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Variation from fragile to strong glasses
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We investigate the structure and activated dynamics of a binary mixture of colloidal particles dispersed in a
solvent of much smaller-sized particles. The solvent degrees of freedom are traced out from the grand partition
function of the colloid-solvent mixture which reduces the system from ternary to effective binary mixture of
colloidal particles. In the effective binary mixture colloidal particles interact via effective potential that consists
of bare potential plus the solvent-induced interaction. Expressions for the effective potentials and pair correlation
functions are derived. We used the result of pair correlation functions to determine the number of particles in
a cooperatively reorganizing cluster (CRC) in which localized particles form “long-lived” nonchemical bonds
with the central particle. For an event of relaxation to take place these bonds have to reorganize irreversibly, the
energy involved in the processes is the effective activation energy of relaxation. Results are reported for hard
sphere colloidal particles dispersed in a solvent of hard sphere particles. Our results show that the concentration
of solvent can be used as a control parameter to fine-tune the microscopic structural ordering and the size of
CRC that governs the glassy dynamics. We show that a small variation in the concentration of solvent creates
a bigger change in the kinetic fragility which highlights a wide variation in behavior, ranging from fragile to
strong glasses. We conclude that the CRC which is determined from the static pair correlation function and the
fluctuations embedded in the system is probably the sole player in the physics of glass transition.

DOI: 10.1103/PhysRevE.107.014119

I. INTRODUCTION

Hard spheres which interact only as a result of excluded
volumes have extensively been used to model liquids, glasses,
crystals, colloidal systems, granular materials, etc. Random
packing of hard spheres is a subject of wide interest as they
are linked to important mathematical problems of signal dig-
italization, error-correcting codes, and optimization problems
[1]. Experimentally hard sphere systems are realized using
colloidal particles, emulsions, and granular particles [2–4].
For several decades, attempts have been made to find a way to
characterization of amorphous packing, glass transition, and
the nature of random close packings (RCP) [1–13].

In a one-component system of hard spheres, the fluid-
crystal transition takes place at packing fraction η = 0.494
and the melting transition at η = 0.545. But when the system
is compressed following a protocol that avoids crystallization,
the compressed fluid starts above η � 0.53 to attain solidlike
behavior marked by a rapid increase of structural relaxation
time (or viscosity) and eventually falls out of equilibrium at
the glass transition ηg � 0.58 where particle crowding greatly
restricts relaxation [14–18]. However, a system of monodis-
perse hard spheres is a poor glass former as it crystallizes
easily [19,20]. This crystallization propensity is usually pre-
vented by introducing polydispersity [21–23] or by adding
a second component with different-sized hard spheres. In a
mixture, amorphous packing and glass transition depends on
particle size ratio q = σb/σa and mixing ratio xb = ηb/(ηa +
ηb) [23–29]. Here and below symbols a and b denote particles

of species of larger and smaller-sized spheres with diameters
σa and σb, respectively. Experiment and simulation results
show that for moderate values of q � 0.35 the glass transition
shifts to a larger total packing fractions η(= ηa + ηb) at inter-
mediate compositions compared to a monocomponent system.
This behavior is similar to the one found for moderately
polydisperse systems [21–23] On the other hand, for q � 0.35
different glass states distinguished by the arrest mechanism of
large spheres and the mobility of small spheres are reported
[23–34].

The dramatic rise of the structural relaxation time τα (or
viscosity) in a narrow temperature or density range near the
glass transition is a characteristic feature of fragile glass form-
ers. In the case of molecular (thermal) liquids, a wide variation
in the behavior of τα near the glass transition temperature Tg

is observed [35,36]. This becomes evident in a renormalized
Arrhenius plot where temperature T is rescaled by Tg. This
observed behavior is characterized by the unifying concept of
fragility. For molecular glass formers, the fragility is defined
by the logarithmic slope of τα at Tg [35,36] which highlights
the wide variation ranging from strong to fragile and provides
a unifying conceptual framework. Since in the case of hard
spheres temperature becomes irrelevant, the fragility has to be
defined by the logarithmic slope of τα at the glass transition
packing fraction ηg [37,38]. This restricts the fragile behavior
of hard spheres glass formers and, therefore, their versatility
as a model system of the glass transition. However, when soft
colloidal particles are examined at fixed T by varying η, the
fragility shows the same behavior as in the T dependence of
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molecular liquids at fixed η; variations of T and η give a broad
spectrum of fragility [39–41]. Polydispersity is also found to
affect the fragility [42].

