to one of the
three equivalent directions of the triangular lattice (the three
possible orientations for an adsorbed molecule on the lattice)
and Ni is the number of adsorbed molecules in the direction
i, i = 1, 2, 3. In this way, δ varies from 0 (isotropic) to 1 (ne-
matic). In the former, about 1/3 of the molecules are adsorbed
along each of the three directions (N1 ≈ N2 ≈ N3 ≈ N/3), so
the vector sum nearly vanishes and δ ≈ 0. In the nematic case
all the N k-mers of the monolayer are nearly aligned along one
(any) of the three independent directions leading to δ ≈ 1.0.

In what follows some details of the algorithm are given:
(1) Set the values for μ0 and μ f and generate Nrep = 100

replicas of the system.
(2) A random initial configuration is generated in each

replica.
(3) One of the Nrep replicas is randomly selected.
(4) A set of k (with k = 5) consecutive lattice sites (linear

k-uple) is sorted. If the k sites of the selected linear k-uple
are empty, then an attempt is made to adsorb a pentamer with
probability P = min{1, exp(−�H/kBT )}, where �H repre-
sents the difference between the Hamiltonians of the final and
initial states. If, on the other hand, the k sites of the linear
k-uple are occupied by units of the same k-mer (pentamer), an
attempt is made to desorb this k-mer with the same probability
P; otherwise, the attempt is rejected.

(5) After M = L × L adsorption or desorption attempts
[by following the procedure described in point (4)], the con-
figurations of two adjacent replicas of the system are swapped
with probablity Pexc = min{1, exp(−�N�μ)}, where �N
and �μ represent the difference in the number of adsorbed
molecules and the difference in chemical potential, respec-
tively, between the two replicas to be swapped.

(6) A MC step (MCs) is completed after we repeat (3)–(5)
Nrep times.

It was found that stable equilibrium states where reached
after 5 × 106 MCs. The simulations were run with r = 10 ×
106 MCs, employing the first r/2 MCs to equilibrate the
system and the remaining r/2 MCs were used to compute the
averages of the observables of interest. The effect of finite size

was investigated by examining lattices with L = 50, 75, 100,
and 125, with an effort reaching almost the limits of our
computational capabilities.

The surface coverage (or density) θ is monitored for each
μ value and its corresponding equilibrium value is calculated
as a simple average:

θ = 1

M

M∑

i

〈ci〉, (3)

where 〈...〉 means time average over the last r/2 MCs of the
MC simulation.

A similar treatment was done for the order parameter δ.
The complete time series for both θ and δ were stored for
each value of the chemical potential to be later used by the
information theory methods described in next subsection.

In addition, the fourth-order Binder cumulant UL [49] and
the susceptibility χ of the order parameter δ were calculated
as

χ = L2

kBT
[〈δ2〉 − 〈δ〉2], (4)

and

UL = 1 − 〈δ4〉
3〈δ2〉2

. (5)

C. Information recognizer

In the present paper, we apply the data compressor WLZIP
[26–28] to the recognition of information content within the
dynamical series generated by previous MC simulations. The
data recognizer WLZIP was created to find repeated mean-
ingful information in any sequence of data. The recognition
of meaningful repetitions is not the same under different cir-
cumstances. Near a critical point, where a chaotic succession
of data should occur, repetitions of numerical values corre-
sponding to critical functions (such as the order parameter δ)
will be seldom and WLZIP will compress very little. Thus,
what WLZIP should give is high contrast between monotonic
regimes as compared to chaotic regimes. Consequently, each
maximum in the quantities derived from the compression pro-
cess should be indicative of the existence of a critical point.
As it will be shown in the next section, this feature is very
useful for identifying and characterizing orientational phase
transitions in systems of adsorbed large molecules. In the next
paragraphs we briefly summarize the way this data recognizer
operates.

WLZIP applies to any parameter q stored in a vector file
with σ registers. A precision in the number of digits to be rec-
ognized is defined and it can be tuned to better recognize the
information according to the kind of data under consideration.
The sequence is swept along all the σ values. Each different
value qi is stored at the beginning of a row in a new vector
file. Each time an already recognized value appears within the
sequence the information of the location of this value along
the sequence is stored to the right on the row corresponding to
this value. So the new file is a map of the original one and no
information is lost.

