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Lasting effects of static magnetic field on classical Brownian motion
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The Bohr-Van Leeuwen theorem states that an external static magnetic field does not influence the state of a
classical equilibrium system: There is no equilibrium classical magnetism, since the magnetic field does not do
work. We revisit this famous no-go result and consider a classical charged Brownian particle interacting with an
equilibrium bath. We confirm that the Bohr-Van Leeuwen theorem holds for the long-time (equilibrium) state of
the particle. But the external static, homogeneous magnetic field does influence the long-time state of the thermal
bath, which is described via the Caldeira-Leggett model. In particular, the magnetic field induces an average
angular momentum for the (uncharged) bath, which separates into two sets rotating in opposite directions. The
effect relates to the bath going slightly out of equilibrium under the influence of the Brownian particle and
persists for arbitrarily long times. In this context we studied the behavior of the two other additive integrals of
motion, energy, and linear momentum. The situation with linear momentum is different, because it is dissipated
away by (and from) the bath modes. The average energy of the bath mode retains the magnetic field as a small
correction. Thus, only the bath angular momentum really feels the magnetic field for long times.
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I. INTRODUCTION

The Bohr-Van Leeuwen theorem governs the response of
equilibrium systems to external magnetic fields [1–3]. It states
that charged classical particles do not feel the magnetic field
in equilibrium. Thus, equilibrium influences of the magnetic
field are to be restricted to the quantum domain, where the the-
orem does not apply due to the noncommutativity of quantum
observables [4]. The essence of the theorem is that the equi-
librium state can be represented as a function of the energy;
e.g., the Gibbs coordinate-velocity distribution or the micro-
canonical distribution. Since the magnetic field does not do
work, it does not appear in the energy that enters equilibrium
distributions [1,4]; see Sec. III for a reminder on this theorem
and its origin.

The Bohr-Van Leeuwen theorem prevents the existence
of equilibrium classical magnetism [1], a subject that could
have potential applications in various fields including real
and complex plasma [5–7], where the influence of magnetic
fields is relevant for the fusion research, charged colloidal
liquids [6,8], macroions [9], etc. Especially interesting are
biophysical applications [10–14]: Since a stationary magnetic
field is not screened by a living body, it makes an interesting
diagnostic tool and also a potential abusive factor for biosys-
tems. Moreover, there is a massive body of experimental
results witnessing observable effects of weak, static magnetic
fields in biological systems; see, e.g., Refs. [10,11]. A natural
target for the magnetic field is metal ions (Na+, K+, Ca2+,
etc.) that are crucial in molecular biology: Nearly 1/3 of all
proteins employ metal ions for their functioning [13]. Ions
are important in bioenergetics, communication (e.g., nerve
impulse generation), osmotic regulation, metabolism, energy

storage, etc. [14]. However, the translational motion of ions is
always classical, and hence the Bohr-Van Leeuwen theorem
prohibits their equilibrium magnetic response [12]. Biophysi-
cal responses to static magnetic fields might be looked for in
the quantum domain; see, e.g., Refs. [15–17]. It is, however,
not likely that all biophysical influences of magnetic fields can
be accounted for by quantum models [12].

In all these fields one deals with classical charges moving
in the thermal baths. Thus, it is necessary to understand which
effects are not prohibited by the Bohr-Van Leeuwen theorem
and can support long-time (i.e., lasting) influences of a static
magnetic field for classical Brownian motion of a charged
particle.

Consider a Brownian charged particle described via the
Langevin equation. The equilibrium state feels no magnetic
field according to the Bohr-Van Leeuwen theorem. This is,
however, not the end of the story, because during its relaxation
(whatever short) the particle perturbs the equilibrium state
of the bath, which is now slightly out of equilibrium. Using
the Caldeira-Leggett (CL) model [18–22] that reproduces the
Langevin dynamics, we show that an external static magnetic
field leads to long-time changes in the bath state. The (un-
charged) bath oscillators acquire a sizable average angular
momentum and separate (in the frequency space) into two
groups that rotate in different directions. This bath angular
momentum can (but need not) be driven by the conservation
law of the total (for the bath + Brownian particle), effective
angular momentum. Thus, the magnetic field can persist in the
long-time limit, though its influence is to be looked for not in
the state of the Brownian charge but rather in its environment.

Recall that CL is a concrete microscopic model composed
of undamped harmonic oscillators. It has a wide range of
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applications for baths composed of weakly interacting parti-
cles (photons, phonons) [20,21]. Its applicability to the real
Brownian dynamics was clarified within molecular dynamic
theories, where the oscillators refer to effective modes of a
liquid bath [22–24].

Our study of angular momentum led us to a more gen-
eral physical question: How do the three additive integrals of
motion (angular momentum, linear momentum, and energy)
behave at the interface between the system (Brownian par-
ticle) and bath? For example, is the bath capable of storing
linear momentum in the same way it stores angular momen-
tum? The answer to this question is negative: The bath angular
momentum differs from the linear momentum and energy; see
Secs. V and VI for details. For the energy the situation is
less interesting, since the influence of the Brownian particle
amounts to a small perturbation of the bath energy. The linear
momentum is more interesting, because it is transferred to the
bath can be a dominant effect for finite times but is eventually
dissipated from its observables.

This paper is organized as follows. The next section dis-
cusses the CL model: an ion interacting with many indepen-
dent harmonic oscillators representing an equilibrium thermal
bath. Section III presents the famous Bohr-Van Leeuwen the-
orem with discussion. In Secs. IV and V we study the angular
momentum and total energy of individual modes, respec-
tively. We compare the behavior of angular momentum with
the linear momentum in Sec. VI. We summarize in the last
section and provide a perspective on future research. We rele-
gated detailed derivations of our results to Appendices making
our conclusions self-contained. Appendix A discusses the
solution of the Langevin equation (6) and studies pertinent
correlation functions of the Brownian motion. Appendix B
discusses the system-bath (Caldeira-Leggett) model and the
derivation of the Langevin equation. in Appendix C calculated
the mean angular momentum of a single bath oscillator, while
Appendix D studies its mean energy.

II. THE MODEL

Consider a classical particle with coordinates R =
(X,Y, Z ), unit charge, and unit mass that interacts with mag-
netic field. The particle is subject to an external, rotation
symmetric, harmonic potential with frequency ω0. Particle’s
Lagrangian reads

LS = 1

2
Ṙ2 − ω2

0

2
R2 + A(R)Ṙ, (1)

where A(R) is a vector potential that generates a static, homo-
geneous magnetic field B with the magnitude b = |B| along
the z-axes (the normal vector ez):

B = rot A = ezb, A(R) = 1
2 (−bY , bX , 0). (2)

The particle couples with a bath made of N harmonic oscil-
lators (modes) with coordinates rk = (xk, yk, zk ), masses mk ,
frequencies ωk , and coupling constants ck . The potential en-
ergy of particle-bath interaction is assumed to be non-negative
and bilinear over the particle and bath coordinates (Caldeira-
Leggett model). Hence the bath + interaction Lagrangian

reads [18–22]

LB =
∑N

k=1

[
mk

2
ṙ2

k − mkω
2
k

2

(
rk − ckR

mkω
2
k

)2
]
, (3)

where the full Lagrangian is LS + LB. Due to (2) and linearity
of equations of motion generated by LS + LB, the motion
along z coordinates for all particles involved in (1) and (3)
decouples from the motion along (x, y) coordinates.

