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We investigate the eigenstate thermalization properties of the spin-1/2 XXZ model in two-dimensional
rectangular lattices of size L1×L2 under periodic boundary conditions. Exploiting the symmetry property,
we can perform an exact diagonalization study of the energy eigenvalues up to system size 4×7 and of the
energy eigenstates up to 4×6. Numerical analysis of the Hamiltonian eigenvalue spectrum and matrix elements
of an observable in the Hamiltonian eigenstate basis supports that the two-dimensional XXZ model follows
the eigenstate thermalization hypothesis. When the spin interaction is isotropic, the XXZ model Hamiltonian
conserves the total spin and has SU(2) symmetry. We show that the eigenstate thermalization hypothesis is still
valid within each subspace where the total spin is a good quantum number.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) explains
the mechanism for thermalization of isolated quantum sys-
tems [1,2]. The ETH guarantees that a quantum mechanical
expectation value of a local observable relaxes to the equilib-
rium ensemble averaged value and fluctuations in the steady
state satisfy the fluctuation dissipation theorem (see Ref. [3]
and references therein).

Numerous studies have been performed to test validity of
the ETH since the early work of Ref. [4]. The spin-1/2 XXZ
model [5–14] and the quantum Ising spin model [7,15–18]
are the paradigmatic model systems for ETH study. The XXZ
model is useful since it describes a hardcore boson system,
which is relevant to experimental ultracold atom systems
[19–23]. Moreover, integrability in these models can be tuned
easily in one-dimensional lattices. A thermal/nonthermal be-
havior and a crossover between them have been studied
comprehensively using the model systems [5–7,11,24–30].

The ETH has been examined mostly in one-dimensional
spin systems, and there are only a few works for two-
dimensional systems [4,15–17,31]. In this work, we study
the eigenstate thermalization property of the spin-1/2 XXZ
model in two-dimensional rectangular lattices. In compari-
son with the Ising spin systems [15–17], the XXZ model is
characterized by the conservation of the magnetization in the
z direction. Furthermore, it possesses the SU(2) symmetry
when the spin interaction is isotropic [32]. The SU(2) symme-
try conserves the magnetization in all directions, but the total
spin operators in different directions do not commute with
each other. Such a non-Abelian symmetry has a nontrivial
effect on many-body localization [33,34], quantum thermal-
ization [32,35,36], and entanglement entropy [37].

This paper is organized as follows. In Sec. II, we intro-
duce the XXZ Hamiltonian with nearest and next nearest
neighbor interactions in two-dimensional rectangular lattices.

The symmetry property of the Hamiltonian is summarized.
In Secs. III and IV, we present results of a numerical exact
diagonalization study. First, we will show in Sec. III that the
ETH is valid in the XXZ model without SU(2) symmetry. In
Sec. IV, we proceed to show that the SU(2) symmetric XXZ
model also satisfies the ETH in each SU(2) subsector. Our
work extends the validity of the ETH to the two-dimensional
XXZ model.

II. TWO-DIMENSIONAL XXZ MODEL

We consider the spin-1/2 XXZ model on a two-
dimensional rectangular lattice. The Pauli spin σr =
(σ x

r , σ
y
r , σ z

r ) resides on a lattice site r and the Hamiltonian is
given by

H = λ
∑
〈r,r′〉

h(σr, σr′ ) + (1 − λ)
∑
[r,r′]

h(σr, σr′ ), (1)

where 〈r, r′〉 and [r, r′] denote the pair of nearest neighbor (nn)
sites, connected by solid lines in Fig. 1(a), and of next nearest
neighbor (nnn) sites, connected by dotted lines in Fig. 1(a),
respectively, and h(σ, σr′ ) denotes the XXZ coupling given
by

h(σr, σr′ ) = −J

2

(
σ x

r σ x
r′ + σ y

r σ
y
r′ + �σ z

r σ z
r′
)
. (2)