In this paper, we investigate size asymmetric ternary mix-
tures of hard spheres and calculate τα and fragility at different
concentrations of the species of smallest-sized particles of the
mixture dubbed as a solvent. In particular, the mixture we
investigate consists of hard spheres of diameters σa = 1.4,
σb = 1.0, and σs = 0.28; particles size ratios are qab = 0.714,
qas = 0.2, and qbs = 0.28. We call species a, b, and s as a
solute, cosolute, and solvent, respectively. Whenever needed
we call a and b particles collectively as colloid particles and
denote them by symbol c. The system is characterized by
packing fractions ηa = π

6 ρaσ
3
a , ηb = π

6 ρbσ
3
b , and ηs = π

6 ρsσ
3
s

where ρa = Na/V , ρb = Nb/V , and ρs = Ns/V . Here V is the
volume, and Nα is the ensemble-averaged number of particles
of species α. A binary mixture of species a and b with ρa = ρb

has been studied using the Monte Carlo algorithm by Berthier
and Witten [43] and Brambilla et al. [18]. In order to compare
our results for a binary mixture of species a and b (i.e., for
ηs = 0) with those of Refs. [18,43] we choose ρa = ρb. Thus,
the system is characterized by two independent variables ηc =
ηa + ηb and ηs with total packing fraction η = ηc + ηs.

In Sec. II we give a brief description of a theory devel-
oped in Refs. [44–46] for calculating the activation energy
barrier of relaxation and τα . The theory identifies the local
structural order that defines the cooperativity of relaxation.
In a supercompressed (supercooled) fluid some particles get
trapped in potential wells (cages) created by neighbors and
form long-lived (stable) nonchemical bonds between them.
For an event of structural relaxation to take place, the cluster
has to reorganize irreversibly. The number of particles in the
cluster defines the size of cooperativity. The number of parti-
cles that forms the cluster and the activation energy barrier of
relaxation is calculated from data of pair correlation functions.

Pair correlation functions are usually calculated using inte-
gral equation theory (IET) or computer simulations. The IET
consists of the Ornstein-Zernike (OZ) equation and the so-
called closure relation. However, tackling highly asymmetric
mixtures via multicomponent OZ equation where all species
are treated on equal footing is extremely difficult [47–49]. As
for as simulation is concerned, the required computational
investment for asymmetry mixtures is generally prohibitive
because of the very slow relaxation of big particles caused by
smaller particles [50,51]. To avoid the complexity arising due
to large size asymmetry one prefers coarse graining (CG), i.e.,
trace out solvent degrees of freedom. This reduces the system
to an effective binary mixture of species a and b with modest
size asymmetry. In the effective binary mixtures, particles
interact via potentials which are a combination of bare (direct)
interaction and solvent-induced interaction (SII). In Sec. III
we summarize a theory developed in Refs. [52,53] to trace out
solvent degrees of freedom and derive an expression for the
effective potential and correlation functions. Note that the the-
ories described in Secs. II and III are equally valid to thermal
(molecular) and athermal systems. In Sec. IV we calculate the
number of particles in the cooperatively reorganizing cluster
(CRC), τα , and the fragility as a function of ηs and present
results for systems of hard spheres. The paper ends with a
summary and conclusions described in Sec. V.
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FIG. 1. Plot of potential (potential of mean force) βwαγ (R) be-
tween a pair of particles of species α and γ separated by distance R
(expressed in units of σbb) in a system of hard spheres. βw(iu) and Rih

are, respectively, value and location of ith maximum and Ril is the
location on the left-hand side of the shell where βw(i)(R) = βