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Nonequilibrium statistical physics beyond the ideal heat bath approximation
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Important models of nonequilibrium statistical physics (NESP) are limited by a commonly used, but of-
ten unrecognized, near-equilibrium approximation. Fokker-Planck and Langevin equations, the Einstein and
random-flight diffusion models, and the Schnakenberg model of biochemical networks suppose that fluctuations
are due to an ideal equilibrium bath. But far from equilibrium, this perfect bath concept does not hold. A
more principled approach should derive the rate fluctuations from an underlying dynamical model, rather than
assuming a particular form. Here, using maximum caliber as the underlying principle, we derive corrections
for NESP processes in an imperfect—but more realistic—environment, corrections which become particularly
important for a system driven strongly away from equilibrium. Beyond characterizing a heat bath by the single
equilibrium property of its temperature, the bath’s speed and size must also be used to characterize the bath’s
ability to handle fast or large fluctuations.
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I. INTRODUCTION

Nonequilibrium statistical physics (NESP) aims to explain
force-flow relationships in situations where fluctuations and
rate distributions matter. However, modeling in NESP often
rests on near-equilibrium approximations that we describe
below. But how do we go beyond these approximations to treat
flows further from equilibrium? We desire an NESP procedure
resembling equilibrium statistical physics (ESP).

In ESP, you assert: (i) the second law of thermodynam-
ics, equivalent to the maximum entropy (MaxEnt) variational
principle; and (ii) the existence of a “perfect bath” holding
the system at constant known average quantities, like energy
or particle number. This gives a principled way to derive the
full equilibrium probability distribution. It gives the Boltz-
mann distribution (BD) law with exponential dependence on
energy—a result of great generality—which can give macro-
scopic behaviors from a microscopic model of energy levels.

In contrast, traditional modeling in NESP has a more
limited foundation. There is no consensus on the proper
variational principle. Near equilibrium, the second law of ther-
modynamics is rooted in experiments through the Clausius
relationship between entropy and heat, but there is no equiv-
alent experimental anchor further from equilibrium. While
some have favored using the entropy dissipation rate dS/dt , it
has been shown that this is limited to near-equilibria [1]. Fur-
thermore, common NESP models assume near-equilibrium
rate distributions, based on equilibrium temperature baths,
rather than deriving them based on information pertinent to
the system at hand, such as properties of flows.
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Unlike in ESP, traditional NESP gives no principled con-
nection between macroscopic rate laws (e.g., Fick’s, Fourier’s,
and Ohm’s Laws, Newtonian viscosities, etc.) and micro-
scopic modeling (e.g., the Langevin and Fokker-Planck
equations, random walks and random flights, the Einstein
diffusion relation, the Schnakenberg relations for biochemi-
cal networks, etc.). In forming the latter set, fluctuations are
ascribed as if they are provided by an infinite equilibrium
heat bath, but transport phenomena result from gradients, so it
does not make sense to derive their fluctuations from the zero-
gradient limit that an equilibrium bath supplies. In Langevin
modeling, appending Gaussian white noise is known to cause
serious issues when dynamics has nonlinearities, such as in
viscoelastic materials, or in the van Kampen diode, wherein
Langevin modeling leads to violations of conservation of
energy [2].

Although an infinite equilibrium bath is a good approxima-
tion in many circumstances, strongly driven systems will see
a bath that is finite in size and responsiveness. If a system has
large fluctuations, then a finite bath will not be able to absorb
or accommodate them; if a system changes too quickly, then it
may generate corresponding heat faster than the bath can take
it up, and the bath itself will be pushed out of equilibrium.
Quantitatively, we study two dimensionless metrics for how
far a bath is from its idealization: the ratio of heat capac-
ity of the system to that of the bath, and a measure of the
bath’s speed in responding to any perturbation, relative to the
system’s speed in generating it.

