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Coarsening, condensates, and extremes in aggregation-fragmentation models
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We use extreme value statistics to study the dynamics of coarsening in aggregation-fragmentation models
which form condensates in the steady state. The dynamics is dominated by the formation of local condensates
on a coarsening length scale which grows in time in both the zero range process and conserved mass aggregation
model. The local condensate mass distribution exhibits scaling, which implies anomalously large fluctuations,
with mean and standard deviation both proportional to the coarsening length. Remarkably, the state of the system
during coarsening is governed not by the steady state, but rather a preasymptotic state in which the condensate
mass fluctuates strongly.
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I. INTRODUCTION

When a system with a propensity to order is prepared in a
far-from-equilibrium disordered state, it takes a long time for
order to get established. The process by which this happens,
namely, phase ordering or coarsening, is characterized by
well-defined laws of broad validity [1]. These laws apply in
a wide variety of systems, ranging from magnets and alloys
on the one hand [1,2], to nonequilibrium driven systems with
well-ordered or fluctuation-dominated ordered states on the
other [3,4]. In all these systems there is an overarching simi-
larity: order sets in over a coarsening length scale which grows
with time. Physically, microscopic degrees of freedom with
separations smaller than this scale are strongly correlated,
while for larger separations correlations are weak.

A natural expectation is that up to this scale, the state of
the coarsening system should resemble the ordered steady
state. Indeed this sort of steady-state correspondence is a
central tenet of coarsening theory and holds in the coars-
ening regime in the systems mentioned above. Surprisingly
though, as we show below, it fails in a qualitative way in an
important class of systems which evolve through aggregation-
fragmentation dynamics. This unusual failure is linked to
the onset of extremely large fluctuations. These have simple
scaling properties in the full coarsening regime, distinctly
different from those in steady state; ultimately they can be
traced to the occurrence of a preasymptotic state with large
fluctuations. The result is robust with respect to different types
of dynamics and holds for systems with both equilibrium and
nonequilibrium steady states.

In this article, we study coarsening in a class of mass
transport models in which the kinetic moves involve diffusion,
aggregation, and fragmentation. Such generic models have
been used to caricature a broad range of systems including
granular systems [5,6], gelation [7], transport in organelles in
the cell [8], traffic flow [9,10], and wealth accumulation [11].
An interesting feature that appears in several such models is
the formation of a condensate: in the steady state, a finite

fraction of the total mass in the system resides on one or few
condensate site(s) [12–16]. Our study reveals that in an infinite
system, there is indeed a characteristic length L(t ) which
grows indefinitely with time and governs coarsening [17].
However, the locally ordered state of the system on length
scales up to and including L(t ) is very different in character
from the ordered steady state reached at large times in a finite
system. This is demonstrated below for two mass transport
models—the zero range process (ZRP) and the conserved
mass aggregation model (CMAM)—which differ in allowed
kinetic moves, but share the common feature of condensate
formation. A key point is that there are extremely large fluctu-
ations of the mass contained in different regions of size L(t );
the mean and standard deviation are both proportional to L(t ),
quite unlike the steady state.

The statistics of extreme values [18] gives direct in-
formation about the condensate mass, and extreme value
distributions (EVDs) have been used successfully to study
the condensate mass in the steady state of the zero range
process [14]. Here we show that EVDs are extremely useful
probes of condensate formation during coarsening as well.
In the initial completely disordered state, masses at different
sites are uncorrelated, and the EVD follows the well-known
Gumbel form [18]. On finally reaching the steady state at
very large times in a finite system, overall mass conservation
induces correlation and the EVD is quite different [14]. By
monitoring the time evolution of the EVD in a region of size
L(t ), we show that it assumes a simple scaling form in the
coarsening regime. However, this form is in conflict with the
result in steady state. By studying the evolution of the global
maximum mass in both models, we show the occurrence of a
preasymptotic regime which governs the state in the coarsen-
ing system.