The model is defined by three parameters, J , �, and λ: λ

controls the relative strength of the nn and nnn couplings, �

is an anisotropy parameter, and J sets the overall energy scale
which will be kept to be 1. We assume periodic boundary con-
ditions, σr+L1e1 = σr+L2e2 = σr where e1 and e2 are the unit
vectors in the horizontal and vertical directions, respectively
[see Fig. 1(a)]. The XXZ coupling with J = 1 can be rewritten
as

h(σr, σr′ ) = −
(

σ+
r σ−

r′ + σ−
r σ+

r′ + �

2
σ z

r σ z
r′

)
(3)
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FIG. 1. (a) Rectangular lattice of size L1×L2 under periodic
boundary conditions in the horizontal (e1) and vertical (e2) direc-
tions. (b) Commutation relations among the XXZ Hamiltonian and
symmetry operators. Mutually commuting operators are connected
with a solid line. A dashed line connect operators which are com-
muting only within the subspace with specific quantum numbers of
the symmetry operator. The Hamiltonian and S2, connected by a
dashed-dotted line, commute only when � = 1.

with the raising and lowering operators σ± ≡ (σ x ± iσy)/2.
Throughout the paper, we will set h̄ = 1. The total number
of sites will be denoted by N = L1L2. In this work, we only
consider lattices with even N .

The XXZ Hamiltonian commutes with several symmetry
operators. First, the Hamiltonian commutes with the magneti-
zation operator in the z direction

Sz = 1

2

∑
r

σ z
r . (4)

The Hamiltonian also commutes with the shift operator Tα ,
which shifts a spin state by the unit distance in the direction
eα with α = 1, 2:

T −1
α σrTα = σr+eα

(α = 1, 2). (5)

The system has spatial inversion symmetry so that H com-
mutes with Rα which maps a site r = (x, y) to (−x, y) for
α = 1 or to (x,−y) for α = 2. Finally, the system is invari-
ant under the spin flip σ z → −σ z which is generated by the
symmetry operator X = ∏

r σ x
r .

The commutation relations are summarized by a diagram
in Fig. 1(b). (A similar diagram for the one-dimensional
system is found in Ref. [38].) Note that [X, Sz] �= 0 and
[Rα, Tα] �= 0 in general. Thus, one cannot construct a simul-
taneous basis set for all the symmetry operators. On the other
hand, one can show that [Rα, Tα]|ψ〉 = 0 if a state |ψ〉 is an
eigenstate of Tα of eigenvalue (Tα )′ = ±1. It implies that the
two operators commute within the subspace of the eigenstates
of Tα with eigenvalues ±1, Likewise, [X, Sz] = 0 within the
subspace of the eigenstates of Sz with eigenvalue (Sz )′ = 0.
In this work, we focus on the symmetry sector consisting of
the eigenvalues of the symmetry operators with the eigen-
values (Tα )′ = (Rα )′ = (X )′ = 1 and (Sz )′ = 0, which will be
referred to as the maximum symmetry sector (MSS).

When the spin-spin interaction is isotropic (� = 1),
the Hamiltonian is invariant under spin rotation [SU(2)
symmetry]. Consequently, each component of the total spin

S = 1
2

∑
r σr is conserved and S2 = S · S becomes the sym-

metry operator commuting with the Hamiltonian and all the
other symmetry operators. The maximum symmetry sector is
then further decomposed into subsectors characterized with
the eigenvalue of S2, (S2)′ = s(s + 1) with integer s. The
SU(2) symmetry will be investigated in detail in Sec. IV.

We have performed the exact diagonalization study. The
basis states, which are simultaneous eigenstates of the sym-
metry operators appearing in Fig. 1(b) in the MSS, can
be easily constructed using the methods summarized in
Refs. [38–43]. The Hilbert space dimensionalities of the MSS
are D = 26, 1392, 15 578, and 183 926 when L1×L2 = 4×3,
4×5, 4×6, 4×7, respectively. When L1 = L2, the system has
an addition symmetry under spatial rotation by a multiple
of π/2. It will not be addressed since we only consider the
lattices with L1 �= L2.

An energy eigenstate and a corresponding eigenvalue of
H in the MSS will be denoted as |En〉 and En, respectively,
where the quantum number n = 0, . . . , D − 1 is assigned in
ascending order of the energy eigenvalue. We will study
the Hamiltonian spectrum and the matrix elements of the
observable,

OZ = 1

N

∑
r

∑
α=1,2

σ z
r σ z

r+eα
,

OJ = 1

N

∑
r

∑
α=1,2

(
σ+

r σ−
r+eα

+ σ+
r+eα

σ−
r

)
,

OP = 1

N

∑
r,r′

σ+
r σ−

r′ ,

OF = 1

N

∑
p

σ z
p1

σ z
p2

σ z
p3

σ z
p4

, (6)

which measure the nearest neighbor two-spin correlation,
nearest neighbor hopping amplitude, zero-momentum distri-
bution function, and the plaquette interaction of four spins.
The sum in OF is over all plaquettes and σpi (i = 1, 2, 3, 4)
refers to four spins around a plaquette p.

III. NUMERICAL STUDY OF EIGENSTATE
THERMALIZATION HYPOTHESIS

A. Ratio of consecutive energy gaps

As a signature for the quantum chaos, we investigate the
statistics of the ratio of consecutive energy gaps [44,45]:

rn = min

[
En+1 − En

En − En−1
,

En − En−1

En+1 − En

]
. (7)

Figure 2 shows the numerical data obtained with the parame-
ters � = 0, 1, and 2 with fixed λ = 1. When � = 0 and 2,
the distribution is in good agreement with the distribution
function

PGOE(r) = 27

4

(r + r2)

(1 + r + r2)5/2
, (8)

which describes the distribution for random matrices in the
Gaussian orthogonal ensemble (GOE) [45]. The agreement
implies that the XXZ model is quantum chaotic at λ = 1.
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FIG. 2. Distributions of the ratio of consecutive energy gaps of
the XXZ model with λ = 1 on the rectangular lattice of size 4×7.
These data are obtained from the half of the energy eigenvalues
in the middle of the entire spectrum. They are compared with the
corresponding distribution from the Poisson-distributed energy spec-
trum, PPoisson(r), and the random matrix spectrum in the Gaussian
orthogonal ensemble, PGOE(r). The peculiar shape of the distribution
at � = 1 is ascribed to the SU(2) symmetry, which will be analyzed
in detail in Sec. IV. The dotted and dashed lines are from a mixture
of replicated spectra, which will be also explained in Sec. IV.

We also confirmed the quantum-chaotic behavior at λ = 1/2,
which is not shown.

The one-dimensional XXZ model with � = 0 and λ = 1
is mapped to the free fermion model via the Jordan-Wigner
transformation [46], thus it is integrable. The transformation,
however, generates nonlocal interaction terms for a two-
dimensional system. Thus, the two-dimensional XXZ model
is nonintegrable even when � = 0.

At � = 1, the distribution deviates significantly from
PGOE(r). It also deviates from PPoisson(r) = 2/(1 + r)2, which
is characteristic of a nonchaotic system following the Poisson
statistics [45]. At � = 1, the system is SU(2) symmetric and
the energy eigenvalue spectrum in the MSS is a mixture of
the spectrum from all the SU(2) subsectors, which results in a
deviation from the GOE distribution [47]. We will scrutinize
the role of the SU(2) symmetry in Sec. IV.

B. Statistics of diagonal elements

The ETH proposes that matrix elements of an observable
O, Omn ≡ 〈Em|O|En〉, take the form

Omn = gO(Emn)δmn + e−S(Emn )/2

Nθ
fO(Emn, ωmn)Rmn, (9)

where Emn = (Em + En)/2, ωmn = (Em − En), S(E ) is the
thermodynamic entropy (the Boltzmann constant is set to
unity), gO and fO are smooth functions of their arguments, and
{Rmn} are fluctuating variables having statistical properties
similar to elements of a random matrix in the GOE [1–3].
The ETH ansatz applies to an operator whose Hilbert-Schmidt
norm is normalized to an O(1) constant [14]. The factor N−θ is
included in Eq. (9) as a compensation for the Hilbert-Schmidt
norm of the operators in Eq. (6). Specifically, θ = 1/2 for
OZ,J,F and θ = 0 for OP [48,49]. This ansatz guarantees the

FIG. 3. Matrix elements OZ
mn in (a) and OP

mn in (b) in the Hamil-
tonian eigenstate basis with m, n = 0, . . . , 1391. The lattice size is
4×5 and model parameters are � = 2 and λ = 1.

quantum thermalization and the fluctuation-dissipation theo-
rem for isolated quantum systems [3,12,14,50–53]. Note that
the quantities Rmn follow a Gaussian distribution as the ran-
dom matrix elements in the GOE. We remark, however, that
their higher order correlations are not described by the GOE
random matrix theory [54–60]. In this work, we focus on the
Gaussian nature of the distribution and do not study the higher
order correlations.

Figure 3 presents matrix elements of OZ and OP. Diagonal
elements, far from the spectrum edges, vary smoothly with
the energy quantum number. Off-diagonal elements have a
relatively smaller magnitude than diagonal elements. These
overall features are consistent with the ETH ansatz.

The diagonal elements are plotted in Fig. 4. Accord-
ing to the ETH, diagonal elements Onn should follow
the Gaussian distribution with mean gO(En) and variance
e−S(En )| fO(En, 0)|2. This ansatz can be tested with the dis-
tribution of the diagonal elements for energy eigenstates in
an energy window W (Ec, δE ), a set of energy eigenstate
whose energy eigenvalues lie within an interval Ec − δE �
En � Ec + δE . Rectangular boxes drawn in Fig. 4(a) repre-
sent the energy windows of width δE = 0.5, 1, and 2 with
ec = Ec/N = 0.0. The distribution of the diagonal elements
within an energy window is influenced by two factors [49,61]:
(i) intrinsic eigenstate-to-eigenstate fluctuations and (ii)

FIG. 4. Diagonal matrix elements Onn = 〈En|O|En〉 versus en-
ergy density en = En/N at three different lattice sizes with � = 2 and
λ = 1/2. Rectangular boxes represent energy windows W (ecN, δE )
of width δE = 0.5, 1.0, 2.0 for OZ and δE = 2.0 for the other ob-
servables for the system of size 4×6.
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FIG. 5. Distribution of detrended diagonal matrix elements d =
Õnn within the energy window W (Ec = ecN, δE ) depicted with the
rectangular boxes in Fig. 4. Model parameters are � = 2 and λ =
1/2. (a) We compare the distributions for the operator OZ with the
choice of three different values δE when the lattice is of size 4×6.
The solid curves represent the Gaussian distribution of the same
mean and variance as the histogram data. The dotted line is the
probability distribution of the bare diagonal elements, after being
subtracted by their mean value, with δE = 1.0. (b)–(d) We compare
the distributions obtained from the lattices of size 4×5 and 4×6. All
the distributions are consistent with the Gaussian distributions (solid
curves). Numerical values of σ 2

d N2θ D (see main text) are annotated
in (b)–(d).

extrinsic fluctuations due to a systematic energy dependence
of the diagonal elements. It is clear that the extrinsic fluctua-
tions become dominant as δE increases.

In order to reduce a finite δE effect and isolate the intrinsic
fluctuations, we introduce a detrended diagonal element [61]

Õnn = Onn − hW (En), (10)

where hW (E ) is a fitting function to Onn within an energy
window W (Ec, δE ). In this work, we choose a linear function
for hW (E ). In Fig. 5(a), we compare the distributions of the
detrended diagonal elements of OZ with three different values
of δE = 0.5, 1.0, and 2.0. Those distributions are almost iden-
tical to each other, which implies that the detrending removes
the extrinsic fluctuations. We also present the distribution of
the bare diagonal elements within the energy window of width
δE = 1. They are shifted to have zero mean. The bare distri-
bution is much broader than the detrended distribution due to
the extrinsic fluctuations. This comparison demonstrates that
the detrending is useful. It allows one to take a large value
of δE for better statistics without suffering from the finite δE
effect. In Figs. 5(b)–5(d), we present the distributions of the
detrended diagonal elements of the observables OJ , OP, and
OF within the energy windows shown in Figs. 4(b)–4(d). The
numerical results are in good agreement with the Gaussian
distributions of the same mean and variance, which supports
the ETH.

According to the ETH in Eq. (9), the variance of the di-
agonal elements σ 2

d normalized with the system size, σ 2
d N2θ ,

should be inversely proportional to the density of states D �
|W (ecN, δE )|/δE = eS(ecN ). This scaling law can be checked

FIG. 6. Distribution of off-diagonal matrix elements Omn with
m �= n among energy eigenstates within the energy window W (Ec =
ecN, δE ) of width δE = 0.5 (filled symbols and solid lines) and
δE = 1.0 (open symbols and dashed lines) centered at the energy
density ec = 0.0 or −0.2. The curves represent the Gaussian distri-
bution with the same mean and variance as the histogram data. The
model parameters are � = 2 and λ = 1/2.

by using a plot of σ 2
d N2θ against D−1 for more than three

different system sizes, as was done in Ref. [13]. In the current
work, numerical data are available from only two different
system sizes 4×5 and 4×6. Due to the limited range of system
sizes, we cannot perform such a systematic finite size scaling
analysis. Alternatively, we only report the quantitative values
of σ 2

d N2θ D. The numerical values at two different system
sizes, shown in Figs. 5(b)–5(d), are close to each other up to a
relative error of � 15%, which supports the scaling behavior
σ 2

d N2θ ∝ 1/D.

C. Statistics of off diagonal elements

We also investigate the statistical property of the of-
fdiagonal elements o = Omn for |En〉 and |Em〉 ∈ W (Ec =
ecN, δE ) with n �= m. These off-diagonal elements corre-
spond to the term e−S(ecN )

Nθ fO(ecN, ω � 0)Rmn with m �= n in the
ETH ansatz of Eq. (9). Figure 6 presents the distributions for
the four observables. Each numerical distribution function is
in good agreement with the Gaussian distribution of the same
mean and variance, which is consistent with the ETH.

To test the ETH further, we compare the variances σ 2
d

and σ 2
o of the diagonal and off-diagonal elements, respec-

tively. For each energy eigenstate |En〉, we construct an energy
window W (Ec = En, δE ), calculate the matrix elements, and
evaluate a variance ratio qn = σ 2

o /σ 2
d . The diagonal elements

are detrended as explained in Sec. III B. The ratio qn obtained
with δE = 0.5 is plotted as a function of the energy density
en = En/N in Fig. 7. The ratio is fluctuating around the mean
value, and the amplitude of fluctuations decreases as the sys-
tem size increases except for the spectrum edges. The mean
value is close to 1/2, which is also consistent with the ETH
prediction.

We add a remark on a finite-δE effect. The shape of the dis-
tributions shown in Fig. 6 varies slightly with δE . According
to the ETH, an off-diagonal element Omn is a Gaussian random

014130-4



EIGENSTATE THERMALIZATION HYPOTHESIS IN … PHYSICAL REVIEW E 107, 014130 (2023)

FIG. 7. Variance ratio qn = σ 2
o /σ d

d for the model with � = 2 and
λ = 0.5 and L1×L2 = 4×5 (dotted line) and 4×6 (solid line). The
mean value and the standard deviation of the ratios {qn} within the
energy interval −0.3 < en < 0.3 are presented in each panel (broken
line) for L1×L2 = 4×6.

variable of variance e−S(Emn )| fO(Emn, ωmn)|2/N2θ . Given a
finite value of δE , the term e−S(E )| fO(E , ω)|2 may vary around
a mean value e−S(Ec )| fO(Ec, 0)|2 up to O(δE ). Unlike the case
for diagonal elements, the variation leads to a subleading
contribution to the variance of off-diagonal elements. Thus,
a finite-δE effect is weak for the off-diagonal elements. The
numerical results in Fig. 6 show that such an effect is indeed
negligible for OZ , OJ , OF with δE = 0.5. On the other hand,
it is still noticeable for OP in Fig. 6(c). We attribute the result
〈q〉 � 0.44 in Fig. 7(c) to a finite-δE effect.