To model these effects, we require a generative principle of
the type indicated above as desirable: a sound variational prin-
ciple that derives rate distributions from microscopic models.
It has been shown that such a principle for nonequilibria is
maximum caliber (MaxCal) [1,3,4]. MaxCal is essentially
the maximum entropy inference procedure applied to path
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probabilities of flow trajectories; its validity and power rest
on the mathematical bedrock of the Shore and Johnson ar-
guments regarding MaxEnt [5], which have been recently
updated and further explained by Ariel Caticha, who con-
structs the entire procedure of entropic inference from the
ground up based on physically meaningful requirements [6].
In this paper, we employ MaxEnt and MaxCal to derive first-
order corrections to baths that are not infinite in size or speed.

It is most illuminating to focus on a particular model. Here,
we focus on the Fokker-Planck (FP) evolution equation for
dynamics on continuous microstates:

∂ p(x, t )

∂t
= Dβ

∂

∂x
[E ′(x)p(x, t )] + D

∂2 p(x, t )

∂x2
, (1)

where D is the diffusion coefficient for the microstates labeled
by x, β is the inverse temperature, and E (x) is the energy
landscape.1 The FP model is important due to its broad use
in many disciplines, including prominent use in stochastic
thermodynamics2 [7].

II. REVIEW OF DYNAMICS IN IDEAL THERMAL
RESERVOIRS

Before finding corrections to the BD and FP using MaxEnt
and MaxCal, we will review how to use MaxEnt and MaxCal
to derive the original, ideal-bath forms of the BD and FP. In
doing so, we will note where the ideal bath assumptions arise,
as a basis for going beyond them later.

A. Boltzmann distribution from maximum entropy

MaxEnt infers the microscopic probability distribution
P(x)—given certain limited information about a system—by
maximizing the Boltzmann-Gibbs-Shannon entropy,

S[P] = −
∑

x

P(x) ln

[
P(x)

Q(x)

]
, (2)

relative to some prior Q(x), constrained by the known in-
formation.3 For example, to derive the BD, you impose
knowledge of the average system energy 〈E (x)〉 through use
of a Lagrange multiplier β, and vary S[P] with uniform prior,
to get

P(x) = 1

Z
exp[−βE (x)], (3)

where Z = ∑
exp[−βE (x)] is the partition function, normal-

izing the distribution.

1x here does not specifically refer to position, but rather to whatever
labels the microstates, which could be positions, or velocities, or
angles, etc.

2Although much of the Stochastic Thermodynamics literature as-
sumes ideal bath behavior when postulating models—see, e.g., the
review by Seifert [7]—the powerful tools used to analyze the irre-
versibility of those models in the Stochastic Thermodynamics papers
remain valid and helpful for any model, including the models in the
presence of nonideal baths that we discuss here—see, e.g., the work
of Yang and Qian [8].

3The sum in Eq. (2) above can of course be an integral for a
continuous state space.

To see the effects of finite bath size, we switch to a
more general supersystem derivation. As shown in Ref. [3],
consider a large system-plus-bath supersystem constrained to
have a fixed total energy Etot, since this supersystem is as-
sumed isolated. In the absence of more information, MaxEnt
says that the probability distribution over supersystem mi-
crostates is uniform over all allowed states. Every supersystem
microstate with energy Etot is equally probable. Then, we
sum/integrate over the degrees of freedom of the bath, giving
the system distribution as

P(x) ∝ �B[Etot − E (x)] = exp{ln �B[Etot − E (x)]}, (4)

where �B(EB) is the number of bath microstates with energy
EB.

Here is where the infinite-bath-size approximation comes
in. If we now assume that fluctuations in the system energy are
very small compared to the energy in the bath, we can Taylor
expand ln �B around equilibrium, using the microcanonical
thermodynamic definition of inverse temperature:

β = d ln �B(EB)

dEB

∣∣∣∣
EB=Etot −〈E〉

. (5)

Dropping terms of higher order in system energy fluctuations,
we can now write Eq. (4) as

P(x) ∝ exp{ln �B[Etot − 〈E〉] − β[E (x) − 〈E〉]}, (6)

which, once properly normalized, is the BD. Later, we will
include the next term in the Taylor expansion of ln �B to more
accurately describe a system in contact with a large-but-finite
heat bath.

B. Fokker-Planck equation from maximum caliber

Having reviewed the equilibrium properties of a system in
an ideal thermal bath, we turn to the dynamics of such a sys-
tem. In this section, we derive the FP equation using MaxCal.
We seek the temporal evolution of a probability distribution
p(x, t ):

∂ p(x, t )

∂t
= lim

ε→0

1

ε
[p(x, t + ε) − p(x, t )]

= lim
ε→0

1

ε

[∫
dx′ p(x′, t )

P(x′, t ; x, t + ε)

P(x′)
− p(x, t )

]
,

(7)

where we have written the transition probability for a short
time-step ε in terms of P(x′, t ; x, t + ε)—the equilibrium
probability to follow a trajectory from state x′ at time t to
state x at time t + ε—and P(x), the equilibrium state prob-
ability distribution. What remains is to determine the form of
P(x′, t ; x, t + ε) to first order in ε, which calls for the use of
MaxCal.

There are three relevant constraints: (i) knowledge of the
equilibrium probability P(x) = ∫

dx′ P(x, t ; x′, t + ε) for all
values of x, which we will impose with Lagrange multi-
plier μ(x); (ii) microscopic reversibility P(x′, t ; x, t + ε) =
P(x, t ; x′, t + ε) for all x and x′, which we will impose with
Lagrange multiplier α(x, x′); and (iii) a diffusion constraint∫

dx dx′ P(x′, t ; x, t + ε)(x − x′)2 = 2Dε, ensuring the con-
tinuity of motion, which we will impose with Lagrange
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multiplier γ . Collecting this information, the unmaximized
Caliber functional is4

C = −
∫

dx
∫

dx′ P(x, x′) ln

[
P(x, x′)

1/N

]

+
∫

dx μ(x)

[
P(x) −

∫
dx′ P(x, x′)

]

+
∫

dx
∫

dx′ α(x, x′)[P(x, x′) − P(x′, x)]

+ γ

[
2Dε −

∫
dx

∫
dx′ P(x, x′) (x′ − x)2

]
, (8)

where 1/N is the uniform prior, and we note that only the
antisymmetric part of α(x, x′) will matter, so without loss of
generality we just take it to be antisymmetric. Now we vary
C with respect to the probabilities and set this variation equal
to zero to derive the optimal expression for the probabilities
P(x, x′):

0 = δC
δP(x, x′)

= − ln

[
P(x, x′)

1/N

]
− 1

− μ(x) + 2α(x, x′) − γ (x′ − x)2

⇒ P(x, x′) = e−1e−μ(x)e2α(x,x′ )e−γ (x′−x)2

N . (9)

Now, we apply constraints to elucidate the connections be-
tween the Lagrange multipliers and physical quantities. First,
the symmetry and reversibility constraint easily eliminates the
antisymmetric function α(x, x′):

P(x, x′) = P(x′, x) ⇒ 2α(x, x′) = 1

2
[μ(x) − μ(x′)]

⇒ P(x, x′) = R(x)R(x′)
√

γ

π
e−γ (x′−x)2

, (10)

where we have absorbed some constants and functions into the
new function R(x) without loss of generality, and we now see
a normalized Gaussian for x′ − x contained in P(x, x′). For a
general time span ε, it might be difficult to proceed, but since
we are taking ε to zero, we know from the diffusion constraint
that only very very small values of x′ − x should be accessible
with any reasonable probability, and thus taking ε to zero is
equivalent to taking γ to infinity. Thus we will make use of
the singular expansion of a normalized Gaussian around zero
variance, namely,√

γ

π
e−γ (x′−x)2 = δ(x′ − x) + 1

4γ
δ′′(x′ − x) + O(1/γ 2),

(11)
where we will not need terms beyond the first two. This crucial
observation allows us to easily incorporate the diffusion con-
straint for general P(x); integrating P(x, x′) over x′ using the
expansion of Eq. (11) yields an expression for R(x) in terms
of P(x), to zeroth and first orders in 1/γ . Then, the diffusion

4The time coordinates are omitted during this derivation for the
purpose of more concise notation.

constraint yields the relation γ = 1/4Dε as ε goes to zero.
Eq. (10) becomes

P(x′, t ; x, t + ε) = P(x′)δ(x − x′) − εDP′(x′)δ′(x − x′)

+ εDP(x′)δ′′(x − x′) + O(ε2). (12)

Plugging this back into Eq. (7) yields

∂ p(x, t )

∂t
= −D

∂

∂x

[
p(x, t )

∂

∂x
ln P(x)

]
+ D

∂2 p(x, t )

∂x2
, (13)

which completes the MaxCal derivation of the FP.
It is important to note how this derivation differs from

previous derivations of the FP [2]. Traditionally, one begins
with a master equation and then assumes the transition rates
are very narrowly peaked Gaussians, possibly employing the
Kramers-Moyal expansion and the Pawula Theorem—the FP
then follows. Here, however, the transition rates are derived to
be narrowly peaked Gaussians—using the MaxCal procedure
with the diffusion constraint.

Note that substituting the BD [Eq. (3)] into Eq. (13) yields
Eq. (1), the well-known form of the FP equation in a thermal
bath. Below, we will discuss how to extend this derivation
to incorporate a dynamical fluctuating local bath, albeit one
which fluctuates much more quickly than the system, so that
the system sees the bath as effectively almost stationary. For
the derivation below, we will need to fully understand the
appearance of timescales in our setup.

Although we know that it sets the timescale for a system,
the diffusion coefficient contains nontemporal units—it has
dimensions of [system dimension]2/[time]. Wishing to extract
just the timescale, we will divide the diffusion coefficient
by an appropriate squared system dimension; specifically,
we define here the time constant κ associated with a diffu-
sion coefficient D as κ = D/σ 2, where σ 2 is the equilibrium
variance of the system variable. Other choices exist, but
this has a clear interpretation as the inverse timescale for
the system to relax to equilibrium from a perturbation. Fur-
thermore, the precise definition of time constant is not so
important as long as we use the same definition when com-
paring two different systems, which we will be doing below
with our system of interest and the local bath surrounding
it. It will become evident that the effects of the dynami-
cal bath become important when the time constant for the
bath is nonnegligible compared to the time constant for the
system.

III. BEYOND IDEAL THERMAL RESERVOIRS WITH
MAXIMUM CALIBER

A. Limitation (A): Infinite-sized heat bath

In the previous section, we derived Eq. (4), the equilibrium
distribution for a system in contact with a generic bath, about
which we have no specific information. Performing a Taylor
expansion of ln �B for fluctuations in the system energy that
are small compared to the bath energy, we arrived at Eq. (6)
keeping only the leading order term, which is equivalent to
the BD. What if we include the next term, the term of order
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[E (x) − 〈E〉]2? Then we get a slight variation of the BD,

P(x) ∝ exp

[
ln �B(Etot − 〈E〉) − β[E (x) − 〈E〉]

− β2

2CB(β )
[E (x) − 〈E〉]2

]
, (14)

in which the variance of the energy fluctuations has also
been constrained, where CB(β ) = E ′

B(T = 1/β ) is the (micro-
canonical) heat capacity of the bath at inverse temperature β.5

Thus, for a system in contact with a finite-sized heat bath,
the equilibrium probability distribution is no longer the simple
BD, with its characteristic exponential energy dependence.
For a very-large-but-finite bath, there is a quadratic correction,

P(x) ∝ e−βE (x)

[
1 − s

2

(
[E (x) − 〈E〉]2

σ 2
E

− 1

)
+ O(s2)

]
,

(15)
where we introduce the coefficient s = CS/CB—the ratio of
system heat capacity (CS) to bath heat capacity (CB)—and σ 2

E
is the variance of the system energy.6 Note that—although
our derivation is physically illuminating—Eq. (15) could be
derived directly from MaxEnt with constraints on both the av-
erage energy and energy variance of the system, so even if we
cannot directly measure the heat capacity of the environment,
the measured energy variance of the system can determine this
correction. Equation (15) describes the effects of a finite bath
on equilibria [9,10].

Now, what is the effect of a finite bath on nonequilibria? As
discussed above, for a system relaxing to the BD, we recover
the familiar gradient of the energy landscape drift term in
the FP. However, in a large-but-finite heat bath, to first order
in s, substituting Eq. (15) into Eq. (13) with D = κσ 2—as
explained above—yields

∂ p(x, t )

∂t
= κσ 2 ∂2 p(x, t )

∂x2

+ κσ 2β
∂

∂x

[
E ′(x)

(
1 + s

[E (x) − 〈E〉]
βσ 2

E

)
p(x, t )

]
.

