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Stationary states of activity-driven harmonic chains
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We study the stationary state of a chain of harmonic oscillators driven by two active reservoirs at the two
ends. These reservoirs exert correlated stochastic forces on the boundary oscillators which eventually leads to a
nonequilibrium stationary state of the system. We consider three most well-known dynamics for the active force,
namely, the active Ornstein-Uhlenbeck process, run-and-tumble process, and active Brownian process, all of
which have exponentially decaying two-point temporal correlations but very different higher-order fluctuations.
We show that, irrespective of the specific dynamics of the drive, the stationary velocity fluctuations are Gaussian
in nature with a kinetic temperature which remains uniform in the bulk. Moreover, we find the emergence of
an “equipartition of energy” in the bulk of the system—the bulk kinetic temperature equals the bulk potential
temperature in the thermodynamic limit. We also calculate the stationary distribution of the instantaneous energy
current in the bulk which always shows a logarithmic divergence near the origin and asymmetric exponential
tails. The signatures of specific active driving become visible in the behavior of the oscillators near the boundary.
This is most prominent for the RTP- and ABP-driven chains where the boundary velocity distributions become
non-Gaussian and the current distribution has a finite cutoff.
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I. INTRODUCTION

The study of nonequilibrium steady states (NESSs) of
extended systems driven by equilibrium reservoirs has been
of long-standing interest. Perhaps the simplest example is
that of a harmonic chain connected to two thermal reser-
voirs at the ends, which was studied by Rieder, Lebowitz,
and Lieb in 1967 [1]. It was shown that this system reaches
a Gaussian NESS which carries a constant energy current,
even in the limit of thermodynamically large system size.
Several generalizations of this model have been studied over
the past decades, ranging from inclusion of anharmonic inter-
action, pinning potential and disorders, which show nontrivial
stationary state behavior including anomalous transport and
nonlinear temperature profile [2–10].

An important question that arises naturally is how the
stationary state of an extended system is affected when
it is driven by nonequilibrium reservoirs that violate the
fluctuation-dissipation relation [11–15]. Active reservoirs are
a special class of nonequilibrium reservoirs that consists of
self propelled particles like bacteria or Janus beads [16–18].
The action of active reservoirs on single probe particles has
been a topic of increasing interest over the past few years,
due to their unusual emergent features like negative viscosity
and modification of equipartition theorem [19–29]. Recently
the effect of active reservoirs on extended systems have been
studied in a simple setting similar to the model proposed by
Rieder, Lebowitz, and Lieb—an ordered chain of harmonic
oscillators connected to two active reservoirs which exert
exponentially correlated stochastic forces on the boundary
oscillators [30]. It was shown that this simple system exhibits

some remarkable features like negative differential conduc-
tivity and current reversal. Both the average energy current
and kinetic temperature profile, which were computed exactly,
depend only on the autocorrelation of the active force and
holds true irrespective of the specific dynamics. However, the
signatures of the specific dynamics of the active forces are
expected to be present in the higher-order fluctuations of these
observables.

In this paper we study the NESSs of a harmonic chain
driven by different kinds of exponentially correlated active
forces. In particular, we consider three most well-known ac-
tive processes, namely, the active Ornstein-Uhlenbeck Process
(AOUP) [31], run-and-tumble process (RTP) [32,33], and ac-
tive Brownian process (ABP) [34,35] to model the dynamics
of the active forces. To characterize the NESSs, we focus on
the behavior of the energy current, velocity and potential-
energy fluctuations of the oscillators. Surprisingly, we find
that the bulk properties in the NESS are universal and do
not depend on the specific dynamics of the active forces.
More specifically, we show that, in all the three cases, the
instantaneous current distribution at the bulk has logarithmic
divergence near the origin as well as asymmetric exponen-
tial tails. We also find that the velocity fluctuations of the
bulk oscillators are Gaussian, which is accompanied by an
“equipartition of energy”—in the thermodynamic limit, the
kinetic and potential temperatures become equal in the bulk,
which we show analytically.

The signatures of the specific dynamics of the active force
become visible in the behavior of the oscillators near the
boundaries. In particular, we show that the velocity distribu-
tions of the boundary oscillators show different non-Gaussian
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FIG. 1. Schematic representation of a harmonic chain of oscil-
lators connected to two nonequilibrium reservoirs at the two ends.
Apart from the usual thermal noise the boundary oscillators are
driven by autocorrelated active forces f1(t ) and fN (t ).

features for the ABP- and RTP-driven chains. On the other
hand, the Gaussian nature of the AOUP active force ensures
that the boundary velocity fluctuations remain Gaussian in this
case. The instantaneous current distributions at the boundaries
show more surprising features—for ABP and RTP drives,
the boundary current distributions have semifinite supports,
which can be understood from the bounded nature of the
driving forces in these cases. For AOUP, on the other hand,
the boundary current distribution has exponential tails which
we compute exactly.

The paper is organized as follows: In the next section we
introduce the setup and give a brief summary of our results.
Sections III and IV are devoted to the study of the tempera-
ture profile and velocity distributions of the oscillators. The
behavior of the current distributions is discussed in Sec. V.
We conclude with some general remarks in Sec. VI.

II. MODEL AND RESULTS

We consider a chain of N oscillators, each with mass m,
connected by springs of stiffness k. The chain is connected
to two active reservoirs which exert exponentially correlated
stochastic forces on the boundary oscillators in addition to the
usual white noise and dissipative forces coming from thermal
reservoirs (see Fig. 1). The displacement xl of the lth oscil-
lator from its equilibrium position follows the equations of
motion,

mv̇1 = −k(2x1 − x2) − γ ẋ1 + ξ1(t ) + f1(t ), (1a)

mv̇l = −k(2xl − xl−1 − xl+1), ∀ l ∈ [2, N − 1], (1b)

mv̇N = −k(2xN − xN−1) − γ ẋN + ξN (t ) + fN (t ), (1c)

where vl = ẋl and we have assumed fixed boundary condi-
tion, x0 = xN+1 = 0. The white noise ξ1 and ξN acting on
the boundary oscillators denote the forces from the thermal
components of the reservoirs which satisfy the fluctuation-
dissipation relation [36],

〈ξi(t )ξ j (t
′)〉 = 2γ Tj δi j δ(t − t ′). (2)

Here T1 and TN denote the temperatures of the reservoirs and
for simplicity we have assumed that the dissipation coefficient
γ is the same for both the reservoirs. The active forces f j (t )
are assumed to be exponentially correlated colored noise,

〈 fi(t ) f j (t
′)〉 = δi j a2

j exp(−|t − t ′|/τ j ), (3)

where τ1,N measure the activity of the reservoirs.

The linear Langevin equations (1) can be straightforwardly
solved in the frequency domain to obtain [6],

xl (t ) =
∫ ∞

−∞

dω

2π
e−iωt [Gl1(ω) f̃1(ω) + GlN (ω) f̃N (ω)], (4)

where f̃ j (ω) is the Fourier transform of f j (t ) with respect to t
and G(ω) is the Green’s function matrix; see Appendix A for
the detailed solution.

Clearly, the stationary state distribution of {xl , vl} would
depend on the statistical properties of the active force f j (t )
through f̃ j (ω). From Eq. (4), it is clear that the two-
point dynamical correlations of physical observables which
are linear in xl (t ), involve only the two-point correlation
〈 f̃i(ω) f̃ j (ω′)〉 = δi j g̃(ω, τ j )δ(ω + ω′), where g̃(ω, τ j ) is the
frequency spectrum of the active force and is given by a
Lorentzian,

g̃(ω, τ j ) = 2a2
jτ j

1 + ω2τ 2
j

. (5)

In the following we consider three different dynamical pro-
cesses which correspond to very different fluctuations of f j (t ),
although each has an exponentially decaying autocorrelation
of the form (3).

