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The Beck-Cohen superstatistics became an important theory in the scenario of complex systems because it
generates distributions representing regions of a nonequilibrium system, characterized by different temperatures
T ≡ β−1, leading to a probability distribution f (β ). In superstatistics, some classes have been most frequently
considered for f (β ), like χ 2, χ 2 inverse, and log-normal ones. Herein we investigate the superstatistics resulting
from a χ 2

η distribution through a modification of the usual χ2 by introducing a real index η (0 < η � 1). In this
way, one covers two common and relevant distributions as particular cases, proportional to the q-exponential

(e−βx
q = [1 − (1 − q)βx]

1
1−q ) and the stretched exponential (e−(βx)η ). Furthermore, an associated generalized

entropic form is found. Since these two particular-case distributions have been frequently found in the literature,
we expect that the present results should be applicable to a wide range of classes of complex systems.

DOI: 10.1103/PhysRevE.107.014132

I. INTRODUCTION

Although Boltzmann-Gibbs (BG) statistical mechanics
[1,2] represents one of the most successful theories in physics,
its applicability should be restricted to ergodic systems, which
are usually characterized by weak and/or short-range interac-
tions, as well as short-time memories, leading to additivity
of extensive thermodynamic quantities. Lately, complex sys-
tems [3–6] have emerged as an interesting field of research
and many of them violate some of these restrictions, being
adequately described through proposals that differ from BG
statistical mechanics. In this scenario, many tools of BG sta-
tistical physics have been adapted, or generalized, and one
should mention those emerging from generalized entropies
and their associated probability distributions, which produced
powerful techniques, covering a wide range of applications,
particularly those of complex systems. As examples, there are
classes of out-of-equilibrium systems (e.g., complex fluids in
a living cell) that are composed of microenvironments in their
own equilibrium condition, each of them presenting its own
temperature, T ≡ β−1, leading to a probability distribution
f (β ); one theory that addresses such systems is Beck-Cohen
superstatistics [4].

Superstatistics appeared as a proposal for dealing with
complex environments that consist of parts characterized
by different BG statistics so the f (β ) distribution carries
information associated with variations on the intensive β pa-
rameter. For this reason, in their superstatistics proposal, Beck
et al. referred to a “statistics of a statistics” [7], and defined an
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effective Boltzmann factor

B(E ) =
∫ ∞

0
dβ f (β )e−βE , (1)

where E corresponds to the energy associated with a given
microstate. One notices that for an equilibrium situation cor-
responding to an intensive β parameter that does not fluctuate,
given by a single value β0, i.e., f (β ) = δ(β − β0), one recov-
ers Boltzmann weight. In more complex situations, the f (β )
distribution may admit continuous distributions that depend
on the system under analysis.

Beck-Cohen superstatistics considers different universality
classes associated with the f (β ) distribution, from which one
should mention the χ2, χ2 inverse, and log-normal classes.
These distributions have been relevant for describing sev-
eral complex systems, like air pollution statistics [8], wind
velocity fluctuations [9], frequency fluctuations in power
grids [10], and anomalous non-Gaussian diffusion processes
[11,12]. Interestingly, the χ2 superstatistics yields the weight
characteristic of Tsallis statistics, connected with Sq entropy
[13], whereas the χ2 inverse and log-normal distributions
do not present, up to now, explicit entropic functionals. In
this framework, several proposals appeared for finding en-
tropic functionals associated with given energy probability
distributions, considering the standard internal-energy defi-
nition [5,6,14,15] or generalized definitions [16], leading to
the possibility of determining entropic forms associated with
different classes of superstatistics.

Out of the scope of Beck-Cohen superstatistics, many
entropic forms have been proposed, motivated by phenomeno-
logical approaches, and some of them present a high potential
for applicability in complex systems [17–21]. Among those,
one should mention (in chronological order) the proposals
by Rény (1961) [22], Sharma and Mittal (1975) [23], Tsallis
(1988) [13], Abe (1997) [24], Landsberg-Vedral (1998) [25],
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Curado (1999, 2004) [26,27], Anteneodo and Plastino (1999)
[28], Kaniadakis (2001) [29], Hanel and Thurner (2011) [17],
and Tsallis and Cirto (2013) [30]. In general, these entropic
functionals are not additive (except for Rény entropy) but can
be asymptotically additive, depending on the system consid-
ered, and present equilibrium distributions characterized by
long tails, which have been important characteristics for ap-
proaching complex systems. These entropic forms have been
applied in a wide range of fields of knowledge, like com-
plex networks [31,32], economics [33–35], ecology [36,37],
anomalous diffusion [38–40], and cognitive sciences [41,42].

Hence, generalized entropies (through their corresponding
equilibrium distributions), as well as Beck-Cohen superstatis-
tics, represent possible approaches for dealing with complex
systems. Apart from the case of χ2 superstatistics, which was
shown to be related to Tsallis statistics, in many cases it may
become a hard task to identify the entropic form associated
with a given class of superstatistics, e.g., those associated with
the χ2 inverse and log-normal distributions, for which one
does not know, up to now, explicit forms of their entropic
functionals. In the present paper, we propose a class to be
called hereafter χ2

η superstatistics, corresponding to a mod-
ification of the usual χ2 distribution, by introducing a real
index η (0 < η � 1). We succeed in identifying an associated
entropic form, which recovers well-known cases in two limits,
namely, η → 1, where we obtain the χ2 particular case (Tsal-
lis entropy), as well as another relevant limit characterized
by a stretched exponential weight, related with Anteneodo-
Plastino entropic form [28].

In the next section, we review briefly some basic results
of Beck-Cohen superstatistics; In Sec. III, we introduce the
Mittag-Leffler function, from which the χ2

η distribution is
obtained. Therefore, we construct a χ2

η superstatistics that
implies on a q-stretched-exponential factor, i.e., B(E ) =
expq[−(β0E )η] (to be defined later on), whereas an associated
two-index entropic form is found in Sec. IV. Finally, in Sec. V
we present our conclusions.

II. BRIEF REVIEW OF SUPERSTATISTICS

In this section, we introduce some basic concepts of su-
perstatistics, which is an appropriate tool for approaching
systems that present significant fluctuations in a given inten-
sive parameter, e.g., inverse temperature, chemical potential,
and diffusivity. A nonhomogeneous environment, such as
within a living cell, is an example of a system in which diffu-
sivity fluctuates [11,43,44] and may be considered a complex
environment containing a collection of diffusivities, each one
associated with a given part of the system. Another example
is an out-of-equilibrium system at a given microstate with
a total energy E , composed of environments, each of them
at their own equilibrium condition, presenting a temperature,
T ≡ β−1, leading to a BG statistical weight e−βE . By intro-
ducing a probability distribution f (β ), superstatistics defines a
generalized weight B(E ) following Eq. (1). In this framework,
a probability distribution may be defined,

p(E ) = B(E )

Z , (2)

where

Z =
∫

dE B(E ) =
∫

dE
∫ ∞

0
dβ f (β )e−βE (3)

represents the partition function [see also Ref. [45] for a differ-
ent, but qualitatively equivalent, definition of the distribution
p(E )].

Usually, one assigns to each different f (β ) a distinct class
of superstatistics, so when building a given superstatistics
class [4], both distributions f (β ) and p(E ) must be normal-
ized, as follows directly from the equations above. Moreover,
in a general case, one may have a density of states g(E )
associated to a state with energy E , so assuming an energy
spectrum defined by positive energies (0 � E < ∞), Eqs. (2)
and (3) become, respectively,

p(E ) = B(E )g(E )

Z , (4)

restricted to
∫ ∞

0 dE B(E )g(E ) being finite, so

Z =
∫ ∞

0
dE B(E )g(E ) =

∫ ∞

0
dE g(E )

∫ ∞

0
dβ f (β )e−βE .