IV. SU(2) SYMMETRIC XXZ MODEL WITH � = 1

We have shown that the XXZ model in the symmetry-
resolved MSS obeys the ETH. When � = 1, the XXZ
Hamiltonian has an additional symmetry under the global
spin rotation, SU(2) symmetry. Thus, the MSS can be fur-
ther decomposed into the symmetry subsectors, called SU(2)
subsectors, each of which is characterized with the total spin
quantum number s as described in Sec. II. In this section,
we investigate whether the ETH is also valid for the SU(2)-
symmetric XXZ model.

In Fig. 2, we have seen that the distribution P(r) for the ra-
tio of consecutive energy gaps at � = 1 deviates from PGOE(r)
and PPoisson(r). The SU(2) symmetry is responsible for it.
The MSS is the union of the SU(2)-symmetric subsectors.
Recently, it was found that presence of symmetry subsectors
modifies the gap ratio distribution function from the universal
form [47]. Even if the energy spectrum in each subsector
follows the GOE statistics, P(r) from the whole spectrum is
characterized by a distinct form determined by the number of
subsectors and their relative sizes [47].

In order to understand the shape of P(r) at � = 1, we con-
struct an artificial set of energy eigenvalues E (NR) as the union
of shifted replicas of the real energy spectrum {En} obtained at
� = 2, E (NR) = ∪NR

p=1{En + (p − 1)�E}, with NR the num-
ber of replicas. We took �E = 0.1 which is much larger
than the mean level spacing. Figure 2 shows the distribution

FIG. 8. Diagonal elements of the operators OZ and OP in the
energy eigenstate basis when � = 1, λ = 1/2, and L1×L2 = 4×6.
Note that the diagonal elements of OP are quantized to the values
s(s + 1)/N with N = 24 and s = 0, 2, . . . , 12 as indicated by arrows.

functions of the superimposed spectrum with NR = 2 (dotted
line) and NR = 3 (dashed line). These data confirm that the the
distribution of the superimposed spectrum is different from
PPoisson and PGOE [47]. We note that the distribution function
P(r) at � = 1 lies between the distribution functions from
the superimposed energy spectrum of NR = 2 (dotted line)
or 3 (dashed line) replicas. This comparison suggests that
the energy spectrum in each SU(2) subsector obeys the GOE
statistics and that a few (2–3) SU(2) subsectors are dominant
in the MSS.

Figure 8 shows the diagonal elements of the operators OZ

and OP in the energy eigenstate basis at the SU(2) symmet-
ric point (� = 1 and λ = 1/2). One finds that the diagonal
elements are organized into several branches. Moreover, the
diagonal elements of OP are quantized. Note that OP defined
in Eq. (6) is rewritten as

OP = S+S−/N = (S2 − (Sz )2 + Sz )/N (11)

in terms of the total spin operator S = 1
2

∑
r σr. Thus, the di-

agonal element of OP in the MSS [(Sz )′ = 0] takes a quantized
value

〈En|OP|En〉 = sn(sn + 1)/N (12)

with a non-negative integer sn equal to or less than smax =
N/2. Since N = L1L2 is even in this work, the total spin
quantum number takes an integral value.

Using the quantization in Eq. (12), one can identify the
total spin quantum number s of an energy eigenstate. We
present the diagonal elements of OZ and OJ in each SU(2)
subsector in Fig. 9. It is clear that the branch corresponds
to the SU(2) subsector. Note that the SU(2) subsectors with
odd s are missing. An odd s is not compatible with the other
symmetries in the MSS.

