
PHYSICAL REVIEW E 107, 014124 (2023)

Accurate estimation of dynamical quantities for nonequilibrium nanoscale systems
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Fluctuations of dynamical quantities are fundamental and inevitable. For the booming research in nanotech-
nology, huge relative fluctuation comes with the reduction of system size, leading to large uncertainty for the
estimates of dynamical quantities. Thus, increasing statistical efficiency, i.e., reducing the number of samples
required to achieve a given accuracy, is of great significance for accurate estimation. Here we propose a theory as
a fundamental solution for such problem by constructing auxiliary path for each real path. The states on auxiliary
paths constitute canonical ensemble and share the same macroscopic properties (NVT) with the initial states of
the real path. By implementing the theory in molecular dynamics simulations, we obtain a nanoscale Couette
flow field with an accuracy of 0.2 μm/s with relative standard error <0.1. The required number of samples is
reduced by 12 orders compared to conventional method. The predicted thermolubric behavior of water sliding on
a self-assembled surface is directly validated by experiment under the same velocity. This theory only assumes
the system is initially in thermal equilibrium, then driven from that equilibrium by an external perturbation.
It could serve as a general approach for extracting the accurate estimate of dynamical quantities from large
fluctuations to provide insights on atomic level under experimental conditions, and benefit the studies on mass
transport through (biological) nanochannels and fluid film lubrication of nanometer thickness.
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I. INTRODUCTION

During the past decades, the scale of the systems people
are interested in keeps on decreasing, from micro-, nano-, to
angstrom, with typical applications like water desalination,
nanopore sequencing, and heat dissipation of the chip [1–4].
This trend leads to the number of particles constituting the
system, N, reducing significantly as it is proportional to the
cubic of the scale. It also leads to large relative fluctuation
(RF) of the dynamical quantities of the systems which is
inverse proportional to the square root of N [5]. As a result,
the standard error (SE) of the mean estimate for dynamical
quantity A with multiple measurements (Ā) is large. In other
words, the confidence intervals [Ā−SE, Ā + SE ] from nu-
merous samples that encompass the exact value of A with a
probability of 68% are broad, leading to large uncertainties in
the measurement. Thus, the intrinsic large RF brings difficulty
to the estimate of the dynamical quantity for both experiments
[6,7] and simulations [8–10] with nanoscale systems.

The conventional method uses the path-ensemble average
to estimate the quantity at nonequilibrium. The accuracy of
the estimate is limited by finite sampling. To increase the
accuracy of the estimate, several strategies have been pro-
posed. First, since SE is inverse proportional to the square root
of the number of independent samples (n), i.e., SE ∝ 1/

√
n,

some methods increase n to get a good estimation, like using
parallel replica dynamics with rare events [11], reducing the
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cost of single sampling [12]. Second, some studies lead to
a practical closed-form solution for the uncertainty of the
estimation [13,14] and present new sampling algorithms to
increase the statistical efficiency by one to three orders of
magnitude. Third, as the statistical uncertainty of an estimator
is usually quantified by its SE in the asymptotic limit, some
studies find an optimal estimator [15,16] which reduces this
asymptotic SE. These studies could increase the statistical
efficiency by three orders.

With these methods, however, for nanoscale system with
large RF, a large quantity of sampling is still required to
provide enough data to get accurate estimate, e.g., with
relative standard error (RSE) < 0.1 [9,17]. As for water,
Fig. 1(a) shows the RF of the center-of-mass velocity (vcom )
varies with the number of particles N at room tempera-
ture (T = 298 K). For a steady water flow, RF = σvcom/vcom,

where σvcom = √
1/βNmwater, β = 1/kBT, and mwater is the

mass of individual water molecule. Derivation of σvcom is given
in Supplemental Material (SM), Sec. 1 [18]. With vcom =
10−4 m/s, which is a typical value for experiments [17], it
is clear that RF at nano- or angstrom scale is huge (>104).
For water flow at nanoscale (e.g., N = 10 000), Fig. 1(b) il-
lustrates with the first kind of method how many independent
samples (n) are required to detect certain values of vcom with a
given RSE at T = 298 K. Here, RSE = σvcom/

√
nvcom is used

to measure the reliability of the estimate as the confidence
interval is [1 − RSE, 1 + RSE]vcom, i.e., small RSE leading
to accurate estimation. The number of samples needed to
give an accurate estimate of vcom = 10−4 m/s is five to seven
orders larger than that in the existing research [9,35–39]. For
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FIG. 1. Number of samples needed to estimate the flow rate of
the nanoconfined water. (a) Relative fluctuation (RF) as a function
of the number of particles N in the system. Arrow shows the recent
experimental systems from micro- [40], nano- [41], to angstrom [42]
scale, and the dashed line indicates the number of water molecules
in a cube with a side length of 100 nm. (b) Number of independent
samples n needed to estimate the velocity vcom with given relative
standard error (RSE). Values of vcom for nanoconfined water in
existing molecular simulations (0.03 to 24.3 m/s) and this work
(3.36×10−6 to 3 m/s) are plotted as different symbols.

the second and third kinds of methods as mentioned above,
though they can increase the statistical efficiency up to three
orders, the required number of samples would still be two to
four orders larger than existing studies, far beyond the current
ability of sampling. Therefore, for water at nanoscale, the
existing methods to get accurate estimate of vcom comparable
to experiments (e.g., 10−4 m/s) are inefficient and become
even impractical.

In this paper, we propose a fundamentally different method
to efficiently reduce the standard error of the estimate for
dynamical quantities at nonequilibrium. Through generating
an auxiliary path corresponding to each path in the phase
space with a specific protocol, the path-ensemble average of
the difference between the quantities in real path and aux-
iliary path is found to be a good estimate of the quantities.
This method is thus called auxiliary-path method (APM). For
achieving the same accuracy, the number of samples required
for APM is much smaller than the conventional method.

II. AUXILIARY-PATH METHOD

For a classical system composed of N particles, a
dynamical quantity A depends upon time t via the
time dependence of the coordinates r1(t ), . . . , rN (t ) and
momenta p1(t ), . . . , pN (t ) of the particles, i.e., A(t ) =
A[r1(t ), . . . , rN (t ), p1(t ), . . . , pN (t )]. For each path, the
phase-space point xt ≡ [r1(t ), . . . , rN (t ), p1(t ), . . . , pN (t )] is
determined by integrating Newton’s laws from the initial
microstate (t = 0) with the corresponding phase-space point
x0 ≡ [r1(0), . . . , rN (0), p1(0), . . . , pN (0)], i.e., the dynamics
of the system is deterministic. The exact value of A at time
t , 〈A〉t , can be defined via path-ensemble average as 〈A〉t =
∫ dx0F (x0)A(t ), where F (x0) is the distribution function of
initial microstates in phase space [43]. In this paper, the path
ensemble is constituted by the initial thermal equilibrium
and the process by which the system is subsequently per-
turbed from that equilibrium as suggested by Crooks [44].
For system initially corresponding to canonical ensemble,
F (x0) = e−βH (x0 )/ ∫ dx0e−βH (x0 ), β = 1/kBT , and H (x0) is

the Hamiltonian of the initial microstate. For Q initial mi-
crostates correspond to a given sampling of the canonical
phase-space distribution of a system; upon perturbation, they
will generate Q nonequilibrium paths as time propagates.
Thus, we have 〈A〉t = limQ→∞ 1

Q

∑Q
i=1 Ai(t ) [45], where i

indicates the ith path. While 〈A〉t is the value people are in-
terested in, practical sampling hardly fulfills ergodicity in the
path ensemble. Therefore, the conventional method usually
uses finite m paths in the path ensemble to estimate 〈A〉t as
Ām(t ) = 1

m

∑m
i=1 Ai(t ), with 〈A〉t = limm→∞ Ām(t ). Accord-

ing to central limit theorem, the standard error of Ām(t ) can
be estimated as σA/

√
m, where σA is the standard deviation of

quantity A.
Now assuming that for the same system we have

auxiliary path corresponding to each path in the
nonequilibrium path ensemble, and the states xt ′ ≡
[r1′ (t ), . . . , rN ′ (t ), p1

′
(t ), . . . , pN ′ (t )] on all auxiliary

paths are required to constitute canonical ensemble at
any time t when Q goes to infinity. Now we define a
quantity B(t ) = A(t ) − A′(t ), here A′(t ) = A(x

′
t ). The path-

ensemble average 〈B〉t = limQ→∞ 1
Q

∑Q
i=1(Ai(t ) − A

′
i(t )) =

limQ→∞ 1
Q

∑Q
i=1 Ai(t ) − limQ→∞ 1

Q

∑Q
i=1 A

′
i(t ). For the

former, limQ→∞ 1
Q

∑Q
i=1 Ai(t ) = 〈A〉t . For the latter,

according to the assumption that the auxiliary states
x

′
t constitute canonical ensemble at any time t , we have

limQ→∞ 1
Q

∑Q
i A

′
i(t ) = 〈A〉EC, where 〈A〉EC is the canonical

ensemble average of A. Thus, 〈B〉t = 〈A〉t − 〈A〉EC, i.e.,

〈A〉t = 〈B〉t + 〈A〉EC. (1)

This is the proposed calculation method of 〈A〉t , and it is
the core of APM. Its efficiency over the conventional method
which estimates 〈A〉t as Ām(t ) = 1

m

∑m
i=1 Ai(t ) can be quanti-

fied via a dimensionless quantity γ as

SEAPM = γ SEcon, (2)

where SEAPM and SEcon are the standard error of APM and
the conventional method, respectively. To achieve the same
SE, the APM reduces the required number of samples by
1/γ 2 times compared to the conventional method due to SE ∝
1/

√
n. In other words, the statistical efficiency of APM is

increased by 1/γ 2 − 1 times compared to that of conventional
method. On the basis that the auxiliary paths satisfy the re-
quirements, according to Eq. (1), 〈A〉t can be estimated by the
sum of B̄m(t ) = 1

m

∑m
i=1 Bi(t ) and a known constant 〈A〉EC.

Now SEAPM = σB/
√

m, where σB is the standard deviation
of quantity B and SEcon = σA/

√
m; thus, γ = σB/σA. The

quantity σB can be estimated as
√

p
∑m

i=1 (Bi(t ) − B̄m(t ))2
/m

and σA can be estimated as
√∑m

i=1 (Ai(t ) − Ām(t ))2
/m, re-

sulting in γ =
√

B2
m (t )−(B̄m (t ))2

A2
m (t )−(Ām (t ))2 , where B2

m(t ) = 1
m

m∑
i=1

B2
i (t )

and A2
m(t ) = 1

m

∑m
i=1 A2

i (t ). For systems with large relative

fluctuation, A2
m(t ) � (Ām(t ))2; thus, γ ≈

√
B2

m (t )−(B̄m (t ))2

A2
m (t )

<√
B2

m(t )/A2
m(t ). When B2(t ) is much smaller than A2(t ),

γ  1, which means SEAPM is much smaller than SEcon.
Thus, the auxiliary path method, i.e., using B̄m(t ) + 〈A〉EC to
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FIG. 2. Schematic of a specific protocol for APM. (a) The three
axes are coordinate r, momentum p, and time t . The blue solid line
stands for a real path in the nonequilibrium path ensemble with
external perturbation and the green solid line is the corresponding
auxiliary path. The black arrows reveal the origin of the middle
states and the red arrow represents a relaxation with a duration of
δt. (b) Schematic of the error analysis for the specific protocol. Two
parts of error are introduced. One is the bias of 〈B〉t + 〈A〉EC (blue
curve) from 〈A〉t (black curve) caused by the finite λ. The other is
the error caused by the estimation of 〈B〉t + 〈A〉EC (blue curve) with
B̄m(t ) + 〈A〉EC (red triangles).

estimate 〈A〉t , will be much more accurate than the conven-
tional method, i.e., using Ām(t ) to estimate 〈A〉t .

Generally speaking, the APM is done by designing
auxiliary path corresponding to each real path in the nonequi-
librium path ensemble. The requirements for the auxiliary
paths are that the auxiliary states x

′
t constitute canonical en-

semble and share the same set of macroscopic properties,
e.g., number and types of particles, volume, temperature,
with the initial canonical ensemble at any time t . Based on
both requirements, the closer the states on auxiliary path and
real path are, the smaller γ is, and the more effective this
method is.

III. SPECIFIC PROTOCOL FOR APM

Next, we present a specific protocol to generate auxil-
iary path as shown in Fig. 2(a). Notice that the dynamics
of the system remains unchanged; only the extra auxiliary
paths are constructed to increase the accuracy of the estimate.
We limit the studied systems as those which can preserve
the canonical ensemble if having not been perturbed. At
any given time t , there are three kinds of states, which are
the real states xt = [r1(t ), . . . , rN (t ), p1(t ), . . . , pN (t )], the
states x

′
t = [r

′
1(t ), . . . , r

′
N (t ), p

′
1(t ), . . . , p

′
N (t )], and the mid-

dle states x
′′
t which will be illustrated below. The basic steps

of the protocol can be summarized as follows:
(1) At t = 0, the three types of states, xt , x

′
t , and x

′′
t , are

exactly the same and constitute canonical ensemble.
(2) Integrating the equations of motion forward in time

under perturbation with a time step of δt to generate the real
states xt+δt from xt .

(3) Integrating the equations of motion forward in time
without perturbation to generate the states x

′
t+δt from x

′′
t . Note

that at t = 0, x
′′
t and xt are the same. At t > 0, nonequilibrium

force for x
′′
t need be eliminated.

(4) The middle states x
′′
t+δt are obtained by combining the

coordinate [r1(t + δt ), . . . , rN (t + δt )] and the momentum

[p
′
1(t + δt ), . . . , p

′
N (t + δt )], i.e., [r1(t + δt ), . . . , rN (t + δt ),

p
′
1(t + δt ), . . . , p

′
N (t + δt )].

(5) Update t to t + δt and repeat steps 2 to 4.
Then we will show that the states x

′
t fulfill the requirement

for auxiliary states approximately, i.e., they constitute canoni-
cal ensemble and share the same set of macroscopic properties
with the initial canonical ensemble. Naturally at the begin-
ning, both the states x

′
0 and x

′′
0 constitute canonical ensembles

as they are identical to x0. For states x
′
δt , as they are propa-

gated from x
′′
0 without any perturbation, they also constitute

canonical ensemble, in other words, the probability of states
x

′
δt , f (x

′
δt ) ∝ e−βH (x

′
δt ). Further, the essence of this protocol is

a one-to-one correspondence between the real path and the
auxiliary path; hence, each middle state x

′′
δt is determined by

the auxiliary state x
′
δt and its unique corresponding real state,

which means f (x
′′
δt ) = f (x

′
δt ). When the condition λ(δt ) →

0 is met, where λ(δt ) = β(max
i

{�Hi(δt )} − min
i

{�Hi(δt )}),

�Hi(δt ) = Hi(x
′
δt ) − Hi(x

′′
δt ), we can derive that f (x

′′
δt ) =

e−βH (x
′′
δt )

∑
i e−βH (x

′′
δt )

(full derivation is given in SM, Sec. 2) [18]. It means

the states x
′′
δt satisfy canonical ensemble distribution function

and thus constitute canonical ensemble. The auxiliary states
x

′
2δt are obtained by a relaxation time of δt from the middle

states x
′′
δt , and hence preserve the canonical ensemble. At this

point, the construction implemented the auxiliary states from
one moment (x

′
δt ) to the next (x

′
2δt ); as the construction goes

on, we can get the auxiliary states x
′
t at any time t when

λ(t ) → 0.
With such protocol based on APM, 〈A〉t can be estimated

as B̄m(t ) + 〈A〉EC. As shown in Fig. 2(b), two parts of error
are introduced. One is the bias of 〈B〉t + 〈A〉EC from 〈A〉t

caused by the finite λ which characterizes the approximation
in the construction process of the auxiliary path. The other
is the error caused by the estimation of 〈B〉t + 〈A〉EC with
B̄m(t ) + 〈A〉EC due to the finite sampling. For the bias, when
λ = 0, Eq. (1) shows 〈A〉t = 〈B〉t + 〈A〉EC. However, the finite
small λ will cause a bias of the auxiliary states away from the
canonical ensemble. As a result, the upper limit of the bias is
σA

∑C−1
j=1 αC− jλ( jδt ), where α = e−δt/τ , C is the number of

time steps accumulated, t = Cδt , and τ is the relaxation time
of the quantity A for a given system (full derivation is given
in SM, Sec. 3) [18]. For the error caused by the estimation
of 〈B〉t + 〈A〉EC with B̄m(t ) + 〈A〉EC, the confidence interval
is [B̄m(t ) + 〈A〉EC − σB√

m
, B̄m(t ) + 〈A〉EC + σB√

m
], where σB√

m
is

the standard error.
Therefore, for any instantaneous moment, B̄m(t ) + 〈A〉EC

is a biased estimator of 〈A〉t with the upper limit of the bias
being σA

∑C−1
j=1 αC− jλ( jδt ). During the steady state where

〈A〉t is a constant, however, the average of B̄m(t ) + 〈A〉EC

calculated with Cs time steps 1
Cs

∑
Cs

B̄m(t ) + 〈A〉EC is an
unbiased estimator due to the randomness of the bias be-
tween 〈B〉t + 〈A〉EC and 〈A〉t (see details in SM, Sec. 3)
[18]. According to central limit theorem, it has a stan-
dard error of 1√

Cs
( σB√

m
+ σA

∑N−1
j=1 αN− jλ( jδt )). With the same

number of samples, the standard error for the conventional
method of using 1

Cs

∑
Cs

Ām(t ) to estimate 〈A〉t is SEcon =
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σA/
√

mCs. Therefore, γ = σB/σA + √
m

∑C−1
j=1 αC− jλ( jδt ),

and the times of increase in the statistical efficiency of this
specific protocol for APM over conventional method can be
estimated as 1

γ 2 − 1.

IV. TYPICAL APPLICATIONS

The auxiliary-path method brings us a powerful theoretical
tool to obtain accurate estimate of dynamical quantities for
nanoscale systems with intrinsically large relative fluctua-
tions. This is particularly important for solid-liquid interface
at nanoscale, as at room temperature the thermal fluctuation
for liquid next to the solid surface is very large compared
to the dynamical quantities people are interested in, e.g.,
flow rate. Among the many topics for solid-liquid interface,
nanofluidics [46] and liquid superlubricity [47] have attracted
great attention due to their great applications in energy and
friction reduction. Therefore, we will take both cases as
typical applications to demonstrate the ability of APM in
increasing the statistical efficiency.

We first focused on a typical yet simple system where
water is sheared by two parallel double-layer graphene sheets
(homogeneous surfaces). Such a system [Fig. 3(a)] is a typical
Couette flow, and it has profound significance in the field of
nanofluidics. The length and width of the graphene layer are
about 5 and 3 nm, respectively. The height of the channel
is about 2.5 nm. The velocity of each water molecule is the
dynamical quantity we are interested in. In the simulations,
we use periodic boundary conditions in the x- and y directions
parallel to the sheets and fixed boundary conditions in the z
directions. The dimension of the simulation box in the z di-
rection is 4 nm. A spring with stiffness of 2.7 N/m along the z
direction was applied on each carbon atom in the top and bot-
tom layers of graphene, connecting their present positions to
their equilibrium positions. The water molecules were sheared
by the graphene sheets moving at a constant velocity (Vwall ) in
opposite directions along the x axis [Fig. 3(a)]. Electrostatic
interaction between water molecules was modeled using the
modified Wolf potential with damping parameter 0.2 [23].
With a long enough cutoff and small enough damping param-
eter, the energy and force calculated by the Wolf summation
method approach those of the Ewald sum. A full description of
the molecular dynamics (MD) simulation procedure is given
in SM, Sec. 4 [18]. All the simulations were performed using
LAMMPS [48] with a self-developed package incorporating the
protocol for APM proposed above.

According to Eq. (1) for APM, the velocity field of water
〈v〉t = limQ→∞ 1

Q

∑Q
i=1(vi(t ) − v

′
i(t )) + 〈v〉EC, where vi(t ) is

the velocity field of state xt on the ith real path and v
′
i(t )

is the velocity field of state x
′
t on the corresponding auxil-

iary path. The equilibrium ensemble average of velocity field
〈v〉EC = 0. The perturbation to the water is the shear imposed
by the moving graphene layers. With the same macroscopic
properties, ten independent simulations were carried out at a
given Vwall. During steady state, for each simulation, sampling
over vi(t ) and v

′
i(t ) was conducted every 1 ps, lasting for 500

ps. These amount to a total number of samples of 5000 (m =
10, Cs = 500). Details of data analysis can be found in SM,
Sec. 5 [18].

FIG. 3. Application of the specific protocol to nanoconfined wa-
ter flow with homogeneous surfaces. (a) Side view of a typical
studied system for water sheared by two double-layer graphene
sheets. (b) Velocity profile of water flow obtained from APM with
Vwall = 100 μm/s. Blue dotted lines are the average position of
the innermost walls of graphene sheets. (c) Comparison between
the standard error of velocity profiles obtained by the conven-
tional method and APM with the same number of samples. (d)
Ratio γ defined as SEAPM/SEcon. (e) Local viscosity η of water
at different distance away from the innermost walls of graphene
sheets. (f) Density of water ρ and the number density of hydro-
gen bond nhb at different distance away from the innermost walls
of graphene sheets. (g) Slip length (ls) vs Vwall. The x axis is
composed of linear and logarithmic parts, separated by the break
line. The only deviation is ls based on the conventional method
at Vwall = 20 m/s, where the velocity profile is covered by the
thermal noise. (h) Comparison of the flow velocity ranges stud-
ied in previous experiments (1×10–6 to 4×10–2 m/s) [9], previous
simulations (3×10–2 to 1000 m/s), [9,35–39], and the present work
(3.36×10−6 to 3 m/s).

The profile along z of the flow velocity in the x direction
(〈vx〉t ) during steady state is shown in Fig. 3(b). It is worth
noting that for Vwall = 100 μm/s, an accuracy of 0.2 μm/s
with RSE < 0.1 was obtained for 〈vx〉t . This is a low velocity
reported for water flow examined by MD, four orders smaller
than existing studies (>0.03 m/s) [9]. To understand why
we could obtain such a low flow velocity with high accu-
racy, we calculated the corresponding SEcon and SEAPM as

σvx /
√

mCs and 1√
Cs

(
σ

vx−v
′
x√

m
+ σvx

∑C−1
j=1 αC− jλ( jδt )), respec-

tively. The correspondence to Eq. (1), 〈A〉t = 〈B〉t + 〈A〉EC, is
vx being A and vx − v

′
x being B. The values of σvx and σvx−v

′
x

were obtained from the simulations, with m = 10, Cs = 500,
and α = e−t/τ , where t = 1 fs and τ = 0.1 ps for the velocity
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relaxation time of water molecule with simple point charge
effective (SPC/E) force field [49]. From Fig. 3(c), it is evident
that SEAPM is much smaller than SEcon for Vwall < 10 m/s. For
γ = SEAPM/SEcon, it reduces as Vwall decreases [Fig. 3(d)]. It
is worth noting that with Vwall = 100 μm/s, γ = 6.1×10−7.
In other words, the APM reduces the required number of
samples by 2.2×1012 (1/γ 2) times compared to the conven-
tional method, i.e., achieves a 12-order increase in statistical
efficiency. It is worth noting that to obtain a velocity profile
as shown in Fig. 3(b), the conventional method would take 74
billion yr with a CPU core running at 2.9 GHz, which is far
beyond the present computing power (see SM, Sec. 8 for more
details of the estimation) [18].

Such a high accuracy provides us an opportunity to exam-
ine the fine structure of the flow field at nanoscale. The linear
profile [Fig. 3(b)], away from the boundary region (0.7 nm
away from the graphene specifically [35,50]), is met with
the classical prediction of planar Couette flow. However, we
found a slight but clear oscillation of 〈vx〉t for water close
to the surface [the inset of Fig. 3(b)] thanks to the high ac-
curacy of APM. The oscillation of velocity at interface has
been found in simulations of simple fluid with a large shear
rate (1011 s−1) [51,52]. For water, the shear rate studied here
is 4×104 s−1, which is matched with the shear rate used in
experiments (104 to 3×105 s−1) [53,54].

In Fig. 3(e), we plotted the local viscosity η(z) = τ/
d〈vx〉t

dz ,
where τ is the shear stress that holds constant in the stable
flows. Previous studies [35,50] have found that the viscosity of
water at the interface deviates from that of the bulk phase, but
the detailed distribution remains unknown. The theory [51,55]
for the viscosity distribution of confined Lennard-Jones fluid
has been established using the local average density model
[56]. Thanks to the accurate velocity profile from the APM
[Fig. 3(b)], we achieved the quantitative calculation of vis-
cosity distribution for nanoconfined water (see the calculation
details in SM, Sec. 6) [18]. The oscillation of viscosity in the
boundary region has a period of 0.25 nm, consistent with that
of the density for water [Fig. 3(f)]. The viscosity of nanocon-
fined water has a 4 times variation, ranging from 0.30 to
1.25 mPa s. This is different from the results of applying local
average density model with water [55]. Such difference shows
that the local average density model may be not suitable for
confined water of which the viscosity is not only affected by
density but also by structure [e.g., the distribution of hydrogen
bonds as shown in Fig. 3(f)] [57].

The accurate velocity profile [Fig. 3(b)] also enables us
to calculate the slip length (ls), which is a typical quantity
characterizing the flow profile and resistance at the liquid-
solid interface [58]. The method in Ref. [59] for calculating ls
was used here, ls = vslip/γ̇ , where vslip is the slip velocity and
γ̇ = (d〈vx〉t/dz)bulk is the shear rate within the bulk region of
the confined water. The slip velocity was obtained as the dif-
ference between Vwall and the linear extrapolated bulk velocity
at the hydrodynamic wall position (HWP) VHWP, i.e., vslip =
Vwall − VHWP (details about ls calculation are given in SM,
Sec. 7) [18]. During steady state, for Vwall = 50 and 100 m/s,
the estimated ls using APM (30.8 ± 0.7 and 34.1 ± 1.0 nm,
respectively) is similar to that from the conventional method
(37.3 ± 8.7 and 50.0 ± 13.2 nm, respectively) as shown in

Fig. 3(g), confirming the validity of using APM in nanoflu-
idics.

The dependence of ls on vslip is a key property in nanoflu-
idics [60]. Based on transition-state theory, ls is predicted
to be a constant at water-carbon surface when vslip is rela-
tively low, e.g., less than 100 m/s [37]. Such a prediction
has been verified by experiments and MD simulations sepa-
rately. However, the flow-rate ranges investigated deviate, by
large, 20 to 60 μm/s in experiments [41] and 3 to 30 m/s in
MD simulations [38]. With the system shown in Fig. 3(a),
we calculated ls with vslip from 9.6×10−5 to 97 m/s using
APM during steady state, of which the corresponding flow
rate range covers that of nanoconfined fluid in the experi-
ments [9] [Fig. 3(h)]. As shown in Fig. 3(g), within such a
wide range, ls remains a constant (30.5 ± 1.5 nm). We further
compared these values to ls with vslip = 0. The latter can be
estimated using the equilibrium molecular dynamics (EMD)
method [33] as ls = ηm/λ, where λ is friction coefficient and
ηm is the viscosity of water at bulk region (0.7 nm away
from the innermost graphene). This value can be regarded
as the low-speed limit of ls. With EMD, we obtained λ =
(1.9 ± 0.03)×104 kg m−2 s−1, resulting in ls = 33 ± 1 nm
with ηm = (6.3 ± 0.2)×10−4 kg m−1 s−1. The agreement be-
tween ls predicted by APM (30.5 ± 1.5 nm) and by EMD
(33 ± 1 nm with vslip = 0) shows the validity of the APM
in low-speed limit. The value of ls (30.5 ± 1.5 nm) also lies
in the range measured experimentally (16 nm for graphene
nanochannels [61] and 60 nm for graphite nanochannels [62]).
Together with the comparison to the conventional method, it
is reasonable to conclude that the APM method works in a
vast range of slip velocity for nanofluidics. As a result, for the
dependence of ls on vslip, by bridging the gap spanning over
four orders between experiments [41] and simulations [38],
we found that ls is velocity independent when vslip < 97 m/s,
which validates the theoretical predictions [41].

Couette flow and Poiseuille flow are two basic flows
in fluid mechanics. The APM proposed also applies for
Poiseuille flow, which is also a common scenario for nanoflu-
idics. We focused on the same system where water is confined
by two parallel double-layer graphene sheets, as shown in
Fig. 4(a). Poiseuille flow was generated by an external pres-
sure gradient �P. The interactions between molecules and the
settings for MD simulation were the same with the simulation
of Couette flow [Fig. 3(a)].

By using APM, Poiseuille flow field was obtained under
a pressure gradient �P of 0.2 Pa/nm. The pressure gradient
used here was matched with the experiments [41,42,63] (0.4
to 250 Pa/nm). The profile along z of the flow velocity in the
x direction 〈vx〉t during steady state was shown in Fig. 4(b).
A slip length ls of 31.8 ± 3.4 nm was calculated from the
velocity profile using the method as Ref. [64] suggested. The
value of ls is consistent with the results from Couette flow
(30.5 ± 1.5 nm) and equilibrium MD (33 ± 1 nm) calcula-
tions estimated above.