(5)

By inverting the order of integrations in the equation above,
one has that

Z =
∫ ∞

0
dβ f (β )

∫ ∞

0
dE g(E )e−βE =

∫ ∞

0
dβ f (β )Z (β ),

(6)

where

Z (β ) =
∫ ∞

0
dE g(E )e−βE (7)

represents the usual partition function for a fixed value of β. A
direct interpretation of Eq. (6) yields that the partition function
Z of superstatistics represents an average of the standard
partition function Z (β ) over the distribution of temperatures
f (β ).

Furthermore, if one requires that the BG factor should be
recovered, the distribution f (β ) should approach a delta func-
tion in some special limit. As typical examples, one should
mention three different distributions f (β ) that are commonly
used in superstatistics; by considering the simple case g(E ) =
1, the corresponding partition function of Eq. (3) can be cal-
culated in each case, as described below. The first one is

f (β ) = 1

b�[γ ]

(
β

b

)γ−1

e− β

b (χ2 distribution), (8)

Z = 1

b(γ − 1)
, (9)

where b > 0 and γ > 1. This distribution represents the χ2

superstatistics and has been applied in high-energy physics
[46], wind power persistence [9], time series of leverage re-
turns [47], and protein diffusion dynamics in bacteria [48].
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The second distribution is known as χ2 inverse,

f (β ) = 1

bγ�[γ ]

(
β

b

)−γ−2

e− b
β (χ2 inverse distribution),

(10)

Z = 1 + γ

b
, (11)

in which b > 0 and γ > −2. This distribution has been
considered in investigations of air pollution by nitrogen ox-
ides [8], diffusion controlled by size fluctuations of single
molecules [49], as well as metastasis and cancer survival [50].
Finally, the third distribution is the log-normal, written as

f (β ) = 1

γ
√

2πβ
exp

⎡
⎢⎣−

(
log β

μ

)2

2γ 2

⎤
⎥⎦

(log-normal distribution), (12)

Z = exp(γ 2/2)

μ
, (13)

where γ and μ are positive parameters. The log-normal su-
perstatistics has been especially relevant for the understanding
of financial time series [51], Brownian particles in a complex
environment [52], and Lagrangian acceleration statistics in
turbulent flows [53].

Although all three classes of superstatistics defined above
have been successful in the description of various complex
systems, only the χ2 superstatistics has been connected to
an entropic form so far, namely, Tsallis entropy [4]. In fact,
substituting the distribution f (β ) of Eq. (8) in Eqs. (1) and
(2), one obtains

p(E ) = (1 + bE )−γ

Z , (14)

which is identified with Tsallis weight for 1 < q < 2,

pq(E ) = expq(−β0E )

Z

(expq[x] = [1 + (1 − q)x]
1

1−q

+ (q ∈ R)), (15)

where [u]+ = u, for u > 0, zero otherwise, by considering
bγ = β0 and γ −1 = q − 1. Therefore, a relevant question
arises, concerning the association of other superstatistics
classes with entropic forms known in the literature. In the
following sections, we focus our attention on a unique super-
statistical class and its associated entropic form.

III. A UNIQUE CLASS OF SUPERSTATISTICS

We begin by defining a special function known as the
three-parameter Mittag-Leffler function, which generalizes
the exponential in the context of fractional calculus [54,55],

Eγ
η,σ (z) =

∞∑
k=0

(γ )k

�[ηk + σ ]

zk

k!
, (16)

where (γ )k = �[γ + k]/�[γ ] represents the Pochhammer
symbol and σ, η, γ , z ∈ C, with R{σ } > 0, R{η} > 0,

R{γ } > 0. The function above recovers the two-parameter
Mittag-Leffler function [56] E1

η,σ (z), for γ = 1, and is reduced
to one free parameter for σ = 1 and γ = 1. Moreover, it leads
to the exponential form when η = σ = γ = 1, i.e., E1

1,1(z) =
ez. Recently, applications of the Mittag-Leffler function ap-
peared in several physical phenomena, like Lévy flights
[57,58], relaxation properties of solid systems [59], nonsin-
gular kernels in random-walk modelings [60,61], and other
superstatistics [62,63].