We get from Noether’s theorem, or directly from equa-
tions of motion generated by LS + LB, that the following
quantity is conserved:

L = XẎ − Y Ẋ +
∑N

k=1
mk (xkẏk − ykẋk )

+ b

2
(X 2 + Y 2). (4)

L is a sum of the particle’s angular momentum XẎ − Y Ẋ
along the z direction, angular momenta of all bath oscilla-
tors and a contribution b

2 (X 2 + Y 2) from the charged particle
related to the magnetic field. Solving Euler-Lagrange equa-
tions of motion generated by LS + LB for rk we get:

rk (t ) = rk (0) cos(ωkt ) + ṙk (0)

ωk
sin(ωkt )

+ ck

mkωk

∫ t

0
dt ′ sin[ωk (t − t ′)]R(t ′). (5)

Plugging (5) into the Euler-Lagrange equations of motion for
R, we get the Langevin equation for the charged particle in
magnetic field [25] (see Appendix A):

R̈ = bez × Ṙ − ω2
0R −

∫ t

0
duζ (t − u)Ṙ(u) + ξ, (6)

ζ (t ) =
N∑

k=1

c2
k

mkω
2
k

cos(ωkt ), (7)

ξ(t ) =
N∑

k=1

[
ckrk (0) cos(ωkt ) + ckvk (0)

ωk
sin(ωkt )

]
, (8)

rk (0) ≡ rk (0) − R(0)
ck

mkω
2
k

, vk = ṙk . (9)

The cumulative force from the bath is decomposed into fric-
tion with a kernel ζ and noise ξ(t ) that emerges due to the
initially random state of the bath. Let the initial state of the
particle and bath is given by the density

P (rk, vk, R, V) ∝ e−HB (rk ,vk )/TP (R, V), V = Ṙ, (10)

where T is the temperature (kB = 1) and where the
interaction-dressed bath energy HB reads from (3):

HB = −LB +
∑N

k=1
mk ṙ2

k (11)

=
N∑

k=1

[
mk

2
ṙ2

k + mkω
2
k

2

(
rk − ckR

mkω
2
k

)2
]
. (12)

Equation (10) shows that bath’s initial density is Gibbsian.
Particle’s initial density P (R, V) is arbitrary. The initial state
(10) is not independent over the particle and bath, since
e−HB (rk ,vk )/T contains the shifted coordinate rk; cf. (9). Equa-
tion (10) refers to the timescale separation, where the bath is
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prepared in equilibrium under fixed coordinate and momen-
tum of the particle. This is realistic for Brownian motion.

Equations (8) and (10) imply the fluctuation-dissipation
relation,

〈ξα (t )ξβ (t ′)〉 = T δαβζ (t − t ′) α, β = x, y, z, (13)

where 〈. . . 〉 is the average over initial state (10).
The thermodynamic limit N → ∞ for the bath is taken to-

gether with the dense frequency limit δω → 0 (n = 1, . . . , N)
under condition Nδω 	 1 (see Appendix B for details). Si-
multaneously, we take a weak coupling cn → 0 to each
oscillator [18–22]. The specific choice

ωn = δω n, cn =
√

2γω2
nmnδω/π, (14)

ζ (t ) = 2γ δ(t ), (15)

reproduces in the Langevin equation [Eqs. (6), (7), and (8)] the
Ohmic friction with magnitude γ and the white noise [18–22].

III. THE BOHR-VAN LEEUWEN THEOREM

Fluctuation-dissipation relation (13) ensures from (6) (to-
gether with the thermodynamic limit for the bath) that the
particle’s state relaxes to the Gibbsian density [18–22]:

P (R, V; t → ∞) ∝ e− 1
2 (V2+ω2

0R2 )/T , (16)

that does not (and cannot) contain the magnetic field b. Obvi-
ously, the average angular momentum 〈XVy − YVx〉 calculated
via (16) is zero. Equation (16) implies the Bohr-Van Leeuwen
theorem for the Brownian motion [1–4]. The absence of the
magnetic field B from the equilibrium density holds for any
confining potential [1,3]. This theorem is an equilibrium result
and it does not hold for nonequilibrium steady states [26–31].
In particular, the theorem may be broken by a weak white
noise, which is sufficient for generating a sizable diamagnetic
angular momentum for the Brownian particle [31].

Note as well that the magnetic field shows up in correlation
functions of the Brownian particle and in its relaxation times
to the equilibrium state [31]; see also Appendix A. This,
however, is not the long-time response we seek here, since
correlation functions decay within the relaxation time.

IV. ANGULAR MOMENTUM OF BATH MODES

Let us assume that the initial state of the Brownian particle
in (10) holds

P (R, V) = P1(X )P1(Y )P1(Z )P2(Vx )P2(Vy)P2(Vz ),

P1(−a) = P1(a), P2(−a) = P2(a). (17)

Equation (17) allows a large class of initial nonequilibrium
states for the particle. Note that the initial angular momentum
of the particle nullifies: 〈XVy − YVx〉 = 0. The virtue of (17)
and (10) is that all averages hold specific symmetry features
related to the invariance of (17) with respect to π/2 rotations
in the (x, y) plane; see Appendix B 3.

For initial second moments in (17) we denote

〈X 2〉 = 〈Y 2〉 = σX T/ω2
0,

〈
V 2

x

〉 = 〈
V 2

y

〉 = σV T, (18)

where σX = σV = 1 in (18) refers to equilibrium second mo-
ments of the initial state; cf. (16).

The long-time average angular momentum L(ω) of a bath
oscillator with frequency ω = ωk is calculated from Eqs. (5),
(6), and (17) using the Laplace transform (see Appendix C):

L(ω) ≡ mk〈xkvyk − ykvxk〉t→∞ = δω
4γ bT

π

×
(
ω2 − ω2

0

)[
(1 − σV )ω2+(1 − σX )ω2

0

]
[
(ω2 − ω2

0 − bω)2 + γ 2ω2
][

(ω2 − ω2
0 + bω)2+γ 2ω2

] .

(19)

Equation (19) shows that even though bath oscillators are not
charged, they acquire a nonzero angular momentum: L(ω) 
=
0 for t → ∞, i.e., for times much larger than the relaxation
time of the particle. This means that the long-time state of the
bath feels the magnetic field b. Equations (10) and (17) show
that the initial mean angular momentum nullifies both for the
bath oscillator and the Brownian particle. Hence the fact of
L(ω) 
= 0 for t → ∞ means that the final state of the bath is
out of equilibrium.