(16)

This can be interpreted as an FP equation with a microstate-
dependent temperature perturbation.

So far, x has been used as a generic microstate label. Let
us now consider the specific case one-dimensional Brown-
ian motion, in which the relevant microstate variable is the
velocity v for a particle of mass m diffusing through a heat
bath of inverse temperature β and size ratio s. The velocity
probability distribution diffuses with coefficient D = κσ 2 =

5The form of Eq. (14) has appeared previously in the literature, see,
e.g., Ref. [9] or Ref. [10].

6The system heat capacity CS is defined as the derivative of the
expectation value of the system energy with respect to temperature
T = 1/β, i.e., CS (β ) = d〈E〉/dT = −β2d〈E〉/dβ. To zeroth order
in s, i.e., for the original BD, CS = β2σ 2

E ; since we only care about
P(x) to first order in s here, no further s-dependent terms in CS are
relevant.

FIG. 1. Finite bath size: effect of large fluctuations. Dimension-
less units are employed, and s is the ratio of system heat capacity to
bath heat capacity—see text for more details. (Left) Mean velocity vs
driving force for s = 1/100. (Right) Variance of velocity vs. driving
force for s = 1/100.

κ/βm,7 the energy is E (v) = 1
2 mv2, and we add an extra

drift term −(F/m)p′(v, t ) to our probability evolution equa-
tion corresponding to acting on the particle with a constant
external force F , i.e., the particle would accelerate at rate F/m
if it were not influenced by the heat bath. The equilibrium
probability distribution with an infinite bath is a Gaussian with
variance 1/βm and zero mean. Furthermore, the nonequilib-
rium steady state (NESS) with an infinite bath is a Gaussian
having the same variance, but a different mean value, 〈v〉F =
F/mκ . Physically, an infinite bath implies a perfectly linear
drag force with fluctuations that are always symmetric about
the mean and independent of the driving force.

As an aside, we note a troublesome aspect of the concept of
a finite bath for NESS. If the bath is finite, then an externally
driven process will eventually drain or saturate the bath; the
system can never truly be stationary, since the bath properties
will be changing constantly. We will consider here only suf-
ficiently large finite baths, in which there can be a relatively
long transient period resembling a NESS.8

The NESS in the presence of a finite bath—i.e., the steady-
state solution to Eq. (16) with added external force term—is
proportional to exp(βFv/κ ) times the finite-bath equilibrium
distribution Eq. (15). We introduce a dimensionless version of
the force f = (F

√
β )/(κ

√
m), as well as absorbing a factor

of
√

βm into velocities v to make them dimensionless. To first
order in s, we can write the NESS probability distribution as

Pf (v) = e− 1
2 (v− f )2

√
2π

{
1 − s

4
[(v − f )4 + 4 f (v − f )3

+ 2( f 2 − 2)(v − f )2 + 4 f ( f 2 − 1)(v − f )

−(6 f 2 + 1)]
}
. (17)

In this form, it is simple to calculate central moments,

〈v〉 f = f − s f (2 + f 2) + O(s2),

〈(v − 〈v〉 f )2〉 f = 1 − s

3
(6 + f 2) + O(s2), (18)

7This is not the same as the oft-used diffusion coefficient for the
position of a particle; it is the analogous quantity that appears in
Eq. (13) when the generic microstate label x refers to velocity rather
than position.

8Alternatively, a true finite bath NESS can be achieved by an
external agent cycling energy continuously between the system and
the bath, rather than simply supplying it.
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FIG. 2. Energy flow in dynamic local bath model.

and the skewness of the distribution is −6s f + O(s2). We see
nonlinear corrections to the drag force, as well as asymmetric
noise which decreases in strength for stronger forcing (see
Fig. 1).

One important and strange feature is that the variance in
velocity seems to go negative for high enough force, which
is nonphysical. This signals a phase transition, beyond which
a NESS is no longer supported—when the system is driven
too strongly, eventually the dissipation into the finite bath is
so great that the bath cannot take it. In an infinite-sized bath,
it would never occur, but this sort of breaking-point behavior
is known to appear in nature, such as when a spring is pulled
too far, or in dielectric breakdown.

B. Limitation (B): Stationary heat bath

A second approximation for nonequilibrium models is that
baths respond very rapidly to fluctuations in the system, such
that they are practically stationary.9 We begin to mitigate this
limitation with a framework we call the dynamic local bath
(DLB) model (see Fig. 2). The system is only coupled directly
to an intermediate local bath, which itself couples to a truly
infinite global bath. This introduces a finite time constant for
the environment to respond to fluctuations.

In the DLB, we track not only the microstate x of the
system, but also one extra variable: the total energy Etot in the
local-bath-plus-system super-system. Since the super-system
is immersed in a perfect bath, its equilibrium probability dis-
tribution is the BD:

P(x, Etot ) ∝ �B[Etot − E (x)]e−βEtot , (19)

where �B(EB) is the energy degeneracy of the local bath.
Performing a very similar analysis to the MaxCal deriva-

tion of the FP found above, we study the dynamics of
probability for the local-bath-plus-system super-system. We
use the time constant κ associated with diffusion and fluc-
tuations in the system, as well as introducing a new time
constant κE associated with diffusion and fluctuations in the

9By this we mean that the probability distribution of bath mi-
crostates is assumed to not change over time, even though the system
may be fluctuating, because the bath is assumed to be unaffected
by—i.e., uncorrelated with—the system.

super-system energy Etot.10 However, changes in x as a result
of interactions with the DLB are assumed uncorrelated with
changes in Etot as a result of interactions at the far-away
border between the DLB and the global bath, so there will
be no cross-derivative term. MaxCal then yields the primary
evolution equation for the DLB model:

∂ p(x, Etot, t )

∂t

= κσ 2 ∂

∂x
[βB(Etot − E (x))E ′(x)p(x, Etot, t )]

+ κσ 2 ∂2 p(x, Etot, t )

∂x2

+ κEσ 2
B

∂

∂Etot
([β − βB(Etot − E (x))]p(x, Etot, t ))

+ κEσ 2
B

∂2 p(x, Etot, t )

∂E2
tot

, (20)

where σ 2 and σ 2
B refer to the equilibrium variance of x and

Etot, respectively, and we have defined the function βB(EB) =
�′

B(EB). The resemblance to Eq. (13)—to which this equa-
tion provides a minor generalization—should be clear: there
are now simply diffusion and drift terms for each variable,
and the drift terms came from Eq. (19), the equilibrium distri-
bution for the super-system.

As a consistency check, Eq. (20) reduces to Eq. (13)—the
FP for the system alone—when the dimensionless response
ratio r = κ/κE goes to zero, i.e., when the local bath is
perfectly stationary. Importantly, we can go further and
find corrections to Eq. (13) for an almost-but-not-perfectly-
stationary bath. To first order in r, we compute the expectation
value:∫

dEtot p(Etot|x, t ) βB[Etot − E (x)]

= β − r
σ 2

σ 2
B

E ′(x)

[
βE ′(x) + 1

p(x, t )

∂ p(x, t )

∂x

]
+ O(r2).

(21)

The effective temperature depends not only on the microstate
x but also on the macrostate, since it depends on the distribu-
tion p(x, t ). This correction is zero at equilibrium, i.e., when
the probability distribution is the BD, and it will be small
when the probability distribution is close to the BD.

Using Eq. (21), we integrate Eq. (20) over Etot to find a
corrected FP for fast-but-not-infinitely-responding baths, to

10As a reminder of how these time constants are defined, they
are the diffusion coefficients for some degree of freedom, with
the equilibrium variance of that degree of freedom extracted, such
that they only have units of inverse time. In this case, κEσ 2

E =
limt→0〈�E 2

tot〉/t , where σ 2
E is the equilibrium variance of Etot. This

definition also relates to heat conductivity across the barrier between
the local bath and the global bath: If the local bath and global
bath are initially both in equilibrium at temperatures differing by an
infinitesimal dT , then the responding heat current across the barrier
when they come into contact will be κE dT .
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first order in r:

1

κσ 2

∂ p(x, t )

∂t

= ∂2

∂x2

{[
1 − r

σ 2

σ 2
B

E ′(x)2

]
p(x, t )

}

+ ∂

∂x

({
β + r

σ 2

σ 2
B

[2E ′′(x) − βE ′(x)2]

}
E ′(x)p(x, t )

)
.