The article is structured as follows: In Sec. II, we introduce
the two models and review their steady states. In Sec. III, we
show numerical results for the correlation functions during
coarsening and give evidence for a growing length scale L(t ).
Using the knowledge of L(t ) above, in Sec. IV we obtain the
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FIG. 1. Illustrating ZRP and CMAM moves in the left and right
panels, respectively. The mapping to exclusion models is depicted in
the lower part of each panel.

probability distribution of the maximum mass in subsystems
of size L(t ), and demonstrate new scaling laws emerging
during coarsening. In Sec. V, we investigate the time evolution
of the global maximum mass in both models, and find corrob-
oration of the anomalous O[L(t )] fluctuations from Sec. IV
earlier. We also discuss the mechanism for these anomalous
fluctuations and show that they are linked to fluctuations in a
preasymptotic state. In Sec. VI, we explore the mapping to ex-
clusion models and study the correlations during coarsening.
Finally we conclude in Sec. VII.

II. MODELS: DEFINITIONS AND STEADY STATES

We work with two well-studied models, namely, the
ZRP [12,19] and the CMAM [15,20] on a one-dimensional
(1D) lattice ring with L sites. Site i contains mi particles, each
with unit mass, with mi � 0. The allowed moves conserve the
total mass M. The system is specified by the overall density
ρ = M/L and the transition rates in Eqs. (1) and (2), illus-
trated in Fig. 1.

The stochastic move in the asymmetric ZRP consists of
chipping, namely, the transfer of a single particle from an
occupied site to its right neighbor, at a rate which depends
on the occupancy, viz., u(mi ) = 1 + b

mi
:

(mi, mi+1)
u(mi )−−−→ (mi − 1, mi+1 + 1). (1)

In the CMAM, in addition to chipping at rate w, the entire
mass at site i may be transferred to one of its neighboring
sites i ± 1 at rate D:

(mi, mi±1)
w−→ (mi − 1, mi±1 + 1),

(mi, mi±1)
D−→ (0, mi±1 + mi ). (2)

In both models, the transferred mass coalesces with the mass
already present on that site. Below we discuss some properties
of the two models in the steady state.

A. Steady state

1. ZRP

At large times ∼Lz with z = 2, the ZRP with asymmet-
ric hopping reaches a nonequilibrium steady state carrying
a finite current [21,22]. With symmetric hopping one finds
z = 3 [22]; in this case, detailed balance holds and we have an
equilibrium state. The steady-state measure is identical in both
cases [12,19]. For b > 2 there is a phase transition at density
ρ > ρc = 1/(b-2) [12]. The probability p(m) that the mass at

FIG. 2. Scaled distribution of the condensate mass in CMAM in
steady state. M0(L) = 126, 247, 488 for L = 200, 400, 800, respec-
tively. Inset: Unscaled distributions.

a given site is m falls exponentially for large m if ρ < ρc, and
as m−b at ρ = ρc. For ρ > ρc, a condensate with mean mass
(ρ − ρc)L forms at one site and coexists with a background
critical fluid of density ρc. Since the condensate mass Mcond

is the largest in the system, its probability distribution can be
found as an EVD [14,18,23]. The result reflects correlations
between {mi} arising from the conservation of total mass [13]:

Pss(Mcond ) = 1

Lδ
Vδ

(
Mcond − (ρ − ρc)L

Lδ

)
, (3)

where δ = 1/(b − 1) for 2 < b < 3 and δ = 1/2 for b > 3.
In the latter case the scaling function is a Gaussian, whereas
for 2 < b < 3, Vδ (y) is highly non-Gaussian [13,14]. The vari-
ance of the condensate mass σ 2

cond = 〈M2
cond〉 − 〈Mcond〉2 ∼

O(L2/(b−1)) for 2 < b < 3 and O(L) for b > 3 [13,14].

2. CMAM

In the CMAM with symmetric hopping, detailed balance
does not hold and the steady state is far from equilibrium.
Although the steady-state measure is not known exactly, two-
point correlations are known to factorize [20]. The system
undergoes a phase transition at density ρc = √

1 + w/D–1.
For ρ < ρc, the probability P(m) falls exponentially for large
m, and as m−5/2 for ρ = ρc. For ρ > ρc, a condensate with
an average of (ρ − ρc)L particles forms [20]. Unlike the ZRP,
the condensate in the CMAM is mobile and diffuses in space.

The EVD in steady state Pss(Mcond ) is not known analyt-
ically. From our numerical study we find that it is a scaling
function of [Mcond − M0(L)]/Lβ with β � 0.69, implying
that the mean and standard deviation grow as Lβ . The scaling
function has a non-Gaussian form (Fig. 2). Here M0(L) ≈
(ρ − ρc)L is the mode of the distribution. Note that there
is no condensate formation in the CMAM with asymmetric
hopping [24].

In the rest of the article we have used b = 3.5 in ZRP and
w = D = 1 in CMAM.

III. CORRELATIONS DURING COARSENING

An important manifestation of the growing length scale
L(t ) in a coarsening system with density ρ > ρc is that the
two-point correlation function G(r, t ) ≡ 〈mi(t ) mi+r (t )〉 − ρ2

is a function of the scaled separation [1],

G(r, t ) = g[r/L(t )], L(t ) ∝ t1/z. (4)
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FIG. 3. During coarsening, G(r, t ) is a function of the scaled
separation r/L(t ) with L(t ) = t1/2. Top panel: asymmetric ZRP
(b = 3.5, ρc = 2/3, ρ = 2), with L(t ) = 256, 400, 613, 800. Bot-
tom panel: CMAM (w = 1, D = 1, ρc = √

2 − 1, ρ = 1) with
L(t ) = 120, 200, 300, 500. Insets: Unscaled plots. The system size
L = 10 000 for both models.

Figure 3 shows scaling plots from numerical simulations of
the asymmetric ZRP and CMAM using L(t ) = √

t . The scal-
ing form Eq. (4) holds for both models, with z = 2. This value
agrees with the earlier determination of z for the asymmetric
ZRP [12,21,22].

For r = 0, G(0, t ) is large and positive ∼O[L(t )2] whereas
for r �= 0, G(r, t ) is negative. This implies that the differences
δmi = (mi − ρ) and δmi+r = (mi+r − ρ) are anticorrelated,
which is consistent with a simple picture: In a region of size
L(t ), local condensates which hold a significant fraction of
the mass [∼L(t )] within the region can form at one site (or
few sites). At such sites, δmi is large and positive. However,
δmi is typically negative on the remaining sites which hold
the “coarsening critical fluid,” which is the analog of the
critical background in steady state. As t increases, the pattern
is repeated on a larger scale L(t ), leading to the observed
property of scaling.

IV. DISTRIBUTION OF LOCAL EXTREMUM MASS

Let us investigate the formation of local condensates within
regions of size L(t ). The scaled correlation plots in Fig. 3 give
evidence of a growing length scale L(t ) = kt1/2 for both the
asymmetric ZRP and the CMAM. In our numerical simula-
tion, we divide the full system of size L into nonoverlapping

FIG. 4. The probability distribution of the maxima in boxes
of size L(t ), P(m∗, t ) in the two models. Top panel: Asymmet-
ric ZRP; L = 20 000, L(t ) = 400, 800, 1200, 1500, 2000. Bottom
panel: CMAM; L = 20 000,L(t ) = 200, 600, 1200, 1600, 2000.

boxes of size L(t ) with k = 1, ensuring that L(t )  L, to
avoid finite size effects. At t = 0, we place M = ρ L particles
randomly on the L sites, with ρ > ρc. The system is evolved
using random sequential update. At time t , there is a set of
L/L(t ) boxes, and we determine the largest occupancy m∗
in each box, i.e., m∗ = max{mi} with i = 1, 2, . . . ,L(t ). The
probability distribution P(m∗, t ) is built up by sampling every
box at a certain time t , and repeating the procedure with
distinct random initial conditions.

The distribution of local maximum mass P(m∗, t ) at dif-
ferent times is shown in Fig. 4. Note that this is a bimodal
distribution.

In Fig. 5, we find two regimes in P(m∗, t ) exhibiting dif-
ferent scaling behavior with L(t ) on the left and right of the
shaded region m∗ ≈ m∗

×, where m∗
× is a crossover value. This

prompts us to inquire whether the full distribution of the box
maximum is given by a simple additive scaling form,

P(m∗, t ) = cP< + (1 − c)P>

= L(t )−α p<[m∗/L(t )α] + L−1(t )p>[m∗/L(t )].

(5)

P>(m∗, t ) describes the growing condensates within the
L(t ) boxes on coarsening timescales for both the ZRP and
CMAM, i.e.. m∗ > m∗

×. On the other hand, the region de-
scribed by P<(m∗, t ) corresponds to those boxes where there
are no large aggregates, i.e., m∗ < m∗

×. Here, c is the fraction
of the area under the P(m∗) curve within the region (m∗ <

m∗
×). We now discuss the properties of m∗ in the two regimes.
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FIG. 5. Scaled distribution of the largest mass in domains of size
L(t ). Top panel: Asymmetric ZRP; Bottom panel: CMAM. Model
parameter values as in Fig. 3. L(t ) = 200, 600, 1200, 1500, 2000
and system size L = 20 000. Gray Crossover region, (m∗ ≈ m∗

×).
The region (m∗ > m∗

×) describes the condensate. For (m∗ < m∗
×) the

plots describe the coarsening critical fluid. Insets: Scaled plots for
(m∗ < m∗

×); the dashed line is a Fréchet distribution.

A. P>(m∗, t )

For m∗ > m∗
×, Fig. 5 shows that the distribution is a scaling

function of m∗/L(t ),

P(m∗, t ) ∼ 1

L(t )
p>

(
m∗

L(t )

)
(m∗ > m∗

×). (6)

The function p>(u) is close to Gaussian for ZRP, while it falls
exponentially for large u for CMAM.

For masses greater than m∗
×, we identify m∗ with mcond(t ),

the mass of the growing local condensate, which has a
value of order L(t ). The fact that P is a scaling func-
tion of mcond(t )/L(t ) in the regime ρ > ρc, implies that the
mean μ∗

c (t ) = 〈mcond(t )〉 and the standard deviation σ ∗
c (t ) =√

[〈mcond(t )2〉 − 〈mcond(t )〉2] are both proportional to L(t ) for
both models. The result σ ∗

c (t )/μ∗
c (t ) → constant indicates

that during coarsening, the behavior of the condensate mass
is fluctuation dominated. By contrast, in steady state, μss =
〈Mcond〉 is proportional to L while σcond ∼ Lβ , with β = 1/2
for ZRP and �0.7 for CMAM, implying σcond/Mcond → 0
for large L indicating relatively mild fluctuations. During
coarsening, fluctuations of mcond(t ) lead to equally strong
fluctuations of the total mass within L(t ) (Appendix).

B. P<(m∗, t )

For m∗ < m∗
×, as the locations of the growing condensates

are random, several boxes of size L(t ) do not contain a lo-
cal condensate. Values of m∗ < m∗

× correspond to the largest

FIG. 6. The mass distribution P (m, t ) for the ZRP (top) and the
CMAM (bottom) for various L(t ). For ZRP, the system size L =
10 000, and for CMAM, L = 9600.

mass in boxes which contain only the coarsening critical fluid,
and no condensate.

In this region m∗ scales with L(t )α with α < 1. Interest-
ingly, the distribution of the scaled variable u = m∗/L(t )α

is proportional to the Fréchet distribution f (u) [25] with a
power-law tail ∼u−φ.

P<(m∗, t ) = 1

L(t )α
f (u), with f (u) = (φ − 1)u−φe−u−(φ−1)

,

u = m∗

L(t )α
. (7)

Here (α, φ) � (0.45, 3) for ZRP and � (0.7, 2.35) for
CMAM. Note that the area c under this portion of the dis-
tribution remains finite even as L(t ) → ∞, with c � 0.2 for
ZRP and �0.37 for CMAM.

We rationalize Eq. (7) as follows: If we assume the dif-
ferent boxes of size L(t ) carrying the fluid only (sans any
condensate) are statistically almost independent, the distribu-
tion P< of the maxima in such boxes should be proportional to
the extremal distribution for power-law distributed indepen-
dent and identically distributed variables, namely, a Fréchet
distribution with shape parameter φ and scale L(t )α. The
evidence for this argument comes from the mass distribution
P (m, t ) (as opposed to the local maximum mass m∗) shown in
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FIG. 7. Distribution of the local maximum mass P(m∗, t ) for
ZRP with L(t ) = 800, 1200, 2000, and L = 20 000. This is consis-
tent with the additive scaling form in Eq. (5) (shown with dashed
line).