Before proceeding further, we briefly review the the-
ory of spin addition. Consider two spins S1 and S2 with
(S2

1,2)′ = s1,2(s1,2 + 1). The sum of them S = S1 + S2 has an
eigenvalue (S2)′ = s(s + 1), where s = |s1 − s2|, |s1 − s2| +
1, . . . , s1 + s2 [62]. Thus, the Hilbert space for the two spins
can be represented as a direct product of the Hilbert space
of individual spins or as a direct sum of the total spin
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FIG. 9. Diagonal elements of the operators (a) OZ and (b) OJ

when � = 1, λ = 1/2, and L1×L2 = 4×6. Diagonal elements are
plotted with different symbols depending on their total spin quantum
number s. The inset in (b) shows Ds, the number of eigenstates in the
SU(2) subsector of total spin quantum number s.

sectors [63–65]:

(2s1 + 1)
⊗

(2s2 + 1) =
s1+s2⊕

s=|s1−s2|
(2s + 1), (13)

where (2s + 1) stands for a (2s + 1)-dimensional Hilbert
space consisting of (2s + 1) states characterized by the to-
tal spin quantum number s and the magnetization quantum
number mz ≡ (Sz )′ = −s,−s + 1, . . . , s. Applying the addi-
tion rule iteratively, one can find that the Hilbert space for N
spin-1/2 particles is given by (assuming that N is even for
a notational simplicity) the Clebsch-Gordan decomposition
series

(2)
⊗

N =
N/2⊕
s=0

mN,s(2s + 1), (14)

where the multiplicity factor mN,s is given by

mN,s = N!(2s + 1)(
N
2 − s

)
!
(

N
2 + s + 1

)
!
. (15)

The multiplicity factor mN,s, as a function of s, takes a maxi-
mum value at s = sM � √

N/2 for large N .
The MSS considered in this work is characterized with

mz = 0 and the other symmetry constraints. Thus, the number
of spin-s eigenstates in the MSS, denoted as Ds, is equal to
or smaller than mN,s. It is counted numerically and plotted in
Fig. 9(b). It is maximum at s = 2, which is close to the peak
position of mN,s, sM = √

N/2 � 2.4 for N = 24.
It is an intriguing question whether the SU(2) symmetric

XXZ model is still quantum chaotic and obeys the ETH. We
focus on the dominant SU(2) subsectors with spin quantum
number s = 0, 2, 4. We first measure the gap ratio distribution
function Ps(r) at each SU(2) subsector, and take the average
of them to evaluate 〈Ps(r)〉s=0,2,4. It is in good agreement with
PGOE(r), which indicates that the system is quantum chaotic
inside the subsector [see Fig. 10(a)]. We also measure the
distribution function, denoted as Pall(r), using all the energy
levels of the subsectors with s = 0, 2, 4. It deviates from both
PGOE(r) and PPoisson(r) as already seen in Fig. 2.

The ETH ansatz in Eq. (9) is also tested for the matrix
elements Omn between the energy eigenstates belonging to a

FIG. 10. (a) Distribution of the ratio of consecutive energy gaps.
(b) Ratio of the variance of off-diagonal elements to the variance of
diagonal elements of the operator OJ in the SU(2) subsector of s =
2. 〈q〉 denotes the average of qn within the energy interval −0.2 �
En/N � 0.3. Both data are obtained from the system with � = 1,
λ = 1/2, and L1×L2 = 4×6.

single SU(2) subsector. We choose the subsector with s = 2
that contains the largest number of eigenstates. To a given
energy eigenstate |En〉, we construct a similar energy win-
dow consisting of 101 consecutive energy eigenstates with
quantum numbers from n − 50 to n + 50, calculate matrix
elements, and evaluate the variance ratio qn = σ 2

o /σ 2
d . It is

plotted in Fig. 10(b) as a function of the energy density en =
En/N . The ratios far from the band edges fluctuate around the
mean value 〈q〉 = 0.51, which is close to 1/2 predicted by
the ETH. The statistical properties of the energy levels and
the matrix elements of observables indicate that the SU(2)
symmetric XXZ model is quantum chaotic and obeys the ETH
when it is restricted to a total spin-s subsector.

V. SUMMARY AND DISCUSSIONS

In this paper, we study the statistical properties of the
energy eigenvalues and eigenvectors of the XXZ model in
two-dimensional (2D) rectangular lattices using the numerical
exact diagonalization technique. We showed that the energy
eigenvalues spectrum follows the GOE statistics and that the
matrix elements of observables in the energy eigenstate basis
obey the ETH ansatz in the maximum symmetry sector with-
out the SU(2) symmetry (� �= 1). These results imply that the
2D XXZ spin system thermalizes for itself. The ETH has been
tested mostly in one-dimensional systems. There are only a
few works on the transverse-field Ising spin system in two
dimensions [15–17]. Our work extends the applicability to the
2D XXZ system which possesses a larger set of symmetry
operators than the Ising system.