Now L(ωk ) ∝ c2
k ∝ δω since L(ωk ) is driven by the cou-

pling of the corresponding mode with the Brownian particle;
cf. (5). In view of (19), the observable collective mode mo-
mentum is well defined and amounts to integral between two
finite frequencies:

k2∑
k=k1

L(ωk ) =
ω2∑

ω=ω1

L(ω) =
∫ ω2

ω1

dω

δω
L(ω). (20)

Equation (19) [and (27) below] can describe a finite-bath
situation [32–36]. Here the bath is large [for Langevin’s equa-
tion (6) to apply for certain times] but finite.

We emphasize that L(ω) 
= 0 due to initially nonequilib-
rium state of the particle, since L(ω) = 0 whenever σX =
σV = 1 in (17); cf. (19). Next, we confirm that (19) is con-
sistent with the average angular momentum conservation (4)
between t = 0 and t = ∞:∫ ∞

0
dω L(ω) = −T b(1 − σX )

ω2
0

= b[〈X 2〉0 − 〈X 2〉∞], (21)

where 〈X 2〉0 and 〈X 2〉∞ are the initial and final values; cf.
(18). Even for σX = 1 we can have L(ω) 
= 0 due to σV 
= 1 in
(19). Hence, L(ω) 
= 0 need not be driven by the conservation
law; see Fig. 1. Now L(ω) changes its sign at ω = ω0 and
goes to zero as ∼ω−4 for ω 	 max[ω0, γ , b]; i.e., two sets of
oscillators rotate in different directions, as Fig. 1 shows.

V. ENERGY OF BATH MODES

Let us now see that the magnetic field also shows up
in interaction-induced corrections to the energy of the bath
mode. Equations (10) and (11) imply that the average energy
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FIG. 1. L(ω)/δω versus ω for T = 1, ω0 = 1, γ = 0.1, σX = 1,
σV = 0.1; cf. (19) and (18). Curves refer to different magnetic fields
(2) (from bottom to top): b = 0.3 (black), b = 0.1 (blue), and b =
0.03 (red).

of the bath mode with the frequency ω = ωk can be defined as

E (ωk ) = mk

2

〈
ṙ2

k

〉 + mkω
2
k

2

〈
r2

k

〉
+ 〈R2〉 c2

k

2mkω
2
k

− ck〈R · rk〉, (22)

where the average is taken over the initial state (10). The full
conserved energy of the particle + bath amounts to the sum of
(22) over all modes,

∑
k E (ωk ), plus the mean energy 〈 1

2 Ṙ2 +
ω2

0
2 R2〉 of the particle; cf. Eqs. (1) and (11). Equation (22) in

the limit t → ∞ is worked out in Appendix D:

E (ω) = 3T − δω[2ε(ω) + ε(ω)|b=0], (23)

ε(ω) = T γ

2π
× ω2(b2 + γ 2) + (

ω2 − ω2
0

)2

(
ω2 − ω2

0 − bω
)2 + γ 2ω2

× (1 − σV )ω2 + (1 − σX )ω2
0(

ω2 − ω2
0 + bω

)2 + γ 2ω2
, (24)

where σX and σV are defined in (18). Now 3T in E (ω) is the
thermal energy of the free mode; cf. the equipartition theorem
from (10). The factor ∝ δω in (24) is due to interaction with
the Brownian particle: 2ε(ω) comes from the (x, y) compo-
nents of (22) that feel the magnetic field b [cf. (6)], while
ε(ω)|b=0 comes from the z component that does not feel it.
Similarly to (19), the interaction-induced factor in (24) nulli-
fies for σX = σV = 1; see (10) and (18). Thus, for long times
the mode mean energy (24) (in contrast to particle’s mean en-
ergy) depends on the magnetic field, though this dependence
is weaker than for (19). The interaction-driven factor in (23)
and (24) that contains the magnetic field is a small correction
to the leading term 2T . This is different from (19), where the
average angular momentum without interaction is zero, and
hence the magnetic field induced effect is the main one.

VI. LINEAR MOMENTUM

Given the above finding for the angular momentum, it
is reasonable to ask how the linear momentum is trans-
ferred from the Brownian particle to the bath. Answering this
question has intrinsic value and contrasts with the angular
momentum’s behavior.

Note from (3) and (1) that for a free Brownian particle (i.e.,
ω0 = B = 0) there is a conservation of linear momentum:

d

dt

[
N∑

k=1

ck

ω2
k

ṙk (t ) + V(t )

]
= 0. (25)

Equation (25) contains the full momentum V(t ) of the Brow-
nian particle (recall that its mass is taken 1), which is added
to ck

ω2
k

ṙk (t ) for each mode. The latter is a part of the mode mo-

mentum mk ṙk . We emphasize that the full mode momentum
mk ṙk cannot appear in the conservation law, since the model
lacks the full translation invariance. Indeed, (3) shows that
each mode feels a harmonic potential. A relations similar to
(25) is formally mentioned in Ref. [37].

Instead of (17) and (18) consider initial conditions
〈R(0)〉 = 0, 〈V(0)〉 
= 0 that hold together with (10). As fol-
lows from Eqs. (6) and (15), and is generally well known, the
velocity density of the particle thermalizes for long times [cf.
(16)]:

P (V; t → ∞) ∝ e− 1
2T V2

. (26)

But R is subject to an unbound Brownian motion and hence it
is not thermalized.

For γ t 	 1 we find from (5), (6), (15), and (10) for the
average linear momentum of a bath mode with frequency ω =
ωk (see Appendix B 4):

ck

ω2
k

〈ṙk〉 = δω × 2γ 〈V(0)〉
π

γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2
. (27)

Equation (27) shows that the single mode (partial) linear
momentum ck

ω2
k
〈ṙk〉 is a time-dependent oscillating function.

In contrast, relaxation occurs once we consider a collective
quantity and take the bath’s thermodynamic limit, i.e., using
the integral instead of the sum:

ω2∑
ω1

ck

ω2
k

〈ṙk〉 = 2γ 〈V(0)〉
π

∫ ω2

ω1

dω

γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2
, (28)

where we used (27) and where naturally ω2 > ω1.
The behavior of the integral in (28) for t → ∞ essentially

depends on whether ω1 > 0 or ω1 = 0, i.e., whether the zero
frequency is included in the collective quantity or not. For
ω1 > 0, (28) implies

ω2∑
ω1>0

ck

ω2
k

〈ṙk〉 = O

(
1

t

)
for t → ∞, (29)

as becomes clear after changing the variable ωt → ω in (28).
Hence the collective linear momentum for nonzero frequen-
cies nullifies for large times. Note that these times are larger
than 1/γ .

However, the total bath linear momentum is nonzero, as
follows from (25). Indeed, applying (25) at times t = 0 and
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TABLE I. Comparison between the linear momentum and angular momentum is convoluted. Hence we separated four cases depending
on the following three factors. (i) Initial conditions for the Brownian particle, where 〈V(0)〉 and 〈L(0)〉 mean the initial velocity and angular
momentum, respectively. (ii) External fields electric E and magnetic fields B. Both are constant and homogeneous in space and only one of
them is present for each case. (iii) The external harmonic potential with magnitude ω0 for the particle. For each of these four cases we indicate
whether and which conservation law is present, whether and to which extent the particle thermalizes for long times, and how collective bath
observable behave. It is seen that the most reasonable comparison is to be done between the second and fifth columns, and this is the road we
followed in the main text.

