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In the recent literature, the g-subdiffusion equation involving Caputo fractional derivatives with respect to
another function has been studied in relation to anomalous diffusions with a continuous transition between
different subdiffusive regimes. In this paper we study the problem of g-fractional diffusion in a bounded domain
with absorbing boundaries. We find the explicit solution for the initial boundary value problem, and we study
the first-passage time distribution and the mean first-passage time (MFPT). The main outcome is the proof that
with a particular choice of the function g it is possible to obtain a finite MFPT, differently from the anomalous
diffusion described by a fractional heat equation involving the classical Caputo derivative.
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I. INTRODUCTION

Anomalous diffusions described by g-fractional differen-
tial equations have been investigated in a series of recent
papers (see, e.g., [1] and [2]) in relation to subdiffusive models
with a continuous transition between two different regimes.
We recall that g-fractional diffusions are fractional heat-type
equations involving time-fractional derivatives with respect
to another function g. These generalized fractional deriva-
tives can be obtained by means of a deterministic change
of variable and include as special cases the Hadamard and
the Erdélyi-Kober derivatives (see [3]). However, some of
the consequences of this change of variable in the definition
of the integrodifferential operator appearing in the governing
equations are not trivial. First of all, g-fractional derivatives
are useful to describe different anomalous diffusions such as
ultraslow processes [4]. Moreover, these equations provide
interesting fractional-type generalizations of classical partial
differential equations with variable coefficients. Heuristi-
cally, g-fractional derivatives are useful in order to take into
account in a single integrodifferential operator the mem-
ory effect and the time dependence of the diffusivity (see,
for example, [5] for the application to the Dodson-type
diffusion).

In this paper we investigate g-fractional diffusions in
bounded and semibonded domains with absorbing bound-
aries. Different papers have been devoted to fractional
equations involving Caputo derivatives in bounded domains,
with explicit representation of the solution and the proba-
bilistic meaning; we refer, for example, to [6–9]. Here we
provide an explicit representation of the solution for the ini-
tial boundary value problem and discuss the role of the g
function for the computation of the mean first-passage time
(MFPT). In particular, we show that there is a choice of g
functions such that the MFPT turns out to be finite, unlike
classical fractional diffusion based on Caputo derivatives.

We also report some graphs showing the trend of the nu-
merically evaluated first-passage time distributions for some
interesting choices of the function g, highlighting the main dif-
ferences in their asymptotic behaviors. We finally show how
the known solution of the g-fractional diffusion in unbounded
space is obtained as a limit of our expressions. The present
analysis and results are relevant in order to better under-
stand the role played by the function g in fractional diffusive
models.

II. G-FRACTIONAL DIFFUSION IN BOUNDED DOMAINS
WITH ABSORBING BOUNDARIES

In a series of recent papers [1,2], the authors have discussed
the utility for anomalous diffusion models of the so-called
g-fractional derivatives (also named in the literature fractional
derivatives with respect to another function [3] or ψ-fractional
derivative [10]). In other recent papers, some particular form
of the g-fractional diffusive equations has been considered
in relation to interesting models. For example, in [4] for
ultraslow diffusions and in [5] for the generalized Dodson
equation.

Here we consider a fractional diffusion in a bounded
domain with absorbing boundaries. We recall that the g-
fractional derivative of order α ∈ (0, 1) is defined as(C∂α

g u

∂tα

)
(x, t ) = 1

�(1 − α)

∫ t

0
[g(t ) − g(τ )]−α ∂u

∂τ
dτ, (1)

where g is a deterministic function such that g(0) = 0 and
g′(t ) > 0 for t > 0, where we denote by g′ = dg/dt the first-
order time derivative. This fractional operator can be obtained
by means of a change of variable from the classical Caputo
derivative and includes interesting cases such as the Hadamard
derivative [for g = ln(t + 1)] and the Erdélyi-Kober derivative
(for g = tβ). Obviously, by taking g = t we recover the defi-
nition of the Caputo derivative.
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We also observe that the solution of the fractional equation(Cdα
g f

dtα

)
(t ) = −λ f (t ) (2)

under the initial condition f (0) = 1 is given by

f (t ) = Eα (−λgα ) =
∞∑

k=0

(−λgα )k

�(αk + 1)
, (3)

where Eα (·) denotes the one-parameter Mittag-Leffler func-
tion [11]. Therefore, in this case, an eigenfunction of the
fractional derivative is given by the Mittag-Leffler function
composed with the function g(t ).

A. Fractional diffusion with two absorbing boundaries

Let us consider the g-fractional diffusion equation

C∂α
g u

∂tα
= D

∂2u

∂x2
, (4)

in the bounded domain x ∈ [−a, b], a, b > 0, under the fol-
lowing initial and boundary conditions,

u(x, 0) = δ(x − x0), u(−a, t ) = 0, u(b, t ) = 0, (5)

corresponding to a particle performing an anomalous diffu-
sion (with generalized diffusion constant D) in a bounded
domain with absorbing boundaries.

It is possible to find a solution by means of the separation-
of-variable method, i.e.,

u(x, t ) = X (x)T (t ).

We have to solve the equations

Cdα
g T (t )

dtα
= −λ2DT (t ), (6)

d2X (x)

dx2
= −λ2X (x), (7)

where λ2 is the separation constant.
The solution of Eq. (7) under these boundary conditions is

given by

X (x) = An sin[λn(x + a)], (8)

with

λn = nπ

a + b
,

corresponding to the eigenvalue problem with the given
conditions. By using the fact that the Mittag-Leffler func-
tion Eα (−λ2

nDgα ) provides the solution of the time-fractional
equation (6) and by combination of the space and time com-
ponent of the solution we have

u(x, t ) =
∞∑

n=1

An sin[λn(x + a)]Eα

( − λ2
nDgα

)
. (9)

The coefficient An can be found by imposing the initial condi-
tion, and we finally find that the explicit form of the solution

of the initial boundary value problem is

u(x, t ) =
∞∑

n=1

2 sin[λn(x0 + a)] sin[λn(x + a)]

a + b

× Eα

[ − λ2
nDg(t )α

]
. (10)

We observe that for α = 1 we have

u(x, t ) =
∞∑

n=1

2 sin[λn(x0 + a)] sin[λn(x + a)]

a + b

× exp
( − λ2

nDg
)
, (11)

which is the solution of a diffusion equation with variable
diffusivity

∂u

∂t
= Dg′(t )

∂2u

∂x2
, (12)

including, for example, the diffusive equation governing the
fractional Brownian motion.

We now study the first-passage time distribution (FPTD)
as a function of g(t ) in order to underline the main difference
with respect to the time-fractional model considered in [12].
The FPTD f (t ) can be calculated as follows:

f (t ) = − d

dt

∫ b

−a
dx u(x, t ). (13)

We recall that∫ b

−a
sin

(
nπ (x + a)

a + b

)
dx = 2(a + b)

nπ
if n is odd, (14)

and null otherwise. Therefore, by substitution, we have that

f (t ) = − d

dt

4

π

∞∑
n=0

1

2n + 1
sin

(
(2n + 1)π (a + x0)

a + b

)

× Eα

(
− (2n + 1)2π2

(a + b)2
Dg(t )α

)
. (15)

We now observe that

d

dt
Eα

(
− (2n + 1)2π2

(a + b)2
Dg(t )α

)

=
∞∑

k=0

( − (2n+1)2Dπ2

(a+b)2

)k

�(αk + 1)

d

dt
g(t )αk

=
∞∑

k=1

( − (2n+1)2Dπ2

(a+b)2

)k
g′(t )g(t )αk−1

�(αk)

=
∞∑

k=0

( − (2n+1)2Dπ2

(a+b)2

)k+1
g′(t )g(t )αk+α−1

�(αk + α)

= − (2n + 1)2π2Dg′(t )g(t )α−1

(a + b)2

× Eα,α

(
− (2n + 1)2π2

(a + b)2
Dg(t )α

)
,
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FIG. 1. First-passage time distributions for different choices of the function g. (a) The case of Caputo fractional derivative, g(t ) = t . Dashed
lines are asymptotic expressions (25), f = A t−δ with δ = 1 + α. The MFPT is infinite for any value of α. (b) The case of the Erdélyi-Kober
derivative, g(t ) = tβ with β = 2. The asymptotic behavior exponent is δ = 1 + αβ. Only α > 1/2 corresponds to finite MFPT. (c) The case of
the Hadamard fractional derivative, g(t ) = ln(t + 1). The asymptotic behavior is t−1 ln (t )−1−α , between t−1 and t−2 (guide for eyes), implying
divergent MFPT. (d) The case of exponential derivative g(t ) = exp(t ) − 1. Asymptotic expressions are given by A exp(−αt ), and the MFPT is
always finite. In all panels we report FPTD (full lines) calculated by numerically inverting the Laplace transform (23) and using (22) for three
different values of the fractional derivative, α = 0.9, 0.6, 0.3. Dashed lines are asymptotic expressions (19). We set x0 = 0, a = b = 1, and
D = 1, so the prefactor in the asymptotic expressions is A = −1/[2�(−α)].

where we have used �(z + 1) = z�(z) and introduced the
two-parameter Mittag-Leffler function (see, e.g., [11]):

Eα,β (x) =
∞∑

k=0

xk

�(αk + β )
.

We finally have that the FPTD is given by

f (t ) = 4πDg′(t )g(t )α−1

(a + b)2

∞∑
n=0

(2n + 1)

× sin

[
(2n + 1)π (a + x0)

a + b

]

× Eα,α

(
− (2n + 1)2π2

(a + b)2
Dg(t )α

)
. (16)

For g(t ) = t we recover the result obtained in [12]. The
previous expression is very general, being valid for generic
functions g. In the following we will discuss some interesting

case studies, such as the classical Caputo derivative g(t ) = t ,
the Erdélyi-Kober derivative g(t ) = tβ , the Hadamard deriva-
tive g(t ) = ln(t + 1), and the exponential derivative g(t ) =
exp(t ) − 1, also reporting some typical behaviors in Fig. 1.

We now study the mean first-passage time, analyzing the
conditions under which it has finite values. The MFPT is
defined as the first moment of the distribution f (t ):

τ =
∫ ∞

0
dt t f (t ). (17)

In order to determine the conditions for the existence of a
finite MFPT, we have to investigate the asymptotic behavior
of the FPTD (16). By using the asymptotic expansion of the
Mittag-Leffler function for |z| → ∞ and �(z) < 0 (see [11],
p. 75),

Eα,α (z) = − z−2

�(−α)
+ O(|z|−3), (18)
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and considering that long times means large values of g (due to
the constraint g′(t ) > 0), we have that the asymptotic behavior
of (16) reads

f (t ) ∼ A g′(t ) g(t )−(1+α), t → ∞, (19)

where the time-independent prefactor A is

A = − 4(a + b)2

π3D�(−α)

∞∑
n=0

(2n + 1)−3 sin

[
(2n + 1)π (a + x0)

a + b

]
.

(20)
We observe that in the symmetric case, a = b and x0 = 0, the
quantity A takes the simple form A = −a2/[2D�(−α)]. The
condition for the existence of a finite MFPT reduces then to a
condition on the asymptotic behavior of the function g, which,
from (17) and (19), must satisfy

lim
t→∞ t2g′(t )g(t )−(1+α) = 0 (21)

Before discussing the above condition for different choices
of g, let us first note that it would also have been possible
to obtain the asymptotic behavior (19) by using known results
about anomalous diffusion processes with the classical Caputo
derivative [13,14]. Indeed, the FPTD (16) can be expressed as

f (t ) = g′(t ) ϕ(g(t )), (22)

where ϕ(t ) is the first-passage time distribution of the problem
with Caputo derivative, i.e., g(t ) = t . The asymptotic behavior
of ϕ(t ) is obtained from the known expression of its Laplace
transform (see Eq. (36) in [13] or Eq. (7) in [14]),

ϕ̃(s) =
∫ ∞

0
dt e−st ϕ(t ) = cosh c(b−a−2x0 )

2

cosh c(b+a)
2

, (23)

where we denoted with ϕ̃(s) the Laplace transform of ϕ(t ),
s is the Laplace variable, and c2 = sα/D. For small s we
have that ϕ̃(s) ∼ 1 − a sα . By using the Tauberian theo-
rem for the survival probability P̃ (s) = [1 − ϕ̃(s)]/s, we
have that P̃ (s) ∼ sα−1 for small s and then P (t ) ∼ t−α for
large t [15]. By differentiation we finally deduce the asymp-
totic behavior ϕ(t ) ∼ t−(1+α), which, inserted in (22), leads
to (19).

Let us now discuss how the asymptotic behavior of g(t )
determines whether or not finite first-passage times exist. We
first consider a power-law behavior of g at large t , like in the
Erdélyi-Kober derivative:

g(t ) ∼ tβ, t → ∞. (24)

We have, from Eq. (19), that the asymptotic form of the first-
passage distribution is

f (t ) ∼ A t−(βα+1), t → ∞. (25)

The condition for the existence of finite MFPT (21) is satisfied
for

βα > 1. (26)

In general, the condition for the existence of finite kth moment
of the first-passage time distribution is

βα > k. (27)

We can then conclude that a finite MFPT for g-fractional
diffusion with derivative order α is possible whenever the

function g diverges at long time faster that t1/α . Moreover,
finite moments up to the kth are possible if the divergence
is faster than t k/α .

It is worth noting that in the case of anomalous diffu-
sion described by the classical Caputo derivative, i.e., β = 1,
the condition (26) is never satisfied, resulting in a diver-
gent MFPT. The same is true for the case of the Hadamard
fractional derivative, g = ln(t + 1). Instead, in the case of
exponential behavior of g function, g ∼ exp(γ t ), one has not
only a finite MFPT but finite moments of all orders regard-
less of the value of the derivative order α. We report in
Fig. 1 the first-passage time distributions for different choices
of the g function, highlighting how the asymptotic behav-
ior determines the existence of finite MFPTs in the various
cases.

B. Fractional diffusion with one absorbing boundary

The case of g-fractional diffusion in an semibounded do-
main [−a,+∞], with one absorbing point at x = −a, can be
obtained by taking the limit b → ∞ in the expressions derived
in the previous section related to the finite domain case. The
solution of the g-fractional diffusion equation is then obtained
from (10) in the limit L = a + b → ∞. In such a limit the
sums become integrals,

π

L

∞∑
n=0

h(πn/L) →
∫ ∞

0
dk h(k), (28)

and the solution reads

u(x, t ) = 2

π

∫ ∞

0
dk sin[k(x0 + a)] sin[k(x + a)]

× Eα[−k2Dg(t )α]. (29)

For g(t ) = t we recover the expression obtained in [12]
[Eq. (3.9)]. In the same way we obtain the expression of the
first-passage time distribution, taking the limit of (16)

f (t ) = 2Dg′(t )g(t )α−1

π

∫ ∞

0
dk k sin[k(a + x0)]

× Eα,α[−k2Dg(t )α]. (30)

To study the long time behavior of the FPTD we proceed
as follows. By changing the integration variable k → kgα/2,
using the property ([11], p. 86)

Eα,α (−x) = −α
d

dx
Eα (−x), (31)

and integrating by parts, we rewrite (30) as

f (t ) = (a + x0)αg′(t )

πg(t )1+α/2

∫ ∞

0
dk cos

[
k(a + x0)

g(t )α/2

]
Eα (−k2D).

(32)
Now, introducing the function Hα (x), the inverse Laplace
transform of Eα (−k) for x > 0 ([11] p. 92, [16] p. 631),

Hα (x) = 2

π

∫ ∞

0
dk cos(kx) E2α (−k2), (33)
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we can write Eq. (32) as follows:

f (t ) = (a + x0)αg′(t )

2D1/2g(t )1+α/2
Hα/2

(
a + x0√
Dg(t )α

)
. (34)

We can express H as a power series

Hα (x) = 1

π

∞∑
n=0

cn(α) xn, (35)

where the coefficients cn turn out to be [17]

cn(α) = π (−1)n

n!�(1 − α − αn)
. (36)