At the end we have a histogram providing two important
parameters: (a) the number �∗ of rows (different values in the
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sequence) and (b) the weight in bytes w∗ of the compressed
file created in this way. The mutability ζ for the σ values of
this parameter q, namely

ζq(σ ) = w∗

w
, (6)

where w is the weight in bytes of the original sequence of σ

values of q after equilibrium.
In addition, given the total number of different qi values

(number of rows �∗ in the compressed file) over the number of
rows in the original file, namely �, defines the diversity Dq(σ )

of the sequence of σ values for the variable q at equilibrium
for the chemical potential μ:

Dq(σ ) = �∗

�
. (7)

We make use of the same information content obtained
from the MC time series depicted in the preceding sec-
tion (along r = 5 × 106 MCs). Accordingly, σ = 5 × 106.
For the rest of the paper we will use ζq and Dq to denote
mutability and diversity, respectively [for simplicity we will
drop the “(σ )” label].

III. RESULTS AND DISCUSSION

As mentioned, in our previous paper [41] we found that the
system described previously experiences an isotropic-nematic
phase transition at a determined critical coverage. Figure 2
shows snapshots of the system experiencing this phase tran-
sition. It is clear that nematic order among these repelling
k-mers arises over certain critical concentration θc. Configura-
tions under θc present disorder with no particular tendency to
order along any direction. On the other hand, configurations
over θc present a clear preferred orientation and this property
is sustained way over θc. If Fig. 2(c) or Fig. 2(d) are compared
to the STM image of 2-thiophene molecules adsorbed onto the
Au(111) surface as presented in Fig. 2 of Flores et al. [42],
then the correspondence flows immediately. Thus, our model
explains the nematic order that appears in this system. In the
rest of the analysis we get deeper into the kind of transition
our simulations suggest and the possible dependence of θc on
other characteristics of the system is established.

Now, we address the study of the critical behavior of the
system around this orientational phase transition by means of
FSS analysis [45–49]. Our goal is to obtain the critical tran-
sition coverage along with different critical quantities such as
the critical exponents in order to characterize the nature of the
phase transition.

According to FSS theory, the expected behaviors of the
order parameter, susceptibility, and fourth-order Binder cumu-
lant at criticality are given by:

δ = L−β/ν δ̃(εL1/ν ), (8)

χ = Lγ /νχ̃ (εL1/ν ), (9)

and

UL = ŨL(εL1/ν ). (10)

The last equations are valid for L −→ ∞ and ε −→ 0 in such
a way that εL1/ν = finite. In addition, δ̃, χ̃ , and ŨL are scaling

FIG. 3. (a) Log-log plot of the maximum value of the derivative
of the Binder cumulant dU/dθ , the logarithmic derivatives of 〈δ〉
and 〈δ2〉, and the diversity of the surface coverage D(θ ). Dashed
lines represent linear fits proportional to L1/ν . (b) Log-log plot of the
maximum value of the derivative of the order parameter 〈δ〉 and the
maximum of susceptibility χ . Dashed lines represent linear fits pro-
portional to L(1−β )/ν for the maximum value of d〈δ〉

dθ
and proportional

to L−γ /ν for the maximum value of χ .

functions of the respective quantities and β, γ , and ν are the
critical exponents related to the order parameter (δ ∼ −εβ

for ε −→ 0− and L −→ ∞), susceptibility (χ ∼ |ε|γ for ε −→ 0
and L −→ ∞), and correlation length (ξ ∼ |ε|−ν for ε −→ 0
and L −→ ∞), respectively. In the case of conventional FSS
theory, ε = (T − Tc)/Tc is the reduced temperature. In our
case, the transition is not temperature driven so ε is defined
as the “reduced coverage” ε = (θ − θc)/θc.

Following Ref. [59], one of the methods for the determi-
nation of the critical exponent ν is related with the scaling
behavior of the derivatives of certain thermodynamic quanti-
ties with respect to density (or coverage) θ . These classical
quantities can be, for example, the derivative of the cumulant
and the logarithmic derivatives of δ and δ2. In Fig. 3(a) we
have plotted the maximum value of these derivatives as a
function of system size in logarithmic scale. As a comple-
mentary analysis, the plot includes the scaling behavior of
the maximum of the diversity, an indicator that belongs to
the information theory and it is not a traditional quantity
in the FSS theory. Fitting the first three curves [dUL/dθ ,
d (ln〈δ〉)/dθ and d (ln〈δ2〉)/dθ ] we get an estimate of the crit-
ical exponent, ν = 0.835(5). Although the diversity scaling
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FIG. 4. Fourth-order Binder cumulant UL (θ ) curves as a function
of the lattice coverage θ for different sizes: L = 50, solid squares;
L = 75, open triangles; L = 100, open circles; and L = 125, spheres.
The critical lattice coverage θc is obtained from the intersection point
of the curves.

behavior was not taken into account for the determination of
ν, we can confirm the striking result that this quantity shows
similar results than the classical FSS quantities and therefore
it might be employed as an alternative quantity to determine
the exponent ν.