ω0 = 0 ω0 = 0 ω0 
= 0 ω0 
= 0
E = 0 E 
= 0 B = 0 B 
= 0
B = 0 B = 0 E = 0 E = 0

〈V(0)〉 
= 0 〈V(0)〉 = 0 〈L(0)〉 
= 0 〈L(0)〉 = 0

Conservation law Yes, effective No Yes Yes, effective
linear momentum orbital momentum orbital momentum

Thermalization of particle Yes, for velocity No Yes Yes
distribution only do not forget E Bohr-Van Leeuwen theorem

Collective bath observables Forget 〈V(0)〉 Do not forget E Forget 〈L(0)〉 do not forget B

t 	 1/γ together with conditions 〈ṙk〉 = 0, 〈V(0)〉 
= 0, and
〈V(t )〉 � 0 we find for the total final linear momentum:

N∑
k=1

ck

ω2
k

ṙk (t ) = 2γ 〈V(0)〉
π

∫ ∞

0
dω

γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2

= 〈V(0)〉. (30)

Note that if ω1 is extended to zero in (28), then we get
back from the t → ∞-limit of (28) the same total momen-
tum 〈V(0)〉. This means that the total momentum 〈V(0)〉 is
(for t → ∞) transferred to the zero-frequency mode ω = 0,
which corresponds to the homogeneous shift. Thus, the linear
momentum dissipates away from both the particle velocity
and collective bath observables

∑ω2
ω1>0

ck

ω2
k
〈ṙk〉. However, the

velocity 〈ṙω→0〉 of the zero-frequency mode is not observable,
because it is infinitisemaly small due to a limω→0

cω

ω2 = ∞; see
(14). Hence the total linear momentum does not result into any
visible motion for long times.

The comparison between the linear momentum and the
angular momentum can be carried out in several different
set-ups. We choose the most reasonable set-up for showing
that the linear momentum is different from the angular
momentum. Within this set-up the behavior of the angular
momentum for the Brownian particle subject to the external
potential with frequency ω0 
= 0 and magnetic field B 
= 0
is compared with the linear momentum under ω0 = 0 and
B = 0; see (25)–(30). In the former case the overall angular
momentum is conserved [cf. (4)], while the final state of the
Brownian particle thermalizes; see (16). In the latter case, the
partial linear momentum is conserved, and there is a partial
long-time thermalization; see (25) and (26). Other possible
set-up for comparing the linear and angular momentum are
discussed in Appendix B 4; see Table I.

There are two major differences between the angular
momentum and linear momentum. First, the single mode
angular momentum (19) converges to a well-defined, time-
independent value, in contrast to the single mode linear
momentum (27) that is an oscillating function. Consequently,
the angular momentum is sustained in the long-time limit for
finite bath observables in the thermodynamic limit, while the
linear momentum dissipates away; cf. (29) with (20). Second,

(27) and (28) trivialize for zero initial momentum 〈V(0)〉 = 0,
which again contrasts (19) that does not need an initial angular
momentum for the particle.

VII. SUMMARY

We restored the influence of the static (homogeneous)
magnetic field on the long-time limit of a classical Brow-
nian motion. For long times the influence of the magnetic
field is found not in the particle (as correctly claimed by
Bohr-Van Leeuwen theorem), but in the orbital momentum
of (uncharged) bath modes. The effect is not enforced by the
conservation law of the angular momentum, i.e., there are
situations where its absence is fully consistent with the conser-
vation. This behavior is specific for the angular momentum,
as compared to the two other additive integrals of motion:
The linear momentum is dissipated away by (and from) bath
modes, while the bath energy can feel the magnetic field, but
only as a small correction.

At this point, the major open problem is whether these
effects are specific for the Caldeira-Leggett model of the
bath—which we emphasize does apply for describing liquids
[22,24]—or it will generalize to more realistic bath models.
This question is currently under investigation, but we can
mention two preliminary hypotheses. The nonspontaneous
aspect of the bath angular momentum is based on the conser-
vation law (4). Hence it is likely to persist for more general
bath models. The spontaneous aspect could be a specific
point of linear bath models, including the Caldeira-Leggett
model.

In this context, we plan to study bath models that are
especially relevant for cellular ions. Here the bath is described
as a fluctuating hydrodynamic system [38]. It is known that
such a bath also reproduces the Langevin equation for the
Brownian particle immersed into it [39]. Hence we anticipate
that the effect of transferring the influence of the magnetic
field to the bath will show up also here and will be reflected in
the angular momentum of the fluid. The major difference of
this class of models compared to the Caldeira-Leggett model
is that bath modes are subject to viscosity, i.e., there is an
additional source of irreversibility.
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APPENDIX A: BROWNIAN STOCHASTIC MOTION
AND CORRELATION FUNCTIONS

We start by presenting the solution for the following
Langevin equation with Ohmic friction and white noise [cf.
(6) and (15)]:

Ẍ (t ) = bẎ (t ) − ω2
0X (t ) − γ Ẋ (t ) + ξx(t ), (A1)

Ÿ (t ) = −bẊ (t ) − ω2
0Y (t ) − γ Ẏ (t ) + ξy(t ), (A2)

〈ξα (t )ξβ (t ′)〉 = 2γ T δαβδ(t − t ′) α, β = x, y. (A3)

Note that X and Y couple only via the magnetic field b; cf. (2).
The third equation in (6) is decoupled from (A1) and (A2).

We solve (A1)–(A3) via the Laplace transform:(
s2 + ω2

0 + γ s −bs
bs s2 + ω2

0 + γ s

)(
X̂
Ŷ

)

=
[
ξ̂x + X (0)(s + γ ) + Vx(0) − bY (0)
ξ̂y + Y (0)(s + γ ) + Vy(0) + bX (0)

]
. (A4)

Inverting the matrix on the left-hand side amounts to transpos-
ing it and dividing it on its determinant. Hence, we get

X̂ (s) = X (0)(K̂0 + bĤ1) + Y (0)(K̂1 − bĤ0) (A5)

+ Vx(0)Ĥ0 + Vy(0)Ĥ1 + Ĥ0ξ̂x + Ĥ1ξ̂y, (A6)

Ŷ (s) = X (0)(−K̂1 + H0b) + Y (0)(K̂0 + bĤ1) (A7)

− Vx(0)Ĥ1 + Vy(0)Ĥ0 − Ĥ1ξ̂x + Ĥ0ξ̂y, (A8)

where

Ĥ0 = s2 + γ s + ω2
0

�
Ĥ1 = b s

�
,

K̂0 = Ĥ0(s + γ ) K̂1 = Ĥ1(s + γ ), (A9)

and the � is the determinant of the matrix in (A4):

� = (b s)2 + (
s2 + γ s + ω2

0

)2 =
4∏

i=1

(s − pi ), (A10)

where pi are roots of � = 0:

p1,2 = 1
2

[ − γ + ib ±
√

(γ − ib)2 − 4ω2
0

]
p3,4 = p∗

1,2.