I. Active Ornstein-Uhlenbeck Process (AOUP). We first
consider the scenario where the active force at each
boundary undergoes an independent Ornstein-Uhlenbeck pro-
cess [31,37],

ḟ j (t ) = − 1

τ j
f j +

√
2Dj

τ 2
j

η j (t ), (6)

where η j (t ) is a Gaussian white noise with 〈η j (t )〉 = 0 and
〈η j (t )η j (t ′)〉 = δ(t − t ′); the diffusion constant Dj denotes
the strength of the noise. The linear nature of the process
and the Gaussian nature of the noise leads to a Gaussian
propagator for the active force f j (t ),

P ( f j, t | f ′
j, t ′) =

exp

(
− τ j

2Dj

(
f j− f ′

j e
−(t−t ′ )/τ j

)2

1−e−2(t−t ′ )/τ j

)
[
2πDj

(
1 − e−2(t−t ′ )/τ j

)]1/2 . (7)

Evidently, the stationary distribution of f j is also Gaus-
sian with 〈 f j〉 = 0 and 〈 f 2

j 〉 = Dj/τ j . Equation (7) implies
that the stationary two-point correlation of the active force
〈 f j (t ) f j (t ′)〉 is given by Eq. (3) with

a j = √
Dj/τ j . (8)

The linear nature of the system and the Gaussian nature of
the active force f j ensures that, for the AOUP drive, the joint
probability distribution of {xl , vl} is also Gaussian,

P({xl , vl}) = 1√
(2π )2N det(	)

exp

[
−1

2
W T 	−1W

]
, (9)

where W T = (v1, . . . , vN , x1, . . . , xN ) and 	 is the corre-
sponding 2N × 2N dimensional positive-definite correlation
matrix.

II. Run-and-tumble process (RTP). In this case we con-
sider the active force f j (t ) to be a dichotomous noise similar
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to the famous run-and-tumble process [32,38],

f j (t ) = Ajσ j (t ), (10)

where σ j (t ) alternates between 1 and −1 with rate α j . In
this case f j = ±Aj can take only two discrete values and the
corresponding propagator is given by [39]

P
(

f j, t | f ′
j, t ′) = 1

2

(
1 + f j f ′

je
−2α j |t−t ′|). (11)

Clearly, in the stationary state, the two values of f j occur
with equal probability 1/2. It is straightforward to see that
this process leads to the two point autocorrelation of the form
Eq. (3) with

τ j = 1/(2α j ) and a j = Aj . (12)

However, the higher-order correlation of f j , computed from
Eq. (11), are quite different from that of the AOUP, and, in
general, the stationary state distribution P({xl , vl}) is expected
to be non-Gaussian.

III. Active Brownian process (ABP). The third case refers
to the scenario where the active force evolves according to the
active Brownian dynamics [35,40],

f j (t ) = Aj cos θ j (t ), with θ̇ j (t ) =
√

2DR
j ζ j (t ), (13)

where ζ j refers to a Gaussian white noise with 〈ζ j (t )〉 = 0 and
〈ζ j (t )ζ j (t ′)〉 = δ(t − t ′). Clearly, θ j (t ) undergoes a standard
Brownian motion which leads to a Gaussian propagator [39],

P(θ j, t |θ ′
j, t ) = 1√

4πDR
j |t − t ′|

exp

⎛
⎝−

(
θ j − θ ′

j

)2

4DR
j |t − t ′|

⎞
⎠. (14)

Corresponding distribution for f j = Aj cos θ j (t ) eventually
reaches a stationary state,

Pst( f j ) = 1

π
√

A2
j − f 2

j

. (15)

The autocorrelation 〈 f j (t ) f j (t ′)〉 is given by Eq. (3) with

τ j = 1/DR
j and a j = Aj/

√
2. (16)

However, the higher-order correlation for f j for this case
is different than that of both AOUP and RTP and the
stationary state weight P({xl , vl}) is expected to be non-
Gaussian as well as different from that in the RTP-driven
case.

Clearly, despite having the same two-point autocorrela-
tion given by Eq. (3), the dynamical nature of the active
force f j is very different for all the three cases. We ex-
pect to see the signatures of these specific dynamics in
the stationary state of the different activity-driven harmonic
chains.

To characterize the stationary state properties of the
activity-driven chain we focus on the potential energy, local
velocity, and current fluctuations in the harmonic chain, both
in the bulk and at the boundaries. We support our analyti-
cal results with the help of numerical simulation using the
stochastic second-order Runge-Kutta algorithm [41,42]. Note
that, for a harmonic chain, energy current in the station-
ary state splits into two components—a thermal one Jtherm,
proportional to the temperature difference (T1 − TN ) of the

thermal reservoirs, and an active one Jact, which depends
on the activity driving [30]. Since we are mainly interested
in characterizing the activity-driven stationary state, we use
T1 = TN = 0 for the remainder of the paper. Before going
into the details of the computation, we first present a brief
summary of our main results.

Temperature profile. We first compute the local potential
temperature profile, defined as

T̂l = 2Ul , (17)

where Ul denotes the average potential energy of the lth os-
cillator. We show that T̂l becomes uniform in the bulk (i.e.,
for 1 	 l 	 N) in the thermodynamic limit N → ∞ and the
bulk potential temperature value, given by,

T̂bulk = a2
1τ1

2γ

√
1 + 4τ 2

1 k
m

+ a2
NτN

2γ

√
1 + 4τ 2

N k
m

, (18)

which is the same as the bulk kinetic temperature T̂bulk

computed earlier [30], which indicates the existence of an
equipartition of energy.

Velocity distribution. We also measure the stationary prob-
ability distribution P(vl ) of the velocities of the oscillators and
show that, surprisingly, in the limit of thermodynamic size, for
any activity of the reservoirs, the velocity distributions of the
bulk oscillators are Gaussian with width T̂bulk, irrespective of
the dynamics of the active force. The velocity distributions of
the oscillators near the boundaries, however, are non-Gaussian
for ABP- and RTP-driven chains and depend on the specific
driving dynamics.

Current distribution. Another observable of immense im-
portance is the energy current flowing through the system.
We show that, for the bulk oscillators, P(Jl ), the probabil-
ity distribution of the instantaneous current Jl , flowing from
the (l − 1)st to the lth oscillator, exhibits certain universal
features, irrespective of the specific dynamics of the active
force: The distribution diverges logarithmically for |Jl | → 0
and shows asymmetric exponential decay for large Jl ,

P(Jl ) �
⎧⎨
⎩

− ln |Jl |√
π2gl

for |Jl | → 0

1√
2πul |Jl | exp

[
Jact Jl −ul |Jl |

gl

]
for |Jl | � 1,

(19)

where Jact and gl and ul are defined in Eqs. (34) and (39).
In fact, the Gaussian nature of the stationary state of the

AOUP-driven chain allows us to exactly compute the station-
ary current distribution in the bulk,

P(Jl ) = 1√
π2gl

e
Jact
gl

Jl K0

(
ul

gl
|Jl |

)
, (20)

where K0(z) is the zeroth-order modified Bessel function of
the second kind [43].

We also compute the boundary current distribution for the
AOUP-driven chain which has the same qualitative shape
as the bulk current distribution. For RTP- and ABP-driven
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FIG. 2. Plot of kinetic temperature profile T̂l (open symbols) and potential temperature profile T̂l (filled symbols) for the (a) AOUP-,
(b) RTP-, and (c) ABP-driven chains, for fixed τ1 = 2.0 and two different values of τN . The symbols correspond to data obtained from
numerical simulations with a chain of N = 512 oscillators and, D1 = DN = 1 in panel (a), A1 = AN = 1 in panel (b) and DR

1 = DR
N = 1 in

panel (c). The other parameters are γ = 1 = k = m. The black dashed lines correspond to the value of the bulk temperature according to
Eq. (18). The inset in panel (a) shows zoomed in temperature profiles near the left boundary. The solid black lines in the inset corresponds to
the analytical predictions of T̂l (see Appendix C) and T̂l [30].

chains, however, the boundary current distributions are strik-
ingly different, which we measure numerically.

III. TEMPERATURE PROFILE

It is often convenient to consider a local “kinetic tempera-
ture” for driven oscillator chains, which can be defined as the
average kinetic energy of the lth oscillator,

T̂l = m
〈
ẋ2

l

〉
. (21)

For an activity-driven harmonic chain, it has been shown that
the kinetic temperature attains a uniform value

T̂bulk = a2
1 τ1

2γ

√
1 + 4τ 2

1 k
m

+ a2
N τN

2γ

√
1 + 4τ 2

N k
m

(22)

in the bulk, with an exponentially decaying boundary
layer [30].

For a harmonic chain, one can also define a local “potential
temperature,” T̂l , from the average potential energy of the lth
oscillator Ul [see Eq. (17)], defined as

Ul =

⎧⎪⎨
⎪⎩

k
4

[
2
〈
x2

l (t )
〉 + 〈[xl+1(t ) − xl (t )]2〉] for l = 1

k
4 [〈[xl−1(t ) − xl (t )]2〉 + 〈[xl (t ) − xl+1(t )]2〉] ∀ l ∈ [2, N − 1]
k
4

[
2
〈
x2

l (t )
〉 + 〈[xl (t ) − xl−1(t )]2〉] for l = N.

(23)

To compute Ul , we need position correlations of the form 〈xl (t )xn(t )〉 in the stationary state, for n = l , l ± 1. From Eq. (4) we
have

〈xl (t )xn(t )〉 =
∫ ∞

−∞

dω

2π
[Gl1G∗

1n g̃(ω, τ1) + GlN G∗
Nn g̃(ω, τN )], (24)

where g̃(ω, τ j ), given in Eq. (5), denotes the Lorentzian spec-
trum of the active force.

These correlations can be computed exactly by using the
explicit form of Gln(ω). The details of the computation are
provided in Appendix C; here we quote the main results. It
turns out that the average potential energy can be expressed as
the sum of two contributions from the two reservoirs,

Ul = k

4
[U1(l, τ1) + UN (l, τN )]. (25)

Here U1(l, τ1) and UN (l, τN ) are the contributions from the
left and right reservoirs, respectively (see Appendix C). We
find that U j (l, τ j ) for bulk oscillators is independent of l in
the thermodynamic limit N → ∞,

U j (l, τ j ) = mτ ja2
j

kγπ

∫ π

0

dq

m + 2kτ 2
j (1 − cos q)

= a2
jτ j

kγ

√
1 + 4kτ 2

j

m

, (26)

where j = 1, N . Consequently, the potential temperature pro-
file T̂l attains a uniform value T̂bulk in the bulk. In fact, from
Eqs. (25) and (22) and the above equation, it is clear that

T̂bulk = T̂bulk, (27)

i.e., the bulk kinetic and potential temperatures are identical in
the thermodynamic limit. Note that, Eq. (27) holds irrespec-
tive of the specific form of the dynamics. Figure 2 plots of T̂l

and T̂l for AOUP, RTP, and ABP for two sets of τ1 and τN and
validates our prediction [Eq. (27)].

The potential temperatures of the oscillators near the
boundaries, calculated explicitly in Appendix C, are different
from their respective kinetic temperatures. The difference is
illustrated in the inset of Fig. 2(a) for two sets of τ1 and τN .
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FIG. 3. (a) Plot of the scaled velocity distribution of the middle
oscillator N/2 for τ1 = 5.0 and τN = 1.50. The data corresponding
to AOUP-, RTP-, and ABP-driven chains show a perfect collapse
with the standard normal distribution indicated by the solid black
line. (b) Plot of the velocity distributions of the oscillators at the left
boundary for the three models AOUP, RTP, and ABP, with τ1 = 5.0
and τN = 1.50. The black solid line corresponds to the Gaussian
distribution for AOUP, and the dashed line corresponds to a Gaussian
with the variance T̂1 for ABP. For both panels (a) and (b), N = 512
and m = γ = k = 1. The other parameters are D1 = DN = 1 for
AOUP, A1 = AN = 1 for RTP, and DR

1 = DR
N = 1 for ABP.

IV. VELOCITY DISTRIBUTIONS

The probability distribution of the velocities plays an
important role in the characterization of the NESS of the
oscillator chain. In the presence of a thermal gradient such
a system usually reaches a stationary state, where the velocity
fluctuation of the lth oscillator are typically Gaussian with
the width is given by its local kinetic temperature [2,3]. In
this section we explore the fluctuation of the velocities of the
individual oscillators in the presence of the different active
drivings.

For the AOUP-driven chain, as mentioned before, the joint
probability distribution P({xl , vl}) is a multivariate Gaussian
[see Eq. (9)]. Consequently, the marginal velocity distribution
P(vl ) must also be a Gaussian,

P(vl ) = 1√
2π T̂l/m

exp

(
−mv2

l

2T̂l

)
, (28)

for l = 1, 2, . . . , N , where T̂l = m〈v2
l 〉 is the average kinetic

temperature of the lth oscillator. This is illustrated in Fig. 3(a)
where the numerically measured velocity distribution of the
middle oscillator (l = N/2) is plotted along with the corre-
sponding Gaussian, which shows perfect agreement.

For RTP- and ABP-driven chains, on the other hand,
Eq. (9) is not expected to hold. Surprisingly, however, nu-
merical simulations show that for oscillators in the bulk, the
typical velocity fluctuations are still Gaussian. This is shown
in Fig. 3(a) where the scaled velocity distributions of the
l = N/2th oscillator of the RTP- and ABP-driven chains are
compared with Eq. (28) showing an excellent agreement.
Nevertheless, the signatures of the underlying non-Gaussian
stationary states become apparent in the velocity fluctuations
of the oscillators near the boundaries. Figure 3(b) shows a
plot of the marginal distribution P(v1) of the left boundary
oscillator—the obvious non-Gaussian nature of the distribu-
tion is very clear for RTP, while for ABP, the deviation from
the Gaussian form (28) becomes prominent at the tails. For
an AOUP-driven chain the boundary velocity fluctuations are
also Gaussian, as expected.

V. CURRENT FLUCTUATIONS

The NESS of an activity-driven harmonic chain is charac-
terized by the existence of an average energy current flowing
through the system, which can be computed exactly [30].
Instantaneous current at the left and right boundaries J1 and
JN+1 are defined as the rate of work done by left reservoir and
right reservoir on the system, respectively,

J1 = (−γ v1 + f1)v1 and JN+1 = (−γ vN + fN )vN . (29)

The instantaneous energy current flowing from the (l − 1)st
to lth oscillator is given by

Jl = k

2
(vl−1 + vl )(xl−1 − xl ). (30)

The Hamiltonian nature of the bulk dynamics ensures that, in
the stationary state,

〈J1〉 = 〈J2〉 = · · · = 〈Jl〉 = · · · = −〈JN+1〉 = Jact, (31)

where Jact is the average energy current flowing through the
system. It has been shown [30] that the average active current
is given by a Landauer-like formula,

Jact = γ

∫ ∞

−∞

dω

2π
ω2|G1N (ω)|2[g̃(ω, τ1) − g̃(ω, τN )], (32)

where |G1N (ω)|2 denotes the phonon transmission coefficient
and g̃(ω, τ j ) corresponds to the Lorentzian spectra of the
jth active reservoir. The presence of the nontrivial reservoir
spectra makes the activity-driven current different than the
thermally driven scenario, where the average current is given
by

Jtherm = (T1 − TN )
∫ ∞

−∞

dω

2π
ω2|G1N (ω)|2. (33)

Here T1 and TN denote the temperatures of the thermal reser-
voirs attached at the two ends of the chain.