Having determined ν, the standard procedure to find the
critical exponent γ is related to the scaling behavior of the
maximum value of the susceptibility, χ (θ )|max [59]. Fig-
ure 3(b) shows the result of such scaling along with the
estimate for the critical exponent, resulting in γ = 1.453(6).
The exponent β can now be obtained from the scaling be-
havior of the maximum value of the derivative of the order
parameter, d〈δ〉

dθ
|max. The results of this scaling are also shown

in Fig. 3(b), where the resulting value for the exponent is
β = 0.118(6).

The obtained values for the critical exponents ν ≈ 5/6,
γ ≈ 13/9, and β ≈ 1/9 indicate that the transition observed
in this system belongs to the q = 3 two-dimensional Potts
universality class [60]. This finding is consistent with the three
competing ordered states near the transition, as reflected by
the three components of the corresponding order parameter.
A similar behavior has been observed for the simpler case of
noninteracting straight rigid rods adsorbed on triangular and
honeycomb lattices with three allowed orientations [14,15].

The universality class and scaling behavior of this tran-
sition can be further tested from data collapsing techniques
following Eqs. (8), (9), and (10). As a first step the criti-
cal transition coverage need to be determined. In Fig. 4 we
present the fourth-order Binder cumulant curves plotted as a
function of θ for the four studied system sizes (L = 50, 75,
100, and 125). As it is known, the critical coverage θc can be
estimated from the intersection point of the curves [49]. Due
to small statistical errors and data discreteness, these curves
do not all intersect at a single and well-defined point but
rather there is a region of intersections. Then, in our case, the
critical coverage obtained from the crossing of the cumulants
is determined as follows: (1) to improve the accuracy, and

using spline fitting, the different curves of UL are expressed
as a function of continuous values of θ and (2) the interval
where the curves cross each other is determined. The center
of this interval represents the critical point θc and the width of
the interval is the error in the determination of θc. In Fig. 4,
this interval is (0.791, 0.793); accordingly, θc = 0.792(1). We
have verified that increasing the number of simulation points
does not significantly affect the obtained critical coverage.

The existence of a nematic phase in the model proposed
here is an interesting result from a theoretical point of view.
In fact, as has been reported in a previous work [16], the
minimum value of k which allows the formation of a nematic
phase is k = 7 for a lattice-gas of independent straight rigid
k-mers (rods interacting with excluded-volume interactions
only) adsorbed on triangular lattices. The effect of nonzero
lateral interactions on the critical behavior of this system has
not been investigated yet. However, for surfaces with square
geometry, it has been found that the presence of homoge-
neous lateral couplings between the adsorbed k-mers does
not modify the value of the critical size k above which the
orientational order appears [17,18]. By homogeneous lateral
couplings, we refer to the case where the interaction between
NN units belonging to different k-mers takes a constant value.

The results obtained in the current study indicate that the
critical behavior of adsorbed rigid k-mers is strongly affected
by the existence of different interaction centers (nonhomo-
geneous lateral interactions) in the adsorbate. In the specific
case considered here, an isotropic to nematic phase transi-
tion is found for k < 7, contrary to what was observed for
systems with homogeneous (and zero) lateral interactions
[17,18]. This issue encourages the investigation of straight
rigid k-mers adsorbed on two-dimensional substrates in the
presence of nonhomogeneous lateral interactions. A study in
this direction is in progress.

With the calculated value for the critical lattice coverage,
the critical exponent ν can be obtained from Eq. (10). Accord-
ing to this equation, the curves of UL vs εL1/ν for different
systems sizes should collapse into one for the appropriate
value of ν. This technique is known as full data collapsing and
the results of such approach are shown in Fig. 5. As it can be
seen in this figure, a very good collapse of the different curves
is obtained, using the exact value of the critical exponent for
the two-dimensional q − 3 Potts universality class, ν = 5/6.

The remaining scaling behavior associated with the critical
exponents, β and γ , can be obtained from the data collapsing
curves of the order parameter δ and susceptibility χ according
to Eqs. (8) and (9), respectively. In Fig. 6, δLβ/ν is plotted
as a function of |ε|L1/ν (log scale in both axes) and a very
good result can be seen for the value β = 1/9, which, again,
is the exact exponent for the two-dimensional q − 3 Potts
universality class. Finally, in Fig. 7, the collapsing of the
curves of χL−γ /ν vs εL1/ν for triangular lattices of different
sizes is shown and an excellent fit is produced for γ = 13/9,
once again matching the exact value of the exponent for the
two-dimensional q − 3 Potts universality class.

A complementary analysis can be made by estimating
the critical coverage by a different methodology. FSS theory
provides several routes to estimate critical quantities from MC
simulations [46–48,59]. An alternative method to the crossing
of the cumulants (Fig. 4) consists in estimating θc from the
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FIG. 5. Full data collapsing of the cumulants, UL vs εL1/ν for
different sizes: L = 50, solid squares; L = 75, open triangles; L =
100, open circles; and L = 125, spheres. The plots were made using
θc = 0.792 and ν = 5/6.

extrapolation of the location θc(L) of the maxima of several
different thermodynamic quantities. This method relies in the
fact that the locations of these maxima θc(L) exhibit an scaling
behavior with system size according to

θc(L) = θc(∞) + AL1/ν, (11)

where A is a constant that depends on the thermodynamic
quantity considered. In Fig. 8 we show a plot of θc(L) vs L1/ν

for the maximum values of three classical FSS quantities such
as the susceptibility χ (θ ), and the logarithmic derivatives of
δ(θ ) and δ2(θ ), along with the maxima of the mutability ζδ (θ )
and diversity Dδ (θ ) of the order parameter, two nontraditional
FSS quantities that belong to the information theory.

The high degree of compression recognized by WLZIP
means that specific repetitive information has been detected
along the data chain; this is characteristic of a monotonic

FIG. 6. Data collapsing of the nematic order parameter δ in loga-
rithmic scale for different sizes: L = 50, solid squares; L = 75, open
triangles; L = 100, open circles; and L = 125, spheres. The collapse
is produced for θc = 0.792, ν = 5/6, and β = 1/9.

FIG. 7. Data collapsing of the susceptibility χ for different sizes:
L = 50, solid squares; L = 75, open triangles; L = 100, open circles;
and L = 125, spheres. The collapse is produced for θc = 0.792, ν =
5/6, β = 1/9, and χ = 13/9.

behavior, suggesting that the system does not alter its prop-
erties within the data window under consideration. On the
other hand, near a critical point, where a chaotic succession
of data should occur, WLZIP will compress very little, giving
higher values for mutability and diversity. Thus, what WLZIP
should give is high contrast between monotonic regimes as
compared to chaotic regimes. Consequently, a maximum is
observed in the curve of ζδ (θ ) [Dδ (θ )] as a function of the cov-
erage. The positions of these maxima are collected in Fig. 8:
open circles (mutability) and spheres (diversity). The different
lattice sizes used in the simulations are indicated in the figure.
The dashed lines represent linear fits of the data according to
Eq. (11) with ν = 5/6. An estimate of the critical coverage is

FIG. 8. Location of the maximum value θc vs L1/ν from several
quantities, susceptibility χ , the logarithmic derivatives of δ and δ2,
the mutability ζδ , and the diversity Dδ of the order parameter. Dashed
lines correspond to linear fits of the data. The data corresponding to
L = 50 were excluded from the fits of the mutability and diversity.
From extrapolation one obtains the critical coverage at the thermo-
dynamic limit θc(L = ∞).
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obtained from extrapolation toward the thermodynamic limit
L = ∞. As it can be seen, the estimated θc from the the
logarithmic derivatives of δ(θ ) and δ2(θ ) deviates a little from
the value predicted by the Binder cumulants (Fig. 4). On the
other hand, the estimates provided by the extrapolation of the
susceptibility data, and, surprisingly, also from the indicators
of the information theory, yields very close estimates in very
good agreement with the critical coverage obtained from the
crossing of the cumulants. Strong deviation from the scaling
behavior of the mutability and diversity were found for the
L = 50 system and therefore those points were excluded from
the fits, and an extra value was calculated for a larger system
of size L = 175.

IV. SUMMARY AND CONCLUSIONS

In this work, we have used Monte Carlo simulations and
finite-size scaling theory to resolve the nature and universal-
ity class of the IN phase transition occurring in a model of
self-assembled 2-thiophene molecules adsorbed on Au(111)
surfaces, modelled as rigid multipolar pentamers adsorbed on
a 2D rhombus-shaped triangular lattice.

Based on previous density functional theory calculations,
we defined three equivalent lying directions for the adsorption
of any molecule over the substrate. Accordingly, the gold
surface was discretized and modeled as a 2D L × L triangular
lattice. On the other hand, the 2-thiophene molecules were
modeled as rigid linear k-mers, with k = 5 or pentamers. In
order to capture the multipolar essence of these molecules
and their nonhomogeneous intermolecular interactions, three
different interaction centers along the pentamers were de-
fined, both ends (heads) and the center element of the chain.
The remaining two intermediate elements of the chain were
considered neutral. Therefore, three different interaction en-
ergies were defined: head-head (wHH), head-center (wHC),
and center-center (wCC). Interaction energies and the rela-
tionships between them, expressed in kBT units, were wHH =
1.0, wHC = 0.5wHH = 0.5, and wCC = 1.5wHH = 1.5. Under
these considerations, the resulting lattice-gas model repro-
duces very well the interaction energies measured by Flores
et al. [42] using DFT calculations.

A nematic phase, characterized by a big domain of par-
allel molecules, was found. This ordered phase is separated
from the isotropic state by a continuous transition occur-
ring at an intermediate density θc = 0.792(1). Such phase
transition indicates that this may be a mechanism for the 2-
thiophene molecules to form a self-assembled monolayer over
the Au(111) surface in agreement with previously reported
experimental results [42].

The behavior of the present model contrasts with that
observed for the case of straight rigids rods with homo-
geneous (or zero) lateral interactions, where the IN phase
transition occurs for k-mer sizes k � 7 [17,18]. Our results
here are important from a theoretical point of view, com-
plement those obtained for the noninteracting problem, and
could have potential application in the field of self-assembled
monolayers on metallic substrates. Experimental studies in
these systems have shown that their electronic and transport
properties can be adjusted by tuning the competition between
the molecule-substrate and intermolecular interactions. The

findings obtained in this work provide an important contri-
bution in this direction, demonstrating that the inclusion of
different interaction centers in the adsorbate strongly deter-
mines the possible structures that appear on the surface with
increasing density. Thus, our theoretical predictions can guide
future experiments investigating the adsorption of multipolar
molecules. These systems, apparently governed by the struc-
ture of the molecule and intermolecular interactions, have
promissory technological applications.

The critical exponents were accurately determined
from finite-size scaling analysis, being ν = 0.835(5), β =
0.118(6), and γ = 1.453(6). The obtained values of ν, β,
and γ clearly indicate that the observed IN phase transition
belongs to the universality class of the two-dimensional Potts
model [60] with q = 3. This finding is consistent with the
three competing ordered states near the transition. In the ne-
matic phase, the adsorbed molecules spontaneously align over
one of the three allowed directions of the lattice.

In addition to conventional quantities, the finite-size scal-
ing analysis also included the study of mutability and
diversity. These two quantities are derived from dynamical
information theory and are not part of the conventional treat-
ment of the thermodynamic phase transitions. It is shown
that the critical exponent ν can be obtained from the scaling
behavior of the diversity. In addition, the estimates of the
critical coverage provided by the extrapolation of the maxima
of mutability and diversity are in excellent agreement with the
corresponding ones obtained from the conventional scaling
quantities (order parameter and its derivatives and suscepti-
bility). To the authors knowledge, this is the first time that
it is shown that quantities from information theory can be
employed in FSS analyses. The findings obtained here con-
tribute to the understanding of critical phenomena from novel
compression algorithms for studying mutual information in
sequences of data.

Future efforts will be done following two directions:
first, to extend the methodology exposed in this work (MC
simulations, information theory, and finite-size scaling) to un-
derstand and/or follow surface phase transitions for other kind
of molecules deposited over different substrates and, second,
to study the effect of nonhomogeneous lateral interactions on
the minimum value of k, which allows the formation of the
nematic phase in a model of interacting straight rigid k-mers
adsorbed on two-dimensional substrates.
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