Inspired by the Mittag-Leffler function of Eq. (16), herein
we propose the following f (β ) (hereafter to be called χ2

η

distribution):

f (β ) = 1

b

(
β

b

)ηγ−1

Eγ
η,ηγ

[
−βη

bη

]
, (17)

where γ and b are positive real parameters, whereas 0 < η �
1. One should mention that this function presents the precise
mathematical structure of the Havriliak-Negami model for
describing dielectric relaxation [64]. To calculate the gener-
alized factor of Eq. (1), one needs the Laplace transform of
Eq. (17); its use in superstatistics becomes feasible through
the following Laplace transform [54,55]:

L
{
tσ−1Eγ

η,σ (−νtη )
}

= sηγ−σ

(sη + ν)γ
(R{s} > 0 and |s| > |ν| 1

η ). (18)

Let us now consider the limit to η → 1 in Eq. (17). Using the
definition of Eq. (16), one has

lim
η→1

f (β ) =
∞∑

k=0

lim
η→1

1

b

(
β

b

)ηγ−1 (γ )k

�[ηk + ηγ ]

(− βη

bη

)k

k!

= 1

b�[γ ]

(
β

b

)γ−1 ∞∑
k=0

(− β

b

)k

k!

= 1

b�[γ ]

(
β

b

)γ−1

e− β

b , (19)

which is precisely the χ2 distribution of Eq. (8). For this
reason, Eq. (17) defines a unique superstatistics class, χ2

η

superstatistics, that includes χ2 as a special case. Moreover,
the generalized factor of Eq. (1) may be found by calculating
the Laplace transform of Eq. (17) [i.e., using Eq. (18)]:

B[E ] = (1 + (bE )η )−γ . (20)

Similarly to what was done in the previous section, the corre-
sponding partition function of Eq. (3) can also be calculated
[by considering the simple case g(E ) = 1]:

Z =
∫ ∞

0
dE B(E ) = �[γ − 1/η] �[1 + 1/η]

b�[γ ]
(γ η > 1),

(21)

whereas it diverges for γ η < 1.
To recover some previous results, we consider the notation

[65]

γ −1 = (q − 1); b = β0(q − 1)
1
η (q > 1), (22)
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FIG. 1. The f (β ) distributions that emerge from Eq. (23) in the limit η → 1 (i.e., χ 2 distributions) are plotted versus β in linear-linear
(a) and log-log (b) representations, for β0 = 1 and typical values of q > 1.

implying

f (β ) = 1

β0(q − 1)
1

q−1

(
β

β0

) η

q−1 −1

E
1

q−1

η,
η

q−1

[
− βη

β
η

0 (q − 1)

]
,

(23)

so Eq. (20) becomes

B(E ) = expq [−(β0E )η]. (24)

The generalized factor above is expressed as a stretched
q-exponential function [see Eq. (15)], presenting two im-
portant limits as particular cases: (i) η → 1, leading to the
q-exponential function associated with Tsallis entropy and (ii)
q → 1, yielding a stretched exponential related to Anteneodo-

Plastino entropy; in both limits, one has nonadditive entropic
forms. It should be mentioned that the functional form of
Eq. (24) has been observed in a wide range of properties
of natural systems, like (a) velocity measurements in a tur-
bulent Couette-Taylor flow [66]; (b) relaxation curves of
RKKY spin glasses, like CuMn and AuFe [67]; (c) cumu-
lative distribution for the magnitude of earthquakes, leading
to a modification of the Gutenberg-Richter law [68]; and
(d) thermal conductivity of systems of nearest-neighbor in-
teracting XY rotators, yielding a microscopic verification of
Fourier’s law [69].