When the spin-spin interaction is isotropic (� = 1), the
XXZ Hamiltonian is SU(2) symmetric and the total spin s
is a good quantum number. The MSS is further decomposed
as the direct sum of SU(2) subsectors. The SU(2) symmetry
modifies statistical properties of the Hamiltonian eigenspec-
trum: (i) The energy gap ratio distribution P(r) deviates from
the GOE distribution (see Fig. 2). (ii) The matrix elements of
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observables in the energy eigenstate basis are organized into
distinct branches (see Fig. 8). We showed that these features
originate from the emergence of the subsectors. P(r) deviates
from the GOE distribution because the energy spectrum is
a mixture of energy eigenvalues from the subsectors. Each
branch in Fig. 8 corresponds to a total spin subsector (see
Fig. 9). We also showed that the SU(2) symmetric XXZ
model is still quantum chaotic and satisfies the ETH when
it is restricted to a subsector with a definite spin quantum
number.

The SU(2) symmetry raises an intriguing question about
the thermal equilibrium state. The ETH guarantees that an
isolated quantum system in an initial state |�(0)〉 with
an energy expectation value E thermalizes in the sense
that limt→∞〈�(t )|O|�(t )〉 = Trρeq O for a local observ-
able O with the thermal equilibrium density operator ρeq.
It can be the microcanonical ensemble state ρmc(E ) =

1
(E )

∑
|En−E |<�E |En〉〈En| or the canonical ensemble state

ρc(β ) = 1
Z (β ) e

−βH with the inverse temperature β determined
by the condition E = Trρc(β )H . Thus, when the initial state
falls in a SU(2) sector with a definite quantum number (s, mz ),
the equilibrium state will be described by the microcanonical
or canonical ensemble state projected to the SU(2) sector of
(s, mz ), denoted as ρmc(E ; s, mz ) or ρc(β; s, mz ), respectively.

We can infer the thermal equilibrium state for a state whose
total spin is distributed around a mean value 〈S2〉 while the
magnetization mz is a good quantum number. The logarithm
of the multiplicity factor mN,s in Eq. (15) is a concave function
of s, i.e., mN,s � √

mN,s−1mN,s+1. Thus, one can generalize
the canonical ensemble state to the grand canonical ensemble-
type state

ρg(β,μs; mz ) = 1

Z (β,μs)
e−βH−μsS2

(16)

projected to the magnetization mz sector. The chemical
potential μs is determined by the condition 〈S2〉 = Trρ
(β,μs)S2.

It is a challenging question whether a SU(2) symmetric
system, which is prepared in a state which is not an eigen-
state of S2 and Sz, thermalizes. The SU(2) symmetry results
in a degenerate Hamiltonian eigenstate spectrum. If |n; mz〉
is a simultaneous eigenstate of the Hamiltonian and Sz, so
is S±|n; mz〉 with the same energy eigenvalue. The Wigner-
Eckart theorem [62] imposes a definite relation among matrix
elements of an observable. These features are not common in
the systems obeying the ETH. In addition, the magnetization
operators Sx, Sy, and Sz are the conserved quantities, but
they are not commuting mutually. The non-Abelian nature
prohibits a microcanonical ensemble in which the three mag-
netizations are specified simultaneously. These features make
it hard to predict the proper thermal equilibrium state and call
for a theory generalizing the ETH. Recently, the non-Abelian
thermal state and the non-Abelian eigenstate thermalization
hypothesis have been proposed as a remedy for statistical
mechanics for the systems with non-Abelian symmetry such
as SU(2) [32,35,66]. It will be interesting to simulate the time
evolution of the SU(2) symmetric XXZ system, prepared in a
general state, and investigate the statistical ensemble, if any,
describing the equilibrium state. We will leave it for a future
work.
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