(A11)

We also define residues of 1
�

which has four simple poles {pi}
as

ri = 1∏
j 
=i(pi − p j )

i, j = 1, 2, 3, 4, (A12)

and thus the inverse Laplace transform of the above kernels
are (recall Cauchy’s residue theorem)

H0(t ) =
4∑

i=1

ri
(
p2

i + γ pi + ω2
0

)
epit H1(t ) =

4∑
i=1

rib pi epit ,

(A13)

and, similarly, we get analytical expressions for K0(t ), K1(t ).
Using these functions together with the convolution theorem
for the Laplace transform, we get

X (t ) = X (0)[K0(t ) + bH1(t )] + Y (0)[K1(t ) − bH0(t )]

+ Vx(0)H0(t ) + Vy(0)H1(t )

+
∫ t

0
dt ′H0(t − t ′)ξx(t ′) +

∫ t

0
dt ′H1(t − t ′)ξy(t ′)

(A14)

Y (t ) = X (0)[−K1(t ) + bH0(t )] + Y (0)[K0(t ) + bH1(t )]

− Vx(0)H1(t ) + Vy(0)H0(t )

−
∫ t

0
dt ′H1(t − t ′)ξx(t ′) +

∫ t

0
dt ′H0(t − t ′)ξy(t ′).

(A15)

We assume that distribution of random variables X (0) and
Y (0) (initial values) are unbiased, symmetric, and independent
from each other:

P (X (0),Y (0)) = P (X (0))P (Y (0)), P (−x) = P (x),

(A16)

which in particular implies:

〈X (0)〉 = 〈Y (0)〉 = 0, (A17)

〈X (0)2〉 = 〈Y (0)2〉 ≡ 〈
X 2

0

〉
, (A18)〈

Vx(0)2
〉 = 〈Vy(0)2〉 ≡ 〈

V 2
0

〉
, (A19)

〈X (0)Y (0)〉 = 〈Vx(0)Vy(0)〉 = 0. (A20)

Also note that X (0), Y (0), ξx(t � 0), and ξy(t � 0) are
independent random variables due to the assumed system-
bath initial state. Then the correlation function CXY (t, t ′) =
〈X (t )Y (t ′)〉 will be

CXY (t, s) = 〈
V 2

0

〉
[H1(t )H0(s) − H0(t )H1(s)] (A21)

+ 〈
X 2

0

〉{[K0(t ) + bH1(t )][−K1(s) + bH0(s)]

(A22)

+ [K1(t ) − bH0(t )][K0(s) + bH1(s)]} (A23)

+
∫ t

0

∫ s

0
dt ′ds′〈ξ (t ′)ξ (s′)〉[−H0(t − t ′)

× H1(s − s′) + H0(s − s′)H1(t − t ′)], (A24)
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where the last line can be simplified as noise is white:

CXY (t, s) = 〈
V 2

0

〉
[H1(t )H0(s) − H0(t )H1(s)] (A25)

+〈X 2
0 〉{[K0(t ) + bH1(t )]

× [−K1(s) + bH0(s)] (A26)

+ [K1(t ) − bH0(t )][K0(s) + bH1(s)]} (A27)

+ 2γ T
∫ min(t,s)

0
dy[−H0(t − y)H1(s − y)

+ H0(s − y)H1(t − y)]. (A28)

Note that CXY is antisymmetric:

CXY (t, s) = −CXY (s, t ). (A29)

Similarly, the correlation function CXX (t, s) = 〈X (t )X (s)〉
will be

CXX (t, s) = 〈
V 2

0

〉
[H0(t )H0(s) + H1(t )H1(s)] (A30)

+ 〈
X 2

0

〉{[K0(t ) + bH1(t )][K0(s) + bH1(s)]

(A31)

+ [K1(t ) − bH0(t )][K1(s) − bH0(s)]} (A32)

+ 2γ T
∫ min(t,s)

0
dy[H0(t − y)H0(s − y)

+ H1(t − y)H1(s − y)]. (A33)

Therefore, the position-velocity autocorrelation functions
can be derived by:

CXUx (t, s) ≡ 〈X (t )Ux(s)〉 = d

ds
〈X (t )X (s)〉 = d

ds
CXX (t, s),

(A34)

CXUy (t, s) ≡ 〈
X (t )Uy(s)

〉 = d

ds
〈X (t )Y (s)〉 = d

ds
CXY (t, s).

(A35)

APPENDIX B: EQUATIONS OF MOTION AND
LANGEVIN EQUATIONS

Recall the full Lagrangian LS + LB of our model [cf. (1)
and (3)]:

L = 1

2
Ṙ2 − ω2

0

2
R2 + AR

+
N∑

k=1

[
mk

2
ṙ2

k − mkω
2
k

2

(
rk − ckR

mkω
2
k

)2
]

(B1)

with R = (X,Y ), rk = (xk, yk ) and the vector potential for
the stationary and homogeneous magnetic field reads A =
(Ax, Ay) = (− bY

2 , bX
2 ); cf. (1)–(3). For simplicity we assumed

that the motion is two dimensional [cf. (A1) and (A2)], i.e.,
we did not account explicitly for the third coordinate of the
bath, since for the harmonic external potential of the Brownian
particle (central oscillator), the third coordinates decouple
from the other two coordinates.

From Lagrange equations we get equations of motion for
the Brownian particle:

Ẍ = bẎ − ω2
0X +

∑
k

ck

(
xk − X

ck

mkω
2
k

)
, (B2)

Ÿ = −bẊ − ω2
0Y +

∑
k

ck

(
yk − Y

ck

mkω
2
k

)
, (B3)

and for bath oscillators:

mkẍk + mkω
2
k xk = ckX (t ), (B4)

mkÿk + mkω
2
k yk = ckY (t ). (B5)

We can find exact solutions for xk (t ), yk (t ) in (B4) and (B5)
assuming that X (t ),Y (t ) are given. Employ the Laplace trans-
form in (B4):

x̂k (s) = vxk (0)
1

s2 + ω2
k

+ xk (0)
s

s2 + ω2
k

+ ck

mk
(
s2 + ω2

k

) X̂ (s).