(22)

This equation is the central result of this section. Note that
previously nonexistent x-dependence appears in the diffusion
term, slowing it down when energy flow is greater in magni-
tude. Another key result is the effect on the Einstein relation,
wherein the diffusion coefficient is proportional to tempera-
ture. For Brownian motion in a DLB, we find

D = κ

βm

[
1 − r

CB(β )
+ O(r2)

]
. (23)

Unless the heat capacity of the DLB CB(β ) is independent of
temperature, the diffusion coefficient will no longer be purely
proportional to temperature.

Now, consider the effect of applied force. The dimen-
sionless velocity and force and are defined as before, and a
quantity sL is defined analogously to the quantity s above,
except sL is the ratio of system heat capacity to heat capacity
of just the local bath. For arbitrary force f , we can add a
force-induced drift term to Eq. (22) and solve for the NESS:

Pf (v) = e− 1
2 (v− f )2

√
2π

{
1 + 1

3
rsL f [(v − f )3

+ 3 f (v − f )2 + 3 f 2(v − f ) − 3 f ] + O(r2)

}
.

(24)

From this we can calculate the moments,

〈v〉 f = f + rsL f (1 + f 2) + O(r2),

〈(v − 〈v〉 f )2〉 f = 1 + 2rsL f 2 + O(r2), (25)

and skewness 2rsL f + O(r2). Again we see nonlinear drag,
as well as asymmetric noise that depends on the driving force
(see Fig. 3).

It is interesting to note, as well, that the effects of a DLB
depend not only on the responsiveness of the local bath—
through r—but also on how large the local bath is—through
sL. In future work, we would like to extend the DLB concept
to multiple layers of intermediate baths, each with its own size
and characteristic response time, to more accurately describe
certain real systems; the work here is an important first step in
that direction.

Fluctuation relations in nonequilibria, such as those of
Crooks and Jarzynski, are based on ratios of forward to back-
ward trajectory probabilities [11,12]. In the NESS studied

FIG. 3. Finite bath speed: effects of fast system fluctuations.
Dimensionless units are employed, r is the ratio of system response
speed to local bath response speed, and sL is the ratio of system heat
capacity to local bath heat capacity—see text for more details. (Left)
Mean velocity vs driving force for rsL = 1/100. (Right) Variance of
velocity vs driving force for rsL = 1/100.

here, we find

ln

[
Pf (v)

Pf (−v)

]
= 2 f v + 2

3
rsL f v3 + O(r2). (26)

This logarithmic asymmetry factor is directly proportional to
dissipated power for a perfect bath, but we see a nonlinear
correction for a realistic environment. Although this is not
exactly the form of the canonical Crooks formulation, we see
that fluctuation relations can depend on bath speed (as well as
bath size [10]).

IV. SUMMARY AND CONCLUSIONS: THE MEANING
OF “FAR-FROM-EQUILIBRIUM”

How should we define far from equilibrium (FFE)? Often
this means that forces and flows are large, compared to some
relevant scales, and then force-flow relations are nonlinear.
But we note here two new important considerations: the ratio
of system size to bath size (here quantified as s), to account for
the bath’s ability to handle large fluctuations, and the ratio of
system speed to bath speed (here quantified as r), to account
for how quickly the bath can respond to fast changes in the
system.

We saw that, although these quantities can have negligible
effects near-equilibrium, they are increasingly important un-
der larger driving forces. Here, we have derived quantitative
first-order corrections for nonequilibrium statistical processes
in the presence of nonideal thermal baths. We have also ex-
tracted insight into significant qualitative differences in the
example case of driven Brownian motion, including funda-
mentally different steady states with breaking-point phase
changes in baths of finite size and dependence of diffusion
on energy flow rate in baths of finite speed.
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