For a thermodynamically large chain of oscillators driven
by active forces satisfying Eq. (3), the average active current
is given by

Jact = m

2γ 2

[
a2

1E (τ1) − a2
NE (τN )

]
, with

E (τ j ) =
τ 2

j k2

(√
1 + 4γ 2

mk − 1

)
+ γ 2

(
1 −

√
1 + 4kτ 2

j

m

)
2τ j

(
τ 2

j k2 − γ 2
) .

(34)

Note that E (τ j ) is nonmonotonic in τ j , and its form does not
depend on the specific active force dynamics. However, Jact

also depends on a j (τ j ) which makes its τ j dependence dif-
ferent for the different models. In particular, for AOUP, aj ∝
1/

√
τ j , which results in an active current which monotonically

decreases as function of τ j , which is illustrated in Fig. 4(a).
On the other hand, for RTP and ABP, a j does not depend
on τ j resulting in a nonmonotonic behavior of Jact indicating
the emergence of a negative differential conductivity. This is
shown in Figs. 4(b) and 4(c) for RTP and ABP, respectively.

More apparent signatures of the specific active force are
expected to be encoded in the higher-order fluctuations of the
instantaneous current, which we investigate next.
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FIG. 4. Plot of the average active current Jact as functions of activity τ1, for (a) AOUP, (b) RTP- and (c) ABP-driven chains for different
values of τN . Symbols corresponds to the data obtained from numerical simulations with N = 64 oscillators and the other parameters are
D1 = DN = 1 for AOUP, A1 = AN = 1 for RTP, DR

1 = DR
N = 1 for ABP, and γ = 1 = k = m. Black solid lines correspond to Eq. (34).

A. Stationary distribution of Jl in the bulk

We start with the stationary distribution of the instanta-
neous current P(Jl ) for the bulk oscillators. From Eq. (30)
we can write

P(Jl ) =
∫

dvl−1dvl dxl−1dxl P(vl−1, vl , xl−1, xl )

× δ

(
Jl − k

2
(vl−1 + vl )(xl−1 − xl )

)
. (35)

First we consider the AOUP-driven chain. The Gaussian na-
ture of the stationary state [see Eq. (9)] in this case implies
that the joint distribution of {vl−1, vl , xl−1, xl} is also a multi-
variate Gaussian,

P(vl−1, vl , xl−1, xl ) = exp
[ − 1

2W T
l 	−1

l Wl
]

√
(2π )4det(	l )

, (36)

where W T
l = (vl−1 vl xl−1 xl ) and 	l is the corresponding

4 × 4 correlation matrix [see Eq. (D16) in Appendix D]. To
compute P(Jl ), it is most convenient to consider its Fourier
transform with respect to Jl which is the moment generating
function,

〈eiμJl 〉 =
∫

dvl−1dvl dxl−1dxl eiμ k
2 (vl−1+vl )(xl−1−xl )

×P(vl−1, vl , xl−1, xl ). (37)

Using Eqs. (36) and (37) and performing the Gaussian
integrals, we get

〈eiμJl 〉 =
[

1

gl

(
μ − i

ul + Jact

gl

)(
μ + i

ul − Jact

gl

)]− 1
2

, (38)

where gl and ul denote stationary correlations, defined as,

ul = k

2

[〈(vl−1 + vl )
2〉〈(xl−1 − xl )

2〉] 1
2 , gl = u2

l − J2
act.

(39)

Here Jact is the average active energy current given in Eq. (34).
The current distribution can be exactly computed by taking

the inverse Fourier transform of Eq. (38) (see Appendix D for
details), which yields

P(Jl ) = 1√
π2gl

e
Jact
gl

Jl K0

(
ul

gl
|Jl |

)
, (40)

where K0(z) is the zeroth-order modified Bessel function of
second kind.

In the thermodynamic limit, gl can be computed explicitly
(see Appendix D) and is given by

gl = k

2

(
1 + 1

m

)
T̂ 2

bulk + T̂bulk

8γ

(
a2

1η1

τ1
+ a2

NηN

τN

)
− J2

act, (41)

where η j = (1 + 4kτ 2
j

m )−1/2 − 1 and T̂bulk is given in Eq. (22).
Figure 5(a) compares the numerically measured P(Jl ) at

l = N/2 with the analytical prediction Eq. (40) and shows
excellent agreement. Interestingly, current distribution is
asymmetric and shows divergence near Jl = 0, despite having
a nonzero mean. In fact, from Eq. (40), using the asymptotic
behavior of K0(z) for z → 0, we get

P(Jl ) = − 1√
π2gl

(
ln

ul

2gl
|Jl | + Eγ

)
+ O(Jl ) (42)

near Jl = 0. Here Eγ � 0.577 216 is Euler’s constant. This
logarithmic divergence is illustrated in Fig. 5(b) for different
values of the activity. On the other hand, P(Jl ) shows asym-
metric exponential decay at the tails.

P(Jl ) �
{

1√
2πulJl

exp
[ Jact Jl −ulJl

gl

]
for Jl � 1

1√−2πulJl
exp

[ Jact Jl +ulJl
gl

]
for Jl 	 −1.

(43)

FIG. 5. (a) Plot of the instantaneous bulk current distribution
P(Jl ) for the AOUP-driven chain with τN = 1.50 and different val-
ues of τ1. Black solid lines correspond to the analytical prediction
Eq. (40) and the red dashed line corresponds to the exponential
decay predicted in Eq. (43). (b) Plot of P(Jl ) near Jl = 0. Black
solid lines correspond to Eq. (42). For both panels (a) and (b), the
symbols correspond to numerical simulations performed on a chain
of N = 512 with m = D1 = D2 = γ = k = 1.
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FIG. 6. (a) Plot of the distribution of the scaled bulk instanta-
neous current Jl/a2

1 for RTP-driven (open symbols), and ABP-driven
(filled symbols) chains for τN = 1.50 and different values of τ1.
Black solid lines correspond to Eq. (40). (b) Plot of the same data
as in panel (a) zoomed near the origin. The black solid lines here
correspond to the logarithmic behavior predicted by Eq. (42). The
simulations are performed on a chain of N = 512 oscillators with
A1 = AN = 1 and DR

1 = DR
N = 1 for ABP; m = γ = 1 = k here.

It should be mentioned here, that form of the distribu-
tion (40) is the same as those obtained previously in the
context of time-integrated heat current fluctuations of Brow-
nian particles in an active environment [44] and relaxation of
harmonic oscillators subjected to a temperature quench [45].

For RTP- and ABP-driven chains, the current distribution
cannot be computed exactly since P(xl , vl ) is not known ex-
plicitly. However, as we have shown in Sec. IV, the velocity
distribution of the bulk oscillators P(vl ) is Gaussian even
for these cases, and one can then expect Eq. (36) to hold
approximately for 1 	 l 	 N . In that case, the bulk current
distribution for ABP and RTP driven chains should also follow
Eq. (40). We investigate the validity of this approximation
by using numerical simulations—Figs. 6(a) and 6(b) compare
the measured instantaneous current distribution for ABP and
RTP drivings with Eq. (40). Indeed, a very good agreement
is observed, including the logarithmic divergence near the
origin, validating our analytical prediction, for all the three
different active drivings.

The higher moments of the bulk current can, in principle,
be calculated from Eq. (40). In particular, the second moment
is given by (see Appendix D 3),〈

J2
l

〉 = 2J2
act + u2

l . (44)

We compare this prediction with numerical simulations in
Fig. 6, which again show very good agreement, even for ABP-
and RTP-driven chains.