(B6)

Then the inverse Laplace transform produces:

xk (t ) = xk (0) cos(ωkt ) + vxk (0)

ωk
sin(ωkt ) + ck

mkωk

×
∫ t

0
dt ′ sin[ωk (t − t ′)]X (t ′). (B7)

A similar formula holds for y(t ). Now integrate by parts the
final integral in (B7):

xk (t ) − X (t )
ck

mkω
2
k

=
[

xk (0) − X (0)
ck

mkω
2
k

]
cos(ωkt )

+ vxk (0)

ωk
sin(ωkt ) (B8)

− ck

mkω
2
k

∫ t

0
dt ′ cos[ωk (t − t ′)]Vx(t ′),

(B9)

and insert these results back to (B2) and (B3)

Ẍ = bẎ − ω2
0X − rx(t ) + ξx(t ), (B10)

Ÿ = −bẊ − ω2
0Y − ry(t ) + ξy(t ). (B11)

Equations (B10) and (B11) are Langevin equations for the
Brownian particle, where we defined for friction rs and noise
ξs:

rs(t ) =
∫ t

0
dt ′ζ (t − t ′)Vs(t

′), s = x, y, (B12)

ζ (t ) =
∑

k

c2
k

mkω
2
k

cos(ωkt ), (B13)

ξx(t ) =
∑

k

ckxk cos(ωkt ) + ck

ωk
vxk sin(ωkt ), (B14)

ξy(t ) =
∑

k

ckyk cos(ωkt ) + ck

ωk
vyk sin(ωkt ), (B15)
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where we define[
xk (0) − X (0)

ck

mkω
2
k

]
= xk, vxk (0) = vxk, (B16)[

yk (0) − Y (0)
ck

mkω
2
k

]
= yk, vyk (0) = vyk . (B17)

1. Equilibrium bath

If we take Gibbs distribution for initial conditions for os-
cillators, i.e.,

(xk (0), yk (0), vxk (0), vyk (0)) ∼ N e−H/T , (B18)

where N is the normalization constant and

H =
∑

k

[
1

2
mkω

2
k yk

2+ 1

2
mkω

2
k yk

2+ 1

2
mk vxk

2 + 1

2
mk vyk

2

]
,

(B19)

we get〈
ξα (t )ξβ (t ′)

〉 = T δαβζ (t − t ′) α, β = x, y. (B20)

We see that ζ (t ) appears both in friction memory (B12) and
noise correlation (B20), so this implies fluctuation-dissipation
relation (13).

2. Continuous spectrum of oscillators

Now we consider some specific bath, which has uniformly
spaced frequencies with Drude-Ullersma’s spectrum:

ωn = δω n n = 1, 2, 3, . . . , (B21)

cn =
√

2γ mnω2
nδω

π

θ2

ω2
n + θ2

. (B22)

We are going to take continuum limit where the spacing of fre-
quencies δω → 0. The memory kernel (7) and (B13) (which
is also the noise correlation function) will be:

ζ (t ) =
∞∑

n=1

2γ δω

π
cos(ωnt )

θ2

ω2
n + θ2

(B23)

→
∫ ∞

0

2γ

π
cos(ωt )

θ2

ω2 + θ2
dω as δω → 0 (B24)

= γ θe−θt . (B25)

This memory function represents memory time 1/θ . In the
limit θ → ∞ we are going to have memoryless (Ohmic) fric-
tion and white noise:

ζ (t ) = 2γ δ(t ), (B26)

c(ω) =
√

2γω2

π
, (B27)

m ≡1, (B28)

here we took m = 1 for all the oscillators; cf. (15).

3. Symmetries of the model

We have seen that by the initial bath distribution (B18) and
the spectrum of the oscillator couplings (B22) we recover the
same Langevin equation (A1)–(A3). Note that these Langevin
equations are invariant under rotation in the X − Y plane. Ad-
ditionally, the initial distribution of X (0), Y (0), Vx(0), Vy(0) is
invariant under 90◦ rotations; see (A17). Thus, the solution
of these equations must also be invariant under 90◦ rota-
tions. More specifically, for any function f (X,Vx,Y,Vy) we
have

〈 f (X (t ),Vx(t ),Y (s),Vy(s)〉
= 〈 f (Y (t ),Vy(t ),−X (s),−Vx (s))〉, (B29)

which corresponds to the 90◦ rotation. Equation (A29) is a
consequence of it.

Similarly, the Lagrangian (B1) and initial distribution
(B18) and (A17) are rotation symmetric, and for any
function f (X,Vx, {xk, vxk},Y,Vy, {yk, vyk}) with {xk, vxk} ≡
{x1, x2, . . . , vx1, vx2, . . . } we have

〈 f (X (t ),Vx(t ), {xk (t ), vxk (t )},Y (s),Vy(s), {yk (s), vyk (s)})〉,
(B30)

= 〈 f (Y (t ),Vy(t ), {yk (t ), vyk (t )},−X (s),−Vx(s),

{−xk (s),−vxk (s)})〉. (B31)

Again, this follows from 90◦ rotation. Or in other words, when
we take the average over the distribution of the solution, we
can replace X → Y and Y → −X and the time derivatives
accordingly. For example,

〈xk (t )vyk (t ) − yk (t )vxk (t )〉 = 2〈xk (t ) vyk (t )〉, (B32)

〈X (t )vyk (s)〉 = −〈Y (t )vxk (s)〉, (B33)

〈X (t )yk〉 = −〈Y (t )xk〉, (B34)

〈X 2〉 = 〈Y 2〉, 〈Xxk〉 = 〈Y yk〉,
〈
v2

xk

〉 = 〈
v2

yk

〉
, etc. (B35)

4. Linear momentum of bath modes

Starting from equations of motion generated by (B1) [see
also (1) and (3)] we can derive for ω0 and B = A = 0—i.e.,
no external potential and no magnetic field for the Brownian
particle—the following conservation law for the linear mo-
mentum:

d

dt

[∑
k

ck

ω2
k

ṙk + Ṙ

]
= 0, (B36)

where we note that only a part of the mode linear momentum
mk ṙk participates in the conservation law; mk ṙk is obviously
not conserved, since each mode feels an external potential.
We now employ (B8) with initial conditions [cf. (10)]:

〈rk (0)〉 = 〈ṙk (0)〉 = 〈R(0)〉 = 0, (B37)

〈Ṙ(0)〉 
= 0, (B38)
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and also use Langevin Eq. (6) that under (B37) and (B38) and
then (B26) and (B28) reads

d

dt
〈V〉 = −γ 〈V〉, 〈V(t )〉 = e−γ t 〈V(0)〉, V(t ) = Ṙ(t ).

(B39)

Recall that for a free Brownian particle the thermalization ac-
cording to the Langevin equation is incomplete: The velocity
distribution relaxes toward Maxwell’s density [in particular,
〈V(t )〉 goes to zero according to (B39)], while the coordinate
does not relax, since it makes a free Brownian motion.

We find

〈ṙk (t )〉 = ck

mkωk

∫ t

0
ds sin[ωks]〈V(t − s)〉 (B40)

= ck〈V(0)〉
mkωk

[
γ sin[ωkt] − ωk cos[ωkt]

γ 2 + ω2
k

+ ωke−γ t

γ 2 + ω2
k

]
. (B41)

Hence we obtain from (B41):

∑
k

ck

ω2
k

〈ṙk (t )〉 = 2γ

π
〈V(0)〉

∫ ∞

0
dω

[ γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2

+ e−γ t

γ 2 + ω2

]
, (B42)

where employing [t > 0 and γ > 0]∫ ∞

−∞
dω

cos[ωt]

γ 2 + ω2
= πe−γ t

γ
,

∫ ∞

−∞
dω

γ

ω
sin[ωt]

γ 2 + ω2
= π

γ
(1 − e−γ t ), (B43)

we confirm from (B42) that the conservation (B36) indeed
holds.