Fig. 6. The power-law decay exponent in P (m, t ) is identical
to the exponent φ in the Fréchet form [Eq. (7)].

Note that the observed values of the power-law decay
exponent (φ � 3 for the ZRP and �2.35 for CMAM) are
smaller than the corresponding steady-state values (φss =
3.5 and 2.5, respectively), which furthers our claim that
the steady-state correspondence during coarsening breaks
down in the aggregation-fragmentation models considered
herein.

The scaling function obtained using Eqs. (6) and (7) in
Eq. (5) fits consistently with the data for P(m∗, t ), as shown
in Fig. 7.

V. GLOBAL MAXIMUM MASS

If L is large but finite, the steady state is reached when
L(t ) → L. The coarsening regime with several local con-
densates evolves to a regime with a few condensates, and
ultimately a single condensate. How does σ ∗

c (t ) ∼ L(t ) evolve
into σcond ∼ Lβ with β < 1 as L(t ) → L? To shed light on this
we study the time evolution of the global maximum mass M∗,
i.e., the mass on the site with largest occupancy in the system.
Figure 8 shows the time evolution of the mean and variance of
M∗ for both ZRP and CMAM.

While the mean evolves monotonically (inset of Fig. 8), the
variance is strongly nonmonotonic: An initial steep growth in
the coarsening regime leads to an overshoot at large times,
the maximum being O(L2). This is followed by a relaxation
regime with the variance approaching the asymptotic steady-
state value ∼L2β .

A. Preasymptotic state

Examination of the state near the peak of the variance
reveals that the configurations have a few large condensates.
The kinetics in this region is determined by the mass exchange
among the large condensates in the ZRP [12,22] and by their
coalescence in the CMAM. This feature holds also for ZRP
with symmetric hopping (Appendix), and for both mass mod-
els in two dimensions as discussed later in the section.

At some instant, let the masses held by the condensates
be xMcond and (1 − x)Mcond, where Mcond ≈ (ρ − ρc)L. If

FIG. 8. Variance of the global maximum mass with different
system sizes L = 300, 500, 700, 900. Top panel: ZRP. Bottom panel:
CMAM. Model parameter values as in Fig. 3. Insets show that
the mean increases smoothly to its steady-state value ∼O(L). The
variance increases rapidly and overshoots to a value ∼O(L2), finally
settling to the much smaller steady-state value ∼O(L2β ), with β =
1/2 for ZRP and �0.75 for CMAM. Note the discrepancy between
fluctuations during coarsening and those in steady state.

x < 1/2, the largest mass is M∗ = (1 − x)Mcond. At some
time O(L2) later, let the condensate masses be yMcond and
(1 − y)Mcond implying a transfer of mass of O(L). The change
�M∗ in M∗ is given by (x − y)Mcond if y < 1/2, or (x + y −
1)Mcond if y > 1/2. Consequently the standard deviation of
�M∗ is also of order Mcond. The mechanism mentioned above
leading to O(L) fluctuations in the two-condensate preasymp-
totic regime is responsible for the O[L(t )] fluctuations in the
coarsening regime as well.

B. Scaling of the global maximum mass

The variance σ 2
c (t, L) shows striking nonmonotonic be-

havior. There are two distinct regimes (Fig. 9): (I) a sharply
increasing coarsening regime and (II) a relaxation regime
where the variance falls and eventually reaches its steady-state
value as t → ∞.

We find that for both ZRP and CMAM, the variance is well
described by separate scaling functions of u = t/L2 in the two
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FIG. 9. The time evolution of the variance of the global max-
imum mass in ZRP and CMAM shows distinct regimes: the
coarsening regime (I) and the relaxation regime (II).

regions:

Region I: σ 2
c (t, L) = L2g1(t/L2),

with g1(u) ∼ u for small u, (8)

Region II:
[
σ 2

c (t, L) − σ 2
cond(L)

] = L2g2(t/L2),

with g2(u) ∼ exp(−au) for large u. (9)

Here σ 2
cond (L) ∝ L2β is the variance in the steady state, with

β = 0.5 for ZRP and �0.7 for CMAM. The data shown in
Fig. 10 seems to converge to Eqs. (8) and (9) as L increases.

It is instructive to look at typical configurations in the
different regimes. A typical configuration in Region I con-
sists of several condensates whose number decreases as t
increases, finally reaching a state with two condensates. These
merge into a single condensate around the time when the

FIG. 10. The scaling analysis of the variance of the global max-
imum mass for different system sizes. The top panels are for ZRP
(L = 440, 512, 700, 900) and the bottom panels are for CMAM
(L = 500, 700, 900, 1200). The coarsening and relaxation regimes
satisfy Eqs. (8) and (9).

FIG. 11. Variance of the maximum mass in 2D asymmetric
ZRP (top panel) and the CMAM (bottom panel) as a function
of time. The data is for system sizes A = L × L = 20 × 20, 30 ×
30, 35 × 35, 40 × 40 for ZRP and A = 20 × 20, 50 × 50, 70 × 70
for CMAM. The dashed line indicates growth of the variance as
A(t )2.

variance becomes maximum, after which (Region II) the mass
of the condensate increases steadily, finally saturating to its
steady-state value. Thus, Regions I and II are associated with
different physical effects, namely, coarsening and relaxation,
respectively.

Scaling laws for the mean of the global maximum mass are
given in Appendix.

C. Fluctuation of global maximum mass in two dimensions

In 1D we find that the global maximum mass exhibits
anomalously large fluctuations during coarsening. The vari-
ance reaches a very high value ∼O(L2) in the preasymptotic
regime, before settling down to a value ∼O(L2β ), β < 1 in the
steady state. Similar behavior is observed in two dimensions
(2D) as well. In Fig. 11 the time evolution of the variance of
the global maximum mass is shown for the two-dimensional
asymmetric ZRP and CMAM in an L × L system of area
A = L2. While coarsening, we find that the variance of the
largest mass in a domain of typical length L(t ) ∼ t1/z, grows
as [L(t )]4 ∝ A(t )2 in both models, implying giant fluctua-
tions. Our numerical analysis gives z � 2 in ZRP and z � 2.67
in CMAM. In the steady state, however, the variance of the
condensate mass is ∼O(A2β ), where β = 0.5 in ZRP and in
CMAM, we observe β � 0.7. We find that the peak value of
variance in both models is ≈O(A2). This implies the fluctu-
ation in the largest mass value grows anomalously fast in the
coarsening regime even in 2D and the correspondence to the
steady state is lost.
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FIG. 12. In the exclusion models, 	(r, t ) is a function of the
scaled variable r/L(t ), L(t ) = t1/2. The model parameters are the
same as in Fig. 2 in the main text. Top panel: EM-ZRP, with L(t ) =
245, 300, 346, 424, 500. Bottom panel: EM-CMAM, with L(t ) =
200, 300, 400, 500, 600. 	(r, t ) initially falls linearly, parallel to the
dashed lines, indicating the validity of Porod’s law. Insets: Unscaled
plots.

VI. EXCLUSION MODELS

An exact mapping connects the 1D mass models studied
above to exclusion models (EMs): lattice sites in the parent
model map to labeled hard-core particles, and particles in
the parent model become holes in the EMs [9,10,12,26,27].
As illustrated in Fig. 1, particles in the exclusion models
move either with short-range hops with headway-dependent
rates (EM-ZRP), or short- and long-range hops (EM-CMAM).
The occupancy of each site is ηi ∈ {0, 1}. The mapping im-
plies that (a) the steady-state condensate in the parent model
corresponds to phase separation in the EMs, with formation
of a cluster with a macroscopic number of holes; (b) dur-
ing coarsening, the variance of the largest headway shows
anomalously large fluctuations. The EMs exhibit fluctuation-
dominated phase ordering (FDPO) [4] while coarsening,
although fluctuations in the steady state are quite contained.
The two-point correlation 	(r, t ) = 〈ηi(t )ηi+r (t )〉 − ρ̄2 is a
function of scaled separation r/t1/2 (Fig. 12), where ρ̄ =
ρ/(1 + ρ) is the density in the EMs. Unlike other systems
which exhibit FDPO [4], here the scaling function is consis-
tent with Porod’s law [28].