B. Instantaneous current distribution at boundary

The signatures of activity become apparent in the current
fluctuation near the boundary. Using the definition of the
boundary current J1 given in Eq. (29), the corresponding
stationary distribution can be written as

P(J1) =
∫

dv1df1 δ[J1 − (−γ v1 + f1)v1]P(v1, f1). (45)

For an AOUP-driven chain, we can again use the Gaussian
nature of the driving force to write

P(v1, f1) = exp
[− 1

2W T
1 	−1

1 W1
]

√
(2π )2det(	1)

, (46)

where W T
1 = (v1 f1) and 	1 is the corresponding correlation

matrix (see Appendix D 1). To obtain P(J1), we proceed in the
same manner as in Sec. V A and first compute the moment-
generating function,

〈eiμJ1〉 =
∫

dv1df1eiμ(−γ v1+ f1 )v1P(v1, f1). (47)

Performing the Gaussian integrals, we arrive at an expression
which is very similar to the moment-generating function of
the bulk current,

〈eiμJ1〉 =
[

1

g1

(
μ − i

u1 + Jact

g1

)(
μ + i

u1 − Jact

g1

)]− 1
2

,

(48)

where

u1 =
[(

D1

τ1
− 2γ Jact − γ 2T̂1

)
T̂1

] 1
2

, g1 = u2
1 − J2

act, (49)

Once again, we can compute the inverse Fourier transform
exactly ](see detail in Appendix D) which yields an explicit
form for the boundary current distribution,

P(J1) = 1√
π2g1

e
Jact
g1

J1 K0

(
u1

g1
|J1|

)
. (50)

P(JN+1) can be computed exactly following the same proce-
dure. Clearly, the shape of boundary current distribution is
qualitatively similar to that at the bulk for the AOUP-driven
chain. In Fig. 7(a), numerically measured P(J1) is plotted
along with the analytic curve Eq. (50), which, as expected,
shows an excellent agreement.

For RTP- and ABP-driven chains, however, the dis-
tributions of boundary currents are drastically different.
Figure 7(b) shows P(J1) for RTP-driven chain which has a
monotonically increasing shape and reaches a maximum at
J1 = Jmax

1 , which is independent of τ1 and τN . It also appears
that P(J1) has a semifinite support—it vanishes for J1 > Jmax

1 .
For ABP, on the other hand, the distribution shows a maxi-
mum at J1 = 0 although the finite cutoff at J1 = Jmax

1 is still
present in this case. It is hard to compute P(J1) in these
two cases. However, the existence of the finite cutoff directly
follows from the boundedness of the active force f j for RTP
and ABP. In fact, from the definition of J1 = (−γ v1 + f1)v1,
it is clear that J1 reaches its maximum value for v1 = f max

1 /2γ

where f max
1 denotes the maximum value of the active force.

This in turn leads to

Jmax
1 =

(
f max
1

)2

4γ
= A2

1

4γ
. (51)

This upper cutoff is indicated in Figs. 7(b) and 7(c) with ver-
tical dashed lines, which perfectly agree with the numerically
measured distributions. Using a similar argument, one can
show that the instantaneous current at the right boundary has
a lower cutoff at Jmin

N+1.

VI. CONCLUSIONS

In this work, we study the stationary state properties of
a harmonic chain driven by active reservoirs, which exert
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FIG. 7. Plot of the instantaneous boundary current distribution P(J1) for τN = 1.50 and different values of τ1 for (a) AOUP-, (b) RTP-, and
(c) ABP-driven chains. The symbols correspond to the data obtained from numerical simulations performed on a chain of N = 512 oscillators
with D1 = DN = 1 for AOUP, A1 = AN = 1 for RTP, and DR

1 = DR
N for ABP. The other parameters are γ = k = m = 1. In panel (a), the black

solid line corresponds Eq. (50). In panels (b) and (c) the dashed lines indicate the upper bound Jmax
1 , see Eq. (51).

exponentially correlated stochastic force on the boundary os-
cillators. Considering three different dynamics of the active
force, namely, the active Ornstein-Uhlenbeck process, run-
and-tumble process, and active Brownian process, we show
that the typical stationary state behavior of the bulk oscillators
does not depend on the specific driving. In fact, the bulk
kinetic temperature, potential temperature, local velocity, and
instantaneous current distributions which we compute analyti-
cally, all show the same qualitative features irrespective of the
specific form of activity driving. Surprisingly, in spite of the
inherently nonequilibrium nature of the driving, the velocity
distribution of the oscillators at the bulk is Gaussian for all
the three different drivings. The shape of the bulk current
distributions also turns out to be universal, with a logarithmic
divergence near the origin and asymmetric exponential tails.
Moreover, the bulk kinetic temperature turns out to be the
same as the bulk potential temperature which indicates an
equipartition of energy in the bulk of the system. On the other
hand, the behavior of the oscillators near the boundaries bear
clear signatures of the specific active driving. In fact, unlike
the bulk current, the current at the boundary turns out to have
a semifinite bound for RTP- and ABP-driven chains, which
we also compute analytically.

This work makes a significant step towards the understand-
ing of the activity-driven transport. It would be interesting
to study the dynamical behavior of the activity-driven chain,
in particular, the relaxation to the stationary state and how
it differs from the thermally driven scenario. Another rele-
vant question is how does the NESS change when the active
reservoirs have more than one timescale [39,46]? It is also
worthwhile to ask how the stationary state behavior changes
if the reservoirs are modeled by an extended active particle
chain similar to Refs. [47,48].
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APPENDIX A: MATRIX FORMULATION AND GREEN’S
FUNCTION

The Langevin equations (1) can be solved using a matrix
Green’s function method [6]. For the sake of completeness we
provide the detailed solution in this section. It is convenient to
recast Eqs. (1) as

MẌ = −�X (t ) − �Ẋ (t ) + F (t ), (A1)

where X T = (x1 x2 . . . xN ) is the displacement vector; M and
� are N-dimensional matrices with Mi j = mδi j and �i j =
γ (δi1δ j1 + δiNδ jN ) and F (t ) is an N-dimensional column vec-
tor with Fj (t ) = f1(t )δ j1 + fN (t )δ jN ; � is a tridiagonal matrix
with elements

�i j =
{

2k for i = j
−k for j = i ± 1.

(A2)

Equation (A1) can be solved exactly using the Fourier trans-
form,

X̃ (ω) =
∫ ∞

−∞
dteiωt X (t ) and X (t ) =

∫ ∞

−∞

dω

2π
e−iωt X̃ (ω).

(A3)

In the frequency domain, Eq. (A1) reduces to an algebraic
equation,

X̃ (ω) = G(ω)F̃ (ω), (A4)

where G(ω) is the Green’s function matrix defined by

G(ω) = [−Mω2 + � − iω�]−1, (A5)

and F̃ (ω) is the Fourier transform of the active force vector
F (t ). The exponential autocorrelation of F (t ) leads to

〈F̃ (ω)F̃ T (ω′)〉i j

= 2πδ(ω + ω′)[g̃(ω, τ1)δi1δ j1 + g̃(ω, τN )δiNδ jN ], (A6)

where

g̃(ω, τ j ) = 2a2
jτ j

1 + ω2τ 2
j

. (A7)

From Eq. (A5), it is clear that G(ω) is a symmetric matrix
and its complex conjugate G∗(ω) = G(−ω). The elements
of G can be obtained exploiting the tridiagonal structure of
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G−1 [49]. In particular, we will need

Gl1 = kl−1 θN−l

θN
and GlN = kN−l θl−1

θN
, (A8)

where θl satisfies recursion relations

θl = (−mω2 + 2k)θl−1 − k2θl−2, l = 2, 3, . . . , N − 1,

(A9)

θN = (−mω2 + 2k − iωγ )θN−1 − k2θN−2, (A10)

with the boundary conditions θ0 = 1 and θ1 = −mω2 + 2k −
iωγ . The above recursion relations can be explicitly solved to
get

θl = (−k)l−1

sin q
[k sin (l + 1)q − iωγ sin lq] for 2 � l � N − 1,

(A11)

θN = (−k)N

sin q
[a(q) sin Nq + b(q) cos Nq], (A12)

where ω and q are related through

cos q =
(

1 − mω2

2k

)
and ω = ωc sin

q

2
, (A13)

with ωc = 2
√

k/m. Moreover, for notational simplicity, we
have introduced

a(q) = −2iγω

k
+ cos q

(
1 − γ 2ω2

k2

)
,

and b(q) = sin q

(
1 + γ 2ω2

k2

)
. (A14)

Note that, for |ω| < ωc i.e., for frequencies within the charac-
teristic band of the harmonic chain, q ∈ [−π, π ], whereas for
|ω| > ωc, q becomes complex.