Moreover, the limit to q → 1 in Eq. (23) leads to the
convergent series proposed by Pollard (see Ref. [70] for more
details),

lim
q→1

f (β ) = lim
q→1

1

β0(q − 1)
1

q−1

(
β

β0

) η

q−1 −1

E
1

q−1

η,
η

q−1

[
− βη

β
η

0 (q − 1)

]

= 1

β0π

∞∑
k=1

(−1)k+1 �[ηk + 1] sin[πηk]

k!(ββ−1
0 )ηk+1

(Lη distribution), (25)

known also as one-sided Lévy distribution.
This distribution defines a class (hereafter to be called Lη),

being a particular case of the χ2
η superstatistics in the limit to

q → 1, recovering the analysis of stretched exponentials from
the superstatistics carried in Ref. [71].

Next we present plots of the f (β ) distributions discussed
above, for typical values of their parameters; in all cases, we
consider β0 = 1. In Fig. 1, we present the χ2 distributions
obtained from Eq. (23) in the limit η → 1, plotted versus β in
both linear-linear [Fig. 1(a)] and log-log [Fig. 1(b)] represen-
tations, considering typical values of q > 1. One notices that
by increasing q, one gets longer-tail contributions, as expected
for generating q-exponential distributions through a Laplace
transform. The Lη distributions resulting from Eq. (25) are
exhibited versus β in Fig. 2, in both linear-linear [Fig. 2(a)]
and log-log [Fig. 2(b)] representations for typical values of η

in the interval 0 < η � 1. As β gets larger, the corresponding

Lη distributions decay faster for smaller η. In Fig. 3, we show
the χ2

η distributions [from Eq. (23)] versus β in linear-linear
[Fig. 3(a)] and log-log [Fig. 3(b)] representations for η = 0.5
and typical values of q > 1. As β increases, the corresponding
χ2

η distributions decay faster for larger values of q. One should
notice that all distributions shown in Figs. 1–3 exhibit quali-
tatively similar behaviors, typical of one-sided distributions,
namely, presenting larger contributions for small values of β

and decaying for larger values of β; such a decay varies ac-
cording to the parameters q and η, leading to distinct behavior
in the corresponding tails.

Hence, the present investigation deals with a unique class
of superstatistics and their corresponding most relevant par-
ticular cases, given by the following f (β ) distributions:

(1) A unique class, χ2
η superstatistics (q � 1, 0 < η � 1).

(2) χ2 superstatistics, associated with Tsallis entropy [13],
recovered in the limit η → 1.
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FIG. 2. The Lη distributions [cf. Eq. (25)] are plotted versus β in linear-linear (a) and log-log (b) representations for β0 = 1 and typical
values of η (0 < η � 1). For comparison, we also present a χ2 distribution (dashed blue line) for q = 1.3 and η = 1

(3) Lη superstatistics, associated with Anteneodo-Plastino
entropy [28], obtained in the limit q → 1.
The general entropic form associated with the χ2

η superstatis-
tics will be found in the next section.

IV. CONSTRUCTING THE ASSOCIATED
ENTROPIC FORM

The maximum entropy principle allows us to find equi-
librium probability distributions for given constraints, e.g.,
normalization of the probability and internal-energy definition
[1,3]. Less well-established, however, is the inverse proce-
dure, namely, determining an entropic form associated with
a given probability distribution; lately, several proposals ap-
peared in the literature for such a purpose [5,6,14–16]. Next,
we describe briefly how to determine the entropic form related
to a continuous monotonically decreasing energy probability
distribution p(E ) or, equivalently, with a discrete set of W
probabilities, {pi(Ei )}, associated with an energy spectrum

{Ei} (see, e.g., Ref. [15]):

W∑
i=1

pi(Ei ) = 1. (26)

The aim consists of finding an entropic form,

S({pi}) = k
W∑

i=1

g(pi ) (g(0) = g(1) = 0), (27)

where k represents a constant with dimensions of entropy,
whereas g(pi ) is a concave function of the probabilities {pi};
moreover, from these probabilities one may define the internal
energy:

U =
W∑

i=1

piEi. (28)