VII. CONCLUSION

Our studies of mass models which support a condensate
reveal an interesting new scenario during coarsening. On the
scale of the growing coarsening length L(t ), the local con-
densate peak exhibits scaling. There are anomalously large
fluctuations, with both mean and standard deviation scaling
with L(t ). The state of the system during coarsening is quite
unlike the steady state; rather it resembles a preasymptotic
state, in which the largest mass fluctuates strongly. We have
shown that these features hold also for the ZRP with sym-
metric hopping (Appendix) which approaches an equilibrium
state, and results for the variance of the global maximum
suggest that a similar scenario operates in two-dimensional
mass models as well. It would be interesting to see whether
fluctuation-dominated coarsening regimes operate in other
systems also, for instance with quenched disorder, as in the
traffic models studied in [9,10], or more generally in other
driven systems [29–31].
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APPENDIX

1. Total mass fluctuations within L(t )

The time evolution of the average and variance of the total
mass within a domain of size L(t ) = t1/2 is shown in Fig. 13
for CMAM and ZRP. Note that both the mean and standard
deviation of the total mass scale as L(t ). This behavior is
similar to that of the largest mass in L(t ) as discussed in the
text, indicating that the behavior of the total mass content in
L(t ) follows that of the local condensates. The data shown is
for system size L = 1000 for ZRP and L = 500 for CMAM.

FIG. 13. Mean and variance of the total mass within domains of
size L(t ) in the coarsening regime, for ZRP and CMAM.
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FIG. 14. The scaling analysis of the average global maximum
mass for different system sizes. The top panel for the ZRP and the
bottom panel for the CMAM. The coarsening regime for CMAM
shows the lack of scaling and the deviation from the

√
t behavior is

shown by the dashed lines.

2. Mean of the global maximum mass

The mean of the global maximum mass 〈M∗(t )〉, shown in
the insets of Fig. 8 in the text, shows a monotonic time depen-
dence. The time evolution of 〈M∗(t )〉 can also be divided into
two regimes. The “coarsening regime” lasts up to a timescale
in which the fluctuation in the global maximum mass also
reaches its peak. This is followed by an exponentially de-
caying “relaxation regime,” in which 〈M∗(t )〉 − 〈M∗(t )〉ss ∼
exp(−at/L2) where a is a constant.

FIG. 15. Distribution and scaling of the maxima in a domain of
size L(t ) for the symmetric zero range process in the coarsening
regime. The inset shows an unscaled plot.

One might have expected 〈M∗(t )〉 = L f (t/L2), with
f (x) ∼ √

x for small x, so as to recover 〈M∗(t )〉 ∼ √
t , inde-

pendent of L. Figure 14, however, shows some deviation from
this behavior for ZRP and a stronger deviation for CMAM,
which indicates a strong L dependence and nontrivial time
dependence. We anticipate that this behavior of 〈M∗(t )〉 in
the coarsening regime may have its origins in logarithmic
corrections coming from extremal statistics, as has been seen
in some other systems [32]. A complete analysis along these
lines would also need to account for the correlations.

3. Symmetric ZRP: Maximum mass in L(t )

The steady-state measures for the symmetric and asym-
metric ZRP are identical. In the symmetric case, however, the
condition of detailed balance holds and the steady state is an
equilibrium state. During coarsening, we find that L(t ) ∼ t1/3,
as was argued in [12,22].

Following Fig. 5 in the text for the asymmetric ZRP, we
plot the probability distribution function of the local conden-
sates for the symmetric ZRP (Fig. 15). Defining a crossover
region m∗ = m∗

x , we draw the same conclusion: The distri-
bution is bimodal; the region to the right of m∗

× is a simple
scaling function of m∗/L(t ), as given by Eq. (5) in the main
text. The consequence is as follows: The standard deviation
σ ∗

c (t ) of the fluctuations in largest mass during coarsening is
proportional to L(t ). The data (binned) shown is for system
size L = 4000, and the values of L(t ) are 60,80,100,120.
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