Thermal noise is too large to obtain the velocity profile
under experimental pressure gradient for the conventional
method. For the direct comparison of APM and conven-
tional method, we here increased �P to 2×106 Pa/nm. The
evolution of center-of-mass velocity vcom for water flow ver-
sus time t was shown in Fig. 4(c). It is clear that the fluctuation
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FIG. 4. Comparison of APM and conventional method for
Poiseuille flow. (a) Side view of a typical studied system for water
flow generated by a pressure drop �P. (b) Velocity profile of water
flow obtained from APM with �P = 0.2 Pa/nm. Blue dotted lines
are the average position of the innermost walls of graphene sheets. (c)
Center-of-mass velocity vcom vs time t . (d) Velocity profile of water
flow obtained from APM with �P = 2×106 Pa/nm. Blue dotted
lines are the average position of the innermost walls of graphene
sheets. Inset includes the standard error of velocity profile.

of vcom(t ) calculated with APM is smaller than that calculated
with conventional method. Besides, APM shows a more ac-
curate velocity profile, as shown in Fig. 4(d). Through the
direct comparison of velocity field calculated from APM and
conventional method at a huge �P, we show the effectiveness
of APM on increasing statistical efficiency and the validity
under huge external perturbation. At the experimental �P,
conventional method is struggling to obtain enough samples
to reduce thermal fluctuation and APM shows unique ability
on flow-field visualization.

Besides nanofluidics, the other typical example application
of APM is liquid superlubricity. We studied the sliding of wa-
ter on FDTS (Perfluorodecyltrichlorosilane, C10H4C13F17Si)
monolayer (heterogeneous surfaces). Such a system shows
good superlubric properties among the many systems of liquid
superlubricity [65]. However, the dependence of friction co-
efficient λ where τ = λvslip on temperature remains unclear.
Such dependence is important not only for the fundamental
understanding of the physical mechanisms of slip at the in-
terface, but also for applications like bearings and cooling of
electronic devices.

Here, we constructed a MD simulation model considered
water (a thickness of 3 nm) confined by FDTS monolayer
and amorphous silica microsphere, as shown in Fig. 5(a). The
silica surface, with a lateral size of 4.5×4.5 nm2, sheared the
water molecules with a constant velocity U. The details of
the simulation are presented in SM, Sec. 4 [18]. By using
the APM, the velocity profiles of water flow were obtained
with U from 30 to 54 μm/s and temperature T from 298
to 348 K (see Fig. S4 in SM, Sec. 5) [18]. Then the local
viscosity distribution was calculated using the same process

FIG. 5. Direct comparison between the temperature dependence
of friction coefficient measured in experiments and predicted by
APM. (a) Schematic of the setup to measure friction coefficient
at water-FDTS interface in experiments (left) and MD simulations
(right). Area highlighted by the dotted red rectangle is the sys-
tem simulations considered. (b) Morphology characterization of the
FDTS monolayer surface, with root-mean-square (rms) roughness
of 0.08 nm for a 10×10 nm2 area. (c) Morphology characterization
of the microsphere surface, with rms roughness of 1.12 nm for
a 400×400 nm2 area. (d), (e) Temperature dependence of friction
coefficient normalized by the value at 298 K for MD simulations (d)
and experiments (e) under the same shearing velocity (vs ) range, i.e.,
30 to 54 μm/s.

as that in Fig. 3(e) (see Fig. S9 in SM, Sec. 6) [18]. The
friction coefficient at water-FDTS interface λ = ηm/ls can
be calculated with the obtained velocity profiles and viscos-
ity distribution, and its temperature dependence is plotted in
Fig. 5(d).

To validate the temperature dependence of friction co-
efficient predicted by MD simulations using APM, a well-
designed experiment was performed as shown in Fig. 5(a).
The self-assembled FDTS monolayer was physically vapor
deposited onto a silica surface. A microsphere was fixed on
the atomic force microscope cantilever. The morphology of
the FDTS monolayer [Fig. 5(b)] and microsphere [Fig. 5(c)]
indicated clean surfaces. During the measurement, the FDTS
monolayer and the microsphere were immersed into degassed
deionized water (18.2 M�, Hitech Sciencetool). The details
of the measuring process are presented in SM, Sec. 9 [18].
During the measurement, the FDTS surface approached the
microsphere with a constant normal velocity from 50 to
90 μm/s, resulting in a tangential shearing velocity from 30 to
54 54 μm/s at the water-FDTS interface (derivation was given
in SM, Sec. 9) [18]. The temperature T from 290 to 340 K was
used in experiment. The same velocity and temperature ranges
used in experiments and APM guarantee a direct comparison
between their results. The separation D and hydrodynamic re-
sistance FD between the microsphere and FDTS surface were
recorded during the measurement (see Fig. S13 in SM, Sec. 9)
[18]. The interfacial friction coefficient can be calculated from
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FIG. 6. Evolution of the flow field for water sheared by graphene. (a)–(c) Flow fields shown in the first three rows were obtained from
the APM with Vwall = 10−4, 10−3, or 100 m/s. (d) Flow fields shown in the last row were obtained from the conventional method with
Vwall = 100 m/s. Streamlines which are a family of curves that are instantaneously tangent to the velocity vector of the flow were computed by
the velocity field with a grid size of 0.1 nm×0.1 nm (see SM, Sec. 5 for details) [18]. Movies S1–S4 corresponding to (a)–(d) are also provided
as SM.

the FD−D curves as suggested in Refs. [34,66,67] with results
shown in Fig. 5(e).