Returning to (B41) we see that the mean linear momen-
tum of each mode oscillates in time. This fact contrasts
the mean angular momentum of each mode that (under a
nonzero magnetic field) relaxes in time to a well-defined,
frequency-dependent value. Another pertinent difference is
that a nonzero linear momentum for bath modes is achieved
only due to 〈V(0)〉 
= 0, i.e., the Brownian particle should
have a nonzero initial momentum for transferring it to the bath
modes according to the conservation law (B36). Such a direct
relation need not hold for the angular momentum, where the
bath modes acquire angular momentum also without the initial
angular momentum of the particle [c.f. (19)].

Note that generic finite collective observables of the bath
lose the nonzero linear momentum in the long-time limit.
Indeed, we note from (B41):

ω2∑
ω1

ck

ω2
k

〈ṙk (t )〉 = 2γ

π
〈V(0)〉

∫ ω2

ω1

dω

[ γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2

+ ωke−γ t

γ 2 + ω2

]
, (B44)

where ω1 < ω2 are finite frequencies that define the collective
observable. For t 	 1/γ the contribution O(e−γ t ) in (B44)
can be neglected. The remaining two integrals converge to

zero as O(1/t ) for long times t and for finite and nonzero
values of ω1 and ω2:∫ ω2

ω1

dω

γ

ω
sin[ωt]

γ 2 + ω2
� 1

γ

∫ ω2t

ω1t
dω

sin[ω]

ω
= 1

γ
O

(
1

t

)
, (B45)∫ ω2

ω1

dω
cos[ωt]

γ 2 + ω2
� sin[ω2t] − sin[ω1t]

tγ 2
, (B46)

where we note that the last relation in (B45) does not apply
for ω1 = 0. At that specific (nongeneric) value of ω1 the
integral in (B45) converges to a finite value for long-times,
since

∫ ∞
0 dω sin[ω]

ω
= π

2 .
Altogether, we conclude that for the Brownian particle and

finite observables of the bath the linear momentum is dissi-
pated away. This discussion can be conveniently summarized
as follows: If we define linear momentum density over the
modes at time t :

�(ω; t ) = 〈V(0)〉2γ

π

[ γ

ω
sin[ωt] − cos[ωt]

γ 2 + ω2
+ e−γ t

γ 2 + ω2

]
,

(B47)

then for t → ∞ this quantity weakly converges to

�(ω; t → ∞) = 2〈V(0)〉δ(ω),∫ ∞

0
dω�(ω; t → ∞) = 〈V(0)〉. (B48)

For completeness, let us also consider a situation where
(B37) holds, but instead of (B38) we take 〈V(0)〉 = 0. How-
ever, now there is a constant and homogeneous electric field
E that is acting on the Brownian particle. Hence the Langevin
equation reads instead of (B39):

d

dt
〈V〉 = −γ 〈V〉 + E, 〈V(t )〉 = E

γ
(1 − e−γ t ), (B49)

where we assumed a unit charge. Note that this situation is
different from that of (B39), since now there is no thermal-
ization even for the velocity of the Brownian particle, because
now this particle moves for long times with a constant velocity
E/γ ; cf. (B49). Also, the conservation law (B36) changes to

d

dt

[∑
k

ck

ω2
k

ṙk + Ṙ − E t

]
= 0, (B50)

which means that the overall momentum
∑

k
ck

ω2
k

ṙk + Ṙ in-

creases monotonously in time.
Now (B40) still holds and putting there (B49) we find

〈ṙk (t )〉 = ck

mkωk

E
γ

1 − cos[ωkt]

ωk
(B51)

−E
γ

ck

mkωk

[
γ sin[ωkt] − ωk cos[ωkt]

γ 2 + ω2
k

+ ωke−γ t

γ 2 + ω2
k

]
. (B52)

The contribution coming from (B52) was studied by us above
in (B45) and (B46), and hence we focus on (B51). Note that

∑
k

ck

ω2
k

〈ṙk〉 = 2E
π

∫ ∞

0
dω

1 − cos[ωt]

ω2
= t E. (B53)
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This relation validates the conservation law (B50). Now for
ω2 > ω1 > 0 we find from (B51):

ω2∑
ω1

ck

ω2
k

〈ṙk〉 = 2E
π

∫ ω2

ω1

dω
1 − cos[ωt]

ω2
, (B54)

which converges for t → ∞ to a finite positive value (for
ω2 > ω1 > 0):

ω2∑
ω1

ck

ω2
k

〈ṙk〉 → 2E
π

[
1

ω1
− 1

ω2

]
. (B55)

After (B46) we concluded that for the Brownian particle
and finite observables of the bath the linear momentum is
dissipated away. Here the situation is different: The linear
momentum cannot be dissipated away, since for long times
t the Brownian particle and finite bath observables move with
a constant linear momentum ∝ E; cf. (B49) and (B55). The
explanation of this is straightforward: At long times the parti-
cle moves with a constant linear momentum and drags along
the bath modes. Instead, the acceleration induced by E is
dissipated away from the particle and finite bath observables.
A detailed comparison between the linear momentum and
angular momentum is presented in Table I.

APPENDIX C: ANGULAR MOMENTUM OF A
BATH OSCILLATOR

Here we consider a specific oscillator from (B7) and (B16):

x(t ) = x cos(ωt ) + X (0)
c

mω2
cos(ωt ) + vx

ω
sin(ωt ) (C1)

+ c

mω

∫ t

0
dt ′ sin[ω(t − t ′)]X (t ′), (C2)

where we dropped subscript k’s for simplicity. For the velocity
we differentiate (C1) (written in terms of y),

vy(t ) = −y ω sin(ωt ) − Y (0)
c

mω
sin(ωt ) + vy cos(ωt )

(C3)

+ c

m

∫ t

0
dt ′ cos[ω(t − t ′)]Y (t ′), (C4)

Eventually, we want to calculate the correlation 〈xvy − yvx〉 at
time t . But as the system is rotation symmetric, it is enough to
consider 〈xvy〉; see (B32),

〈xvy〉t = − c

m

∫ t

0
〈X (t ′)y〉 cos(ωt ′)dt ′ (C5)

− c

mω

∫ t

0
〈X (t ′)vy〉 sin(ωt ′)dt ′ (C6)

− c2

m2ω2

∫ t

0
〈X (t )Y (0)〉 cos(ωt ′)dt ′ (C7)

+ c2

m2ω

∫ t

0
dt ′

∫ t

0
dt ′′〈X (t ′)Y (t ′′)〉

× sin[ω(t − t ′)] cos[ω(t − t ′′)], (C8)

where we used the relations (B33) and (B32) following from
rotation symmetry and the independence of the initial condi-
tions (B18) and (A17).