The FPTD can then be written as

f (t ) = (a + x0)αg′(t )

2πD1/2g(t )1+α/2

∞∑
n=0

cn(α/2)

(
a + x0√
Dg(t )α

)n

. (37)

By noting that b0(α) = π/�(1 − α) 	= 0 [16], we have that
asymptotically the FPTD behaves as

f (t ) ∼ g′(t ) g(t )−(1+α/2). (38)

For g(t ) = t the expression (37) and its asymptotic limit
f (t ) ∼ t−1−α/2 are in agreement with [12] [Eqs. (3.23) and
(3.34)]. We note that the asymptotic behavior of FPTD (38)
is similar to that obtained for the finite domain case with two
absorbing boundaries (19) with the substitution α → α/2. We
can then repeat the arguments of the previous section with
the rescaled derivative exponent. In particular, we have that
the MFPT is finite in the case of the Erdélyi-Kober deriva-
tive g(t ) ∼ tβ for βα > 2 and for the case of exponential g
function g(t ) ∼ exp(γ t ). Instead, the MFPT is not defined for
βα < 2 in the Erdélyi-Kober case and in the Hadamard case
g(t ) = ln(t + 1). We therefore conclude that, even in the case
of semi-infinite domains, for which the MFPT is undefined
in Caputo fractional diffusion and also in classical diffusion
processes, particular choices of the g function can lead to finite
MFPT.

C. Fractional diffusion in unbounded domains

We conclude by obtaining the solution u(x, t ) of the g-
fractional diffusion in an unbounded domain [−∞,+∞] as
a limit a → ∞ of the expression (29) derived in the previous
section. In this limit, using the fact that

2 sin x sin y = cos(x − y) − cos(x + y),

Equation (29) becomes

u(x, t ) = 1

π

∫ ∞

0
dk cos[k(x − x0)] Eα[−k2Dg(t )α]

− lim
a→∞

1

π

∫ ∞

0
dk cos[k(x + x0) + 2a]

× Eα[−k2Dg(t )α]. (39)

We now show that the second term in the right-
hand side vanishes. Indeed, we can write the second

term as

lim
a→∞

1

2
√

Dg(t )α
Hα/2

(
x + x0 + 2a√

Dg(t )α

)
, (40)

where Hα (x) is defined in (33). Now, asymptotically the func-
tion H behaves as [17]

Hα/2(x) ∼ x−γ exp (−δxε ), (41)

where

γ = 1 − α

2 − α
, δ = (2 − α) 2− 2

2−α α
α

2−α , ε = 2

2 − α
.

The limit (40) is therefore null and the solution u(x, t ) reads

u(x, t ) = 1

π

∫ ∞

0
dk cos[k(x − x0)] Eα[−k2Dg(t )α]

= 1

2
√

Dg(t )α
Hα/2

(
|x − x0|√

Dg(t )α

)
, (42)

or, using the power series (35),

u(x, t ) = 1

2
√

Dg(t )α

∞∑
n=0

1

n!�(1 − α/2 − nα/2)

×
(

− |x − x0|√
Dg(t )α

)n

, (43)

in agreement with Eq. (14) in Ref. [1].

III. CONCLUSIONS

In this work we have investigated the g-fractional diffusion
in bounded and semibounded one-dimensional domains with
absorbing boundaries, finding explicit solutions of the frac-
tional diffusion equation with derivative of order α ∈ (0, 1)
and generic g functions. We focused on first-passage time
processes, reporting the exact expression of the fist passage
time distribution and analyzing the conditions on function g
for the existence of finite mean first-passage time and general
moments of FPTD. We find that finite MFPT is obtained
whenever the function g grows faster than t1/α (for bounded
domains) and t2/α (for semibounded domains), and, in gen-
eral, finite kth moments exist for g functions growing faster
than t k/α (bounded) and t2k/α (semibounded) .

According to the recent paper [1], the function g controls
the anomalous diffusion at intermediate times, with poten-
tially wide application in modeling diffusion processes with
variable parameters. With this paper we have shown the key
role played by the choice of the function g in discriminating
processes with finite or infinite MFPT.
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