APPENDIX B: VELOCITY CORRELATIONS

In this section, we provide the details of the computation
of the nearest-neighbor velocity correlations 〈vl−1(t )vl (t )〉 =
〈Ẋ (t )Ẋ T (t )〉l−1,l in the steady state. To this end, using (A3)
and (A4), we first note that

Ẋ (t ) =
∫ ∞

−∞

dω

2π
(−iω)e−iωt G(ω)F̃ (ω). (B1)

Using the above equation along with Eq. (A6) we get

〈vl−1(t )vl (t )〉 =
∫ ∞

−∞

dω

2π
ω2[Gl−1,1G∗

1l g̃(ω, τ1)

+ Gl−1,N G∗
Nl g̃(ω, τN )]. (B2)

Thus it is clear that there are two separate contributions from
the left and right reservoirs. In the following we explicitly
compute the contribution coming from the left reservoir,

Vl (τ1) =
∫

dω

2π
ω2Gl−1,1G∗

1,l g̃(ω, τ1), (B3)

and the contribution from the right reservoir can be computed
similarly. Using Eq. (A8), we have

Vl (τ1) = (−k)2l−3
∫ ∞

−∞

dω

2π
ω2 θN−l+1θ

∗
N−l

|θN |2 g̃(ω, τ1). (B4)

Clearly, Vl (τ1) will have nonzero contributions from only the
even components of the integrand. Hence, using explicit forms
of θl and θn from Eqs. (A11) and (A12) and keeping only the
terms which are even in ω, we get

Vl (τ1) = 1

πk4

∫ ∞

0
dω

ω2 sin (Nq − lq) sin (Nq − lq + q)

|a(q) sin Nq + b(q) cos Nq|2
× (k2 + ω2γ 2)g̃(ω, τ1). (B5)

Finally, since we are interested in calculating the correlation
function in the bulk, we take l = N/2 + ε and take the limit
ε 	 N to get

Vl (τ1) = 1

2πk4

∫ ∞

0
dω

ω2{cos q − cos [(N + 2ε + 1)q]}
|a(q) sin Nq + b(q) cos Nq|2

× (k2 + ω2γ 2)g̃(ω, τ1). (B6)

At this point, it is important to remember that, for ω > ωc,
q becomes complex. Thus, in the large-N limit, the integrand
vanishes exponentially as e−2Nq̄ in the region ω > ωc (where
q̄ is real). Therefore, the range of the integration reduces to
0 � ω � ωc, or in terms of q, 0 � q � π . Moreover, in the
thermodynamic limit, sin Nq and cos Nq are highly oscillatory
and the resulting integrand can be well approximated by aver-
aging over the fast oscillations in x = Nq [10]. This averaging
can be performed using the following identities:

1

2π

∫ 2π

0

dx

(c1 sin x+ d cos x)2+ c2
2 sin x2

= − 1

c2d
for c2 < 0,

1

2π

∫ 2π

0

dx cos x

(c1 sin x + d cos x)2 + c2
2 sin x2

= 0. (B7)

Identifying c1, c2, and d as the real and imaginary parts of
a(q) and the real part of b(q), respectively [see Eq. (A14)],
we get

Vl (τ1) = 1

4πkγ

∫ ∞

0
dq ω

∣∣∣∣dω

dq

∣∣∣∣ cot q g̃(ω, τ1). (B8)

The above integral can be performed exactly by using the
explicit form of ω(q) and g(ω, τ1) from Eqs. (A13) and (A7).
Similarly, the contribution from the right reservoir Vl (τN ) can
also be calculated. Combining these results, we finally get

〈vl−1vl〉 = T̂bulk

m
+ 1

4kγ

(
a2

1η1

τ1
+ a2

NηN

τN

)
, (B9)

where η j = (1 + 4kτ 2
j

m )−1/2 − 1.

APPENDIX C: POTENTIAL-ENERGY PROFILE

In this section, we explicitly compute the average potential
energy of the lth oscillator in the NESS, defined by Eq. (23).
As mentioned in Eq. (25), the average potential energy of
the l-th oscillator can be written as k

4

∑
j=1,N U j (l, τ j ), where
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U j (l, τ j ) denotes the contribution from the jth reservoir. Us-
ing Eq. (24) in the definition (23), we have, for l �= 1, N ,

U j (l, τ j ) =
∫ ∞

−∞

dω

2π
[2|Gl j |2 + |Gl−1, j |2 + |Gl+1, j |2

− 2Gl jG
∗
j,l−1 − 2Gl jG

∗
j,l+1]g̃(ω, τ1), (C1)

where j = 1, N . On the other hand, for the boundary oscillator
l = 1, we have,

U j (1, τ j ) =
∫ ∞

−∞

dω

2π
[3|G1 j |2 + |G2 j |2 − 2G1 jG

∗
j 2]g̃(ω, τ1).

(C2)

Note that the Fourier transform of the two-point autocorrela-
tion function of colored noise g̃(ω) is an even function of ω,
therefore in Eqs. (C1) and (C2), we can neglect the terms with
odd power of ω as they would give vanishing contribution. In
the following, we compute the nonzero contributions explic-
itly, for a thermodynamically large chain.

1. Potential energy for the bulk oscillators (1 � l � N)

We start with the computation of Ul for the oscillators at the
bulk, i.e., for 1 	 l 	 N . Using Eqs. (A8), (A11), and (A12)
in Eq. (C1) we have,

U1(l, τ1) = 1

πk4

∫ ∞

0
dω

I1(l, ω)g̃(ω, τ1)

|a(q) sin Nq + b(q) cos Nq|2 ,

(C3)

where we have kept only the even component of the integrand
in (C1), with

I1(l, ω) = 4 sin2 q

2
[γ 2ω2 cos q cos (2Nq − 2lq)

+ (k2 + γ 2ω2) + k2 cos q cos (2Nq − 2lq + 2q)].

(C4)

for l �= 1, N . Similarly, the contribution from the right reser-
voir can be expressed as

UN (l, τN ) = 1

πk4

∫ ∞

0
dω

IN (l, ω)g̃(ω, τN )

|a(q) sin Nq + b(q) cos Nq|2 ,

(C5)

where IN (l, ω) = I1(N − l + 1, ω).
It is easy to see that, in the thermodynamic limit, the

integrand vanishes in the region ω > ωc [see the discussion
after Eq. (B6)]. Moreover, averaging over the fast oscillations
in this limit using the identities (B7), we get

U1(l, τ1) = 1

πkγ

∫ π

0
dq

∣∣∣∣dω

dq

∣∣∣∣ (1 − cos q)

ω sin q
g̃(ω, τ1).

Using the ω-q relation (A13) and the explicit form of g̃(ω, τ )
from Eq. (A7), we arrive at

U1(l, τ1) = mτ1a2
1

kγπ

∫ π

0

dq

m + 2kτ 2
1 (1 − cos q)

. (C6)

This integral can be computed exactly and yields

U1(l, τ1) = a2
1τ1

kγ

√
1 + 4kτ 2

1
m

. (C7)

The contribution from the right reservoir can be similarly
obtained and turns out to be of the same form; the final
expression of the average potential energy for the oscillators
at the bulk is then given by

Ul = a2
1τ1

4γ

√
1 + 4kτ 2

1
m

+ a2
2τN

4γ

√
1 + 4kτ 2

N
m

, (C8)

in the thermodynamic limit.