FIG. 3. The f (β ) distributions from Eq. (23) (χ 2
η distributions) are plotted versus β in linear-linear (a) and log-log (b) representations for

β0 = 1, η = 0.5, and typical values of q > 1. For comparison, we also present the Lη distribution (dashed red line) for q = 1.0 and η = 0.5.
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One fundamental condition concerns the possibility of the
inversion operation,

pi(Ei ) ⇒ Ei(pi ), (29)

where, in the present case, the inverse function of the stretched
q exponential appearing in Eq. (24), f = e−ζ η

q , is given by

ζ [ f ] = (− lnq f )
1
η

(
lnq(x) = x1−q − 1

1 − q

)
. (30)

The entropic functional of Eq. (27) may be expressed in
terms of the above inverse function [5,15],

g(pi ) =
∫ pi

0
ζ (x)dx − a1 pi, (31)

where a1 is a constant. Using the conditions of Eq. (27),
together with the definition of Eq. (30) in Eq. (31), one obtains
the following entropic form:

Sq,η({pi}) = k
∑

i

{∫ pi

0
[− lnq(x)]

1
η dx − pi

∫ 1

0
[− lnq(x)]

1
η dx

}
, (32)

in which we have set a1 = ∫ 1
0 [− lnq(x)]

1
η dx. In fact, for q < 1 + η, both integrals above may be calculated analytically; the first

one becomes expressed in terms of a hypergeometric function,∫ pi

0
[− lnq(x)]

1
η dx = (q − 1)−b1

�[b2]

�[b3]
(− lnq pi )

−b2
2F1

[
b1, b2, b3,

b1

q lnq pi

]
, (33)

b1 = q

q − 1
; b2 = 1

q − 1
− 1

η
; b3 = q

q − 1
− 1

η
, (34)

whereas the second one is given by

∫ 1

0
[− lnq(x)]

1
η dx =

�
[
1 + 1

η

]
�[b2]

(q − 1)1/η �
[

1
q−1

] . (35)

The limit η → 1 in Eq. (32) implies

lim
η→1

Sq,η({pi}) = −k
∑

i

{∫ pi

0
lnq (x)dx − pi

∫ 1

0
lnq (x)dx

}

= − k

2 − q

∑
i

pi lnq pi, (36)

which is essentially Tsallis entropy. One should note that considering the symmetry q ↔ 2 − q, commonly used in nonextensive
statistical mechanics [3], the result above becomes

lim
η→1

Sq,η({pi}) = k

q

∑
i

pi lnq

(
1

pi

)
= 1

q
Sq({pi}), (37)

where Sq({pi}) represents Tsallis entropy.
Another important limit of Eq. (32) corresponds to q → 1,

lim
q→1

Sq,η({pi}) = k
∑

i

{∫ pi

0
[− ln x]

1
η dx − pi

∫ 1

0
[− ln x]

1
η dx

}

= k
∑

i

{
�

[
1 + η

η
,− ln pi

]
− pi�

[
1 + η

η

]}
, (38)

where �[a, b] = ∫ ∞
b xa−1e−xdx is the incomplete Gamma function; above, one identifies precisely the Anteneodo-Plastino

entropic form [28]. One should note that considering the limits q → 1 in Eq. (37), or η → 1 in Eq. (38), one recovers BG
entropy.

In an alternative way, the general entropic form of Eq. (32) can also be written as

Sq,η({pi}) = k
∑

i

{
�q

[
1 + η

η
,− lnq pi

]
− pi�q

[
1 + η

η

]}
, (39)

where we defined a q-incomplete gamma function �q[a, b],

�q[a, b] =
∫ ∞

b
xa−1[eq(−x)]qdx (lim

q→1
�q[a, b] = �[a, b]), (40)

by introducing the q-exponential function of Eq. (15).
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FIG. 4. The functional g(p) [cf. Eqs. (41)–(43)] is represented versus p in several situations: (a) fixed η and increasing values of q; (b) fixed
q and increasing values of η; (c) the same as in (a) for a two-state system, i.e., probabilities p and 1 − p; (d) the same as in (b) for a two-state
system, i.e., probabilities p and 1 − p. In all cases, the functional g(p) exhibits the expected concavity with respect to p.