We can calculate 〈X (t )[y(0) − Y (0)c
mω2 ]〉 and similar terms

using solutions for X and Y (A14) and (A15). In (A14) only
ξy(t ) depends on y ≡ [y(0) − Y (0)c

mω2 ] and vy; i.e., the initial state
of the bath, see (B15). So we get

〈X (t )y〉 = T
c

mω2

∫ t

0
dt ′H1(t − t ′) cos(ωt ′), (C9)

〈X (t )vy〉 = T
c

mω

∫ t

0
dt ′H1(t − t ′) sin(ωt ′). (C10)

Now we can simplify first two lines of (C5) and (C6):

−T
c2

m2ω2

∫ t

0
dt ′

∫ t ′

0
dt ′′H1(t ′ − t ′′)

× [cos(ωt ′) cos(ωt ′′) + sin(ωt ′) sin(ωt ′′)], (C11)

= −T
c2

2m2ω2

∫ t

0

∫ t

0
dt ′dt ′′H1[|t ′ − t ′′|) cos(ω(t ′ − t ′′)],

(C12)

= −T
c2

m2ω2

∫ t

0
dt ′H1

(
t ′) (t − t ′) cos(ωt ′). (C13)

Equation (C8) can also be simplified via (A29):

c2

m2ω

∫ t

0
dt ′

∫ t

0
dt ′′〈X (t ′)Y (t ′′)〉1

2
{sin[2ωt − ω(t ′ + t ′′)]

+ sin[ω(t ′′ − t ′)]} (C14)

= c2

m2ω

∫ t

0
dt ′

∫ t ′

0
dt ′′〈X (t ′)Y (t ′′)〉 sin[ω(t ′′ − t ′)].

(C15)

Putting it all together we get a simplified result for 〈xvy〉:

〈
xvy

〉
t
= − T

c2

m2ω2

∫ t

0
dt ′H1(t ′) (t − t ′) cos(ωt ′) (C16)

− c2

m2ω2

∫ t

0
CXY (t ′, 0) cos(ωt ′)dt ′ (C17)

− c2

m2ω

∫ t

0
dt ′

∫ t ′

0
dt ′′CXY (t ′, t ′′) sin[ω(t ′ − t ′′)] (C18)
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and the expressions for CXY (t ′, t ′′) and H1(t ′) are given in (A13) and (A25). Taking the limit t → ∞ we get1

L = 2〈xvy〉t→∞ = δω
4γ bT

π

(ω − ω0)(ω + ω0)
[
(1 − σV )ω2 + (1 − σX )ω2

0

]
b4ω4 + [

γ 2ω2 + (
ω2 − ω2

0

)2]2 + 2b2
[
γ 2ω4 − (

ω3 − ωω2
0

)2] (C19)

= δω
4γ bT

π

(
ω2 − ω2

0

)[
(1 − σV )ω2 + (1 − σX )ω2

0

]
[(

ω2 − ω2
0 + iγω

)2 − b2ω2
][(

ω2 − ω2
0 − iγω

)2 − b2ω2
] (C20)

= δω
4γ bT

π

(
ω2 − ω2

0

)[
(1 − σV )ω2 + (1 − σX )ω2

0

]
[(

ω2 − ω2
0 − bω

)2 + γ 2ω2
][(

ω2 − ω2
0 + bω

)2 + γ 2ω2
] , (C21)

where

〈X (0)2〉 = 〈Y (0)2〉 = σX
T

ω2
0

〈Vx(0)2〉 = 〈Vy(0)2〉 = σV T . (C22)

APPENDIX D: ENERGY OF A BATH OSCILLATOR

From the Lagrangian (B1) we can see that conserved en-
ergy is

Etot = 1

2
(Ẋ 2 + Ẏ 2) + 1

2
ω2

0(X 2 + Y 2) (D1)

−
∑

k

ck (Xxk + Y yk ) (D2)

+
∑

k

1

2
mk

(
ẋ2

k + ẏ2
k

) + 1

2
mkω

2
k

(
x2

k + y2
k

)
(D3)

+ (X 2 + Y 2)
∑

k

1

2

c2
k

mkω
2
k

. (D4)

Our concern is the average energy of the oscillator (again we
drop subscript k):

E = 1

2
m〈ẋ2 + ẏ2〉 + 1

2
mω2〈x2 + y2〉 (D5)

+〈X 2 + Y 2〉1

2

c2

mω2
− c〈Xx + Y y〉. (D6)

The system is rotation invariant, see (B35), so the above
expression is equivalent to

1

2
E = 1

2
m

〈
v2

x

〉 + 1

2
mω2〈x2〉 (D7)

+〈X 2〉1

2

c2

mω2
− c〈Xx〉. (D8)

The first line can be found by integration of the equation of
motion (B4):

1

2
m

〈
v2

x

〉 + 1

2
mω2〈x2〉

∣∣∣∣
t

0

= c
∫ t

0
X (t ′)vx(t ′)dt ′. (D9)

Using (C3) (in terms of vx) we write the first line

(D7) = T + σX
T c2

2mω2ω2
0

(D10)

+ c2

m

∫ t

0
dt ′

∫ t ′

0
dt ′′ CXX (t ′, t ′′) cos[ω(t ′ − t ′′)]

(D11)

− T c2

mω

∫ t

0
dt ′

∫ t ′

0
dt ′′ H0(t ′ − t ′′) sin[ω(t ′ − t ′′)]

(D12)

− c2

mω

∫ t

0
dt ′CXX (t ′, 0) sin(ωt ′), (D13)

where the line (D10) comes from averages at t = 0. The
second line (D8) can be worked out using (C1)

(D8) = T c2

2mω2ω2
0

− CXX (t, 0)
c2

mω2
cos(ωt ) (D14)

− c2

mω

∫ t

0
dt ′ CXX (t, t ′) sin[ω(t − t ′)] (D15)

− T c2

mω2

∫ t

0
dt ′ H0(t ′) cos(ωt ′). (D16)

At this stage, all expressions in (D7) and (D8) can be in-
tegrated analytically by symbolic computation software (cf.
footnote 1). Then we take the limit t → ∞. So we get

E = 2T − δω
T γ

π

{
(1 − σV )ω2 + (1 − σX )ω2

0

[γ 2 + (ω − b)2]ω2 − 2(ω − b)ωω2
0 + ω4

0

+ (1 − σV )ω2 + (1 − σX )ω2
0

[γ 2 + (ω + b)2]ω2 − 2(b + ω)ωω2
0 + ω4

0

}
(D17)

= 2T − δω
T γ

π

[
ω2(b2 + γ 2) + (

ω2 − ω2
0

)2][
(1 − σV )ω2 + (1 − σX )ω2

0

]
[(

ω2 − ω2
0 − bω

)2 + γ 2ω2
][(

ω2 − ω2
0 + bω

)2 + γ 2ω2
] (D18)

where σX and σV are defined in (C22).

1The expression that we are interested in is expressed only by the Laplace kernels (A13) and its integrals w.r.t. time. These kernels are
exponential functions of time and the integrals can be easily evaluated. However, the expression contains many exponential terms, the exact
result is found using Mathematica.
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