2. Potential energy for the oscillator near the left boundary

The average potential energy of the left boundary oscillator
U1 has two contributions U1(1, τ1) and UN (1, τN ) from the
reservoirs at the two ends, given by Eq. (C2). Substituting, the
explicit forms of Glm from Eq. (A8) and (A12), we get the
contribution from the left reservoir,

U1(1, τ1) = 1

πk4

∫ ∞

0
dω

I1(1, ω)g̃(ω, τ1)

|a(q) sin Nq + b(q) cos Nq|2 ,

(C9)

with

I1(1, ω)

= γ 2ω2[(1 − cos q) cos (2Nq − 3q) − cos (2Nq − 2q)]

+ k2[(1 − cos q) cos (2Nq − q) − cos (2Nq)]

+ (k2 + γ 2ω2)(2 − cos q), (C10)

where, as before, we have kept only the terms which are
even in ω. Similarly, we have the contribution from the right
reservoir,

UN (1, τN ) = 1

πk4

∫ ∞

0
dω

IN (1, ω)g̃(ω, τN )

|a(q) sin Nq + b(q) cos Nq|2 ,

(C11)

where

IN (1, ω) = (k2 + γ 2ω2)(2 − cos q) + k2[(1 − cos q) cos 3q

− cos 2q] + γ 2ω2[(1 − cos q) cos q − 1]. (C12)

Once again, in the thermodynamic limit N → ∞, the inte-
grand vanishes for ω > ωc and shows fast oscillations for
ω < ωc. Averaging over these fast oscillations as before, we
get,

UN (1, τN ) = 1

8πγ k

∫ π

0
dq csc2 (q/2)

[
(2 − cos q)

+ k2[(1 − cos q) cos 3q − cos 2q]

(k2 + γ 2ω2)

+ γ 2ω2[(1 − cos q) cos q − 1]

(k2 + γ 2ω2)

]
g̃(ω, τN ).

(C13)

This integral can be evaluated numerically remembering ω =
ωc sin(q/2) and using g̃(ω, τ j ) from Eq. (A7).

In contrast, the contribution from the left reservoir is
nonzero for the whole domain 0 < ω < ∞. In this case, it is
convenient to consider the contributions from inside the band
(0 � ω � ωc) and outside the band (ω > ωc) separately and
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write,

U1(1, τ1) = Ub
1(1, τ1) + Uo

1(1, τ1). (C14)

The contribution from inside the band is given by

Ub
1(1, τ1) = 1

πk4

∫ ωc

0
dω

I1(1, ω) g̃(ω, τ1)

|a(q) sin Nq + b(q) cos Nq|2 .

(C15)

As before, in the thermodynamic limit, we can average over
the fast oscillations in x = Nq to get

Ub
1(1, τ1)

= 1

πk4

∫ π

0
dq

∣∣∣∣dω

dq

∣∣∣∣
[
γ 2ω2[(1 − cos q)Q(3q) − Q(2q)]

+k2[(1 − cos q)Q(q) − Q(0)]+k3(2− cos q)

2γω sin q

]
g̃(ω, τ1),

(C16)

where

Q(ν) =
∫ 2π

0

dx

2π

cos (2x − ν)

(c1 sin x + d cos x)2 + c2
2 sin x2

= cos ν
(
c2

1 + c2
2 − d2

) − 2c1d sin ν

−c2d
[
c2

1 + (c2 − d )2
] , (C17)

with c2 = Im[a(q)] = − 2γω

k and d = Re[b(q)] = sin q(1 +
γ 2ω2

k2 ).

Outside the band, i.e., for ω > ωc, q becomes complex, and
to compute the corresponding contribution,

Uo
1(1, τ1) = 1

πk4

∫ ∞

ωc

dω
I1(1, ω)g̃(ω, τ1)

|a(q) sin Nq + b(q) cos Nq|2 ,

(C18)

it is convenient to define q = π − iq̄ where q̄ is a real variable
and ω = ωc cosh q̄/2. The integral in Eq. (C18) takes a much
simpler form in terms of q̄,

Uo
1(1, τ1) = ωc

πk4

∫ ∞

0
dq̄

sinh q̄
2 cosh2 q̄

2 e−3q̄

(γ 2ω2e−2q̄ + k2)
g̃(ω, τ1),

(C19)

where we have used Eq. (C10) and the identities

sin nq = (−1)n+1i sinh nq̄, cos nq = (−1)n cosh nq̄,

(C20)

for integer n to average over the fast oscillations in Nq̄.
Finally, the average potential energy of the left boundary
oscillator can be evaluated by combining Eqs. (C13), (C16),
and (C19).

For 1 < l 	 N/2 the average potential energy can be com-
puted following a similar procedure and we quote the final
results here. In this case, the contribution from the right
boundary simplifies to

UN (l, τN ) = 1

2πkγ

∫ π

0
dq

{
1 + cos q

k2 + γ 2ω2
[γ 2ω2 cos (2lq − 2q) + k2 cos (2lq)]

}
g̃(ω, τN ). (C21)

As before, the left reservoir contribution comprises of two
parts—one coming from inside the band,

Ub
1(l, τ1) = 1

2πk4

∫ π

0
dq

{
k3

γ
+ ω sin 2q[γ 2ω2Q(2lq)

+ k2Q(2lq − 2q)]

}
g̃(ω, τ1), (C22)

and the other coming from outside the band,

Uo
1(l, τ1) = − 1

2πk4

∫ ∞

0
dq̄

ω sinh 2q̄ e−2l q̄

γ 2ω2e−2q̄ + k2
g̃(ω, τ1). (C23)

which can be computed numerically.

3. Ul near the right boundary

The average potential energy of the oscillators near the
right boundary can be evaluated by exploiting the symme-
try of the system. To this end, it is convenient to define
� = N − l + 1, where � = 1, 2, 3 · · · 	 N . In this notation
UN−�+1 corresponds to the potential-energy profile near the
right boundary and can be expressed as

UN−�+1 = k

4
[UN (�, τ1) + U1(�, τN )]. (C24)

Here UN (�, τ1) and U1(�, τN ) denotes the contribution from
the left and right reservoirs and can be evaluated using
Eqs. (C13)–(C23).

APPENDIX D: INSTANTANEOUS CURRENT
DISTRIBUTION FOR ACTIVE ORNSTEIN

UHLENBECK PROCESS

In this section we provide the detailed derivation of the
instantaneous current distribution for the AOUP-driven chain
quoted in Eqs. (40) and (50).

1. Distribution of the boundary current

Let us start with the left boundary current J1 which is
defined as

J1(t ) = (−γ v1 + f1)v1. (D1)

The Gaussian nature of the stationary state for AOUP implies
that the joint distribution of {v1, f1} is a bivariate Gaussian,

P(v1, f1) = exp
[− 1

2W T
1 	−1

1 W1
]

√
(2π )2det(	1)

, (D2)
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where W T
1 = (v1 f1) and the correlation matrix

	1 =
[ 〈

v2
1

〉 〈v1 f1〉
〈v1 f1〉

〈
f 2
1

〉
]

(D3)

is positive definite. Using Eq. (D1) the distribution of J1 can
be expressed as

P(J1) =
∫

dv1df1δ[J1 − (−γ v1 + f1)v1]P(v1, f1). (D4)

The corresponding moment generating function, which is
nothing but the Fourier transform of P(J1), is given by,

〈eiμJ1〉 =
∫

dv1df1P(v1, f1)eiμ(−γ v1+ f1 )v1 . (D5)

where 〈 f 2
1 〉 = D1/τ1 in the stationary state.