Therefore, the entropic functional associated with the
weight in Eq. (24) was determined above, being expressed in
two equivalent forms:

Sq,η({pi}) = k
W∑

i=1

g(pi ), (41)

g(pi ) =
∫ pi

0
[− lnq(x)]

1
η dx − pi

∫ 1

0
[− lnq(x)]

1
η dx

(42)

= �q

[
1 + η

η
,− lnq pi

]
− pi�q

[
1 + η

η

]
. (43)

Plots of the functional g(p) above are exhibited in Fig. 4 for
typical values of their parameters. In the upper panels, g(p) is
represented versus p for a fixed η and increasing values of q
[Fig. 4(a)], as well as for a fixed q and increasing values of η

[Fig. 4(b)]: In both cases, one notices that deviations from the
BG curve (q = η = 1) get larger as the corresponding varying
parameter departs from unit. Similar plots are presented in
Figs. 4(c) and 4(d), where g(p) is plotted versus p for W = 2,

i.e., probabilities p and 1 − p, showing the expected maxi-
mum at equiprobability (p = 1/2) as well as the symmetry
p ↔ (1 − p).

Let us now comment on the behavior of the entropic form
Sq,η({pi}) [Eqs. (41)–(43)], taking into account Khinchin ax-
ioms [72] as described below.

(i) It depends only on the set of probabilities {pi}.
(ii) Although the maximum at equiprobability was shown

numerically in several typical cases for W = 2 [cf. Figs. 4(c)
and 4(d)], one expects that such a behavior is preserved for
general W (W > 2), with pi = 1/W (i = 1, 2, · · ·W ).

(iii) It satisfies the property of expansibility by remaining
unchanged through the addition of zero-probability events.

(iv) It violates the fourth Khinchin axiom, concerning the
behavior of the entropy of a composite system with respect to
the entropies of its subsystems, i.e., the additivity property is
not satisfied.

Hence, axioms (i) and (iii) are fulfilled and axiom (ii)
was shown to be satisfied in the simple case W = 2, whereas
axiom (iv) is violated. One should mention that violation of
the fourth Khinchin axiom is very common in the framework
of generalized entropic forms [3,20,21].
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V. CONCLUSIONS

We have introduced a potentially relevant superstatis-
tics class, characterized by a f (β ) distribution, expressed
as a modification of the usual χ2 through the introduction
of a real index η (0 < η � 1), leading to a χ2

η distribu-
tion. We have shown that the resulting energy probability
distribution, p(E ) = B(E )/Z , is given by a stretched q-
exponential function, where B(E ) = expq[−(β0E )η]. In this
way, one covers, as particular cases, two very common
forms in the realm of complex systems: (i) the q-exponential
function associated with Tsallis entropy, recovered in the
limit η → 1 and (ii) the stretched exponential related to
Anteneodo-Plastino entropy, obtained for q → 1. Moreover,
considering both limits (q, η) → (1, 1) one recovers the BG
weight.

Futhermore, we applied methods introduced previously in
the literature to find the entropic form associated with the
distribution p(E ), given the internal energy U = ∑

i piEi .

The resulting entropic form Sq,η({pi}) was shown to satisfy
essential Khinchin axioms.

Since the two limiting distributions, η → 1 (Tsallis) and
q → 1 (stretched-exponential), are ubiquitous in complex
systems, one expects that the generalized form B(E ) =
expq[−(β0E )η] should be relevant in the study of complex
systems. As examples, one could mention the velocity mea-
surements in a turbulent Couette-Taylor flow [66], relaxation
curves of RKKY spin glasses, like CuMn and AuFe [67],
cumulative distribution for the magnitude of earthquakes
[68], and thermal-conductivity curves for systems of nearest-
neighbor interacting XY rotators [69].
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