Across the velocities studied, we observed clear thermol-
ubric phenomena, i.e., the friction coefficient decreases with
temperature [Figs. 5(d) and 5(e)]. With T increases from 298
to 348 K, by averaging λ over the cases for different velocities,
the decrease in λ is found to be 67% in simulation and 55%
by experiment, showing good agreement. This set of results
based on a synergetic approach not only shows the thermol-
ubric behavior for water on FDTS unambiguously, but also
indicates rich information on atomic scale could be obtained
to understand the mechanisms.

V. DISCUSSION

One of the basic ideas of statistical mechanics is that
we observe an average over all possibilities of dynamical
quantity. This idea is corresponding to the notion of ensem-
ble average in statistical physics, which was introduced by
Gibbs in 1902 [68]. Path-ensemble average gives the value
of nonequilibrium quantity by averaging states on the paths
generated by applying external field on all states of the
initial equilibrium ensemble. It is a natural corollary from
ensemble average. The APM proposed is based on path-
ensemble average, like many other theories in nonequilibrium
statistical mechanics, such as Jarzynski nonequilibrium work
relation [69], Onsager’s regression hypothesis [19], and path-
ensemble theory [44].

With the APM, we show that one can extract an accurate
estimate of the dynamical quantity from the huge relative
fluctuations for system at nonequilibrium. For the conven-
tional method, its standard error of the estimate is caused
by two parts. One is the fluctuation of the initial equilibrium
states. The other is the coupling between perturbation and
equilibrium states. For APM, by using 〈 〉EC, the effect of the
fluctuation of the initial equilibrium states on the estimate can
be greatly suppressed. Meanwhile, the effect of the coupling
between perturbation and equilibrium states on the estimate

remains unchanged. Benefit from this property, as shown
below, the evolution of the dynamical quantities under exter-
nal perturbation can be observed clearly.

In Figs. 6(a)–6(c), with APM we plot the evolution of the
velocity fields for water sheared by the graphene sheets using
the same model as shown in Fig. 3(a). Details of the flow-field
calculation are given in SM, Sec. 5 [18]. The streamlines
which are a family of curves that are instantaneously tangent
to the velocity vector of the flow were computed by using the
velocity fields. At any instantaneous moment, the fluctuation
of the molecular velocity drives the flow field away from the
typical estimation of Stokes flow, of which the streamlines
should be parallel with the shearing wall strictly. The steady
flow fields (the last column in Fig. 6) which were obtained
by sampling the instantaneous flow field every 1 ps, then
averaged over 500 ps during the steady state, however, show
a good agreement with the prediction of Stokes flow. Com-
pared with the flow field calculated by conventional method
[Fig. 6(d)], it is evident that the APM can show the details of
the flow field’s evolution at atomic scale, with flow velocity
down to a few μm/s.

VI. CONCLUSION

To conclude, we developed a theory which can give the ac-
curate estimate of dynamical quantities for systems with huge
fluctuations at nonequilibrium. This is done by the construc-
tion of auxiliary path for each real path in the phase space. The
states on auxiliary paths constitute canonical ensemble and
share the same macroscopic properties with the initial states
of the real path. Taking nanofluidics as the first example, we
demonstrated a 12-order of magnitude increase with APM in
the statistical efficiency for the estimation of flow velocity.
As a result, the proposed auxiliary-path method can obtain
flow fields with a spatial precision of 0.1 nm and temporal
resolution of 10 ps, for flow rate down to a few μm/s, which
is within the reach of practical experiments [17,70]. Indeed,
this is validated by the direct comparison between the friction
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coefficients measured in experiment and estimated by APM
where water is sliding on FDTS surface. Therefore, it is rea-
sonable to expect a series of discoveries for nanofluidics and
liquid lubrication with synergetic study by combining APM
and experiments together.

On a broader scope, the APM theory only assumes that the
system is initially in thermal equilibrium, then driven from
that equilibrium by an external perturbation, and the dynamics
of the system is deterministic. These two general assumptions
pose little limitation on the applicable range of the theory.
Therefore, the APM could serve as a general approach to
provide insights on atomic level under experimental condi-
tions. The specific protocol further assumes that if the system
is unperturbed, then it preserves equilibrium ensemble. We

expect that with further developments in the construction of
the auxiliary path, the gap between atomic simulations and
experiments can be filled for fields like sliding between solid
surfaces, the mass transport on nanoscale driven by chemical
potential drop, and the multiphase flow under extreme con-
finements.
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