The Gaussian integrals over v1 and f1 can be evaluated
exactly using Eq. (D2), yielding,

〈eiμJ1〉 =
√

ab[(μ − ia)(μ + ib)]−
1
2 ,

with a = u1 + Jact

g1
and b = u1 − Jact

g1
. (D6)

Here u1 and g1 correspond to certain stationary state correla-
tions, given by

u1 =
[(

D1

τ1
− 2γ Jact − γ 2T̂1

)
T̂1

] 1
2

,

g1 = det(	1) = u2
1 − J2

act, (D7)

where T̂1 = 〈v2
1〉 is the kinetic temperature of the oscillator at

the left boundary which has been calculated in Ref. [30].
The current distribution can be obtained by taking the

inverse Fourier transform of the moment-generating func-
tion (D6),

P(J1) =
√

a b
∫ ∞

−∞

dμ

2π

e−iμJ1

√
(μ − ia)(μ + ib)

. (D8)

To evaluate this complex integral explicitly we need to choose
a convenient contour. a and b are real positive quantities
[Eq. (D7)]. Hence the integrand in Eq. (D8) has two branch
points at μ = ia and μ = −ib. We choose the corresponding
branch cuts as shown in Fig. 8. Now, for J1 < 0 one can draw
a closed contour ABCDEFA which has no singularities inside
and hence,

IA→B + IB→C + IC→D + ID→E + IE→F + IF→A = 0, (D9)

where Iα→β denotes the integral (D8) evaluated along the path
α → β.

Clearly, for J1 < 0, the contribution from IB→C and IF→A

vanish when the radius of the arcs R → ∞. Similarly ID→E →
0 when radius of the circular arc DE vanishes. Hence, from
Eq. (D9) we have,

P(J1) = IA→B = −[IC→D + IE→F ]. (D10)

To evaluate IC→D and IE→F we note that, along the segments
CD and EF , μ = ia + re

iπ
2 and μ = ia + re− i3π

2 , respectively,
where r ∈ [0,∞). Substituting these in Eq. (D8) and using

FIG. 8. A schematic representation of the contours used to eval-
uate the complex integral in Eq. (D8).

Eq. (D10), we finally get, for J1 < 0,

P(J1) =
√

a b

π
eaJ1

∫ ∞

0

dr e rJ1

√
r(r + a + b)

=
√

a b

π
e

a−b
2 J1 K0

(
−a + b

2
J1

)
, (D11)

where K0(z) is the modified Bessel function of second kind.
The distribution for J1 > 0 can be computed similarly by
choosing the contours ABGHIJA. In this case, we get

P(J1) =
√

a b

π
e

a−b
2 J1 K0

(
a + b

2
J1

)
. (D12)

Using the explicit forms of a and b and combining Eqs. (D11)
and (D12) we get the complete boundary current distribution
which is quoted in Eq. (50).

2. Distribution of the bulk current

The instantaneous current flowing from the (l − 1)st to lth
oscillator is defined as

Jl = k

2
(vl−1 + vl )(xl−1 − xl ). (D13)

The distribution P(Jl ) of the instantaneous current at the bulk
is then given by

P(Jl ) =
∫

dvl−1 dvl dxl−1 dxl

× δ

[
Jl − k

2
(vl−1 + vl )(xl−1 − xl )

]
×P(vl−1, vl , xl−1, xl ). (D14)

Here, P(vl−1, vl , xl−1, xl ) denotes the joint position and
velocity distribution of the (l − 1)th and lth oscillators, which
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FIG. 9. Plot of the second moment of the bulk energy current J2
l as functions of the activity τ1, for (a) AOUP-, (b) RTP-, and (c) ABP-driven

chains, for different values of τN . The symbols correspond to the data obtained from numerical simulations performed on a chain of N = 512
oscillators with D1 = DN = 1 for AOUP, A1 = AN = 1 for RTP, DR

1 = DR
N = 1 for ABP and γ = k = m = 1. Black solid lines corresponds to

the analytical prediction Eq. (D21).

is a multivariate Gaussian

P(vl−1, vl , xl−1, xl ) = exp
[− 1

2W T
l 	−1

l Wl
]

√
(2π )4det(	l )

,

with W T
l = (vl−1 vl xl−1 xl ) (D15)

for the AOUP-driven harmonic chain. The correlation matrix
	l is given by

	l =

⎡
⎢⎢⎣

〈v2
l−1〉 〈vl−1vl〉 0 −Jact/k

〈vl−1vl〉 〈v2
l 〉 Jact/k 0

0 Jact/k 〈x2
l−1〉 〈xl−1xl〉

−Jact/k 0 〈xl−1xl〉 〈x2
l 〉

⎤
⎥⎥⎦, (D16)

where we have already used the fact that 〈vl xl〉 = 0 and
〈vl−1xl〉 = −〈vl xl−1〉 = − Jact

k .
We proceed in the same manner as in Sec. D 1 and compute

the moment-generating function

〈eiμJl 〉 =
∫

dvl−1 dvl dxl−1 dxl eiμ k
2 (vl−1+vl )(xl−1−xl )

×P(vl−1, vl , xl−1, xl )

=
√

ab[(μ − ia)(μ + ib)]−
1
2 , (D17)

where

a = ul + Jact

gl
and b = ul − Jact

gl
, (D18)

with

ul = k

2
[〈(vl−1 + vl )

2〉〈(xl−1 − xl )
2〉] 1

2 , gl = u2
l − J2

act.

(D19)

Clearly, the moment-generating function of the bulk cur-
rent has the same form as that of the boundary current
[see Eq. (D6)]. Consequently, the inverse Fourier transform
of (D17) is also of the same form as Eq. (D12),

P(Jl ) =
√

ab

π
e

a−b
2 Jl K0

(
a + b

2
|Jl |

)
, (D20)

where a and b are given by Eqs. (D18) and (D19).
For a thermodynamically large chain, gl as well as ul can

be evaluated exactly. In this limit, k〈(xl−1 − xl )2〉 = T̂bulk and
〈v2

l−1〉 = 〈v2
l 〉 = T̂bulk; see Appendix B. Using these results

along with Eq. (B9) in Eq. (D19), we get a general expression
for gl , quoted in Eq. (41), which is valid irrespective of the
specific active dynamics.

3. Second moment of energy current

Higher moments of the active current can, in principle, be
computed from Eq. (38) or (40) for the AOUP-driven chain.

FIG. 10. Plot of the second moment of the boundary current J2
1 as functions of the activity τ1 for (a) AOUP-, (b) RTP-, and (c) ABP-driven

chains, for different values of τN . The symbols correspond to the data obtained from numerical simulations performed on a chain of N = 512
oscillators with D1 = DN = 1 for AOUP, A1 = AN = 1 for RTP, DR

1 = DR
N = 1 for ABP, and γ = k = m = 1. Black solid lines in panel

(a) correspond to the analytical prediction (D22).
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In this case, the second moments of the bulk and boundary
currents, respectively, are given by

〈
J2

l

〉 = − d2

dμ2
〈eiμJl 〉

∣∣∣∣
μ=0

= 2 J2
act + u2

l , (D21)

〈
J2

1

〉 = − d2

dμ2
〈eiμJ1〉

∣∣∣∣
μ=0

= 2 J2
act + u2

1. (D22)

Figures 9(a) and 10(a) show plots of 〈J2
l 〉 and 〈J2

1〉 as functions
of τ1, for different values of τN for the AOUP-driven chain.

For RTP- and ABP-driven chains, as discussed in Sec. V A,
Eq. (40) describes the fluctuations of the bulk current

reasonably well. Hence, we expect Eq. (D21) also to hold in
these cases, which indeed is the case, as shown in Figs. 9(b)
and 9(c). The boundary current distributions, for RTP and
ABP, however, are drastically different (see Sec. V B) and
consequently, Eq. (D22) is not expected to describe the vari-
ance of the boundary currents in these scenarios. Hence
we take recourse to numerical simulations in this case—
Figs. 10(b) and 10(c) show plots of numerically measured
〈J2

1〉 for the RTP and ABP-driven chains, respectively. It turns
out that, similar to the behavior of the average current, the
second moment also shows nonmonotonic behavior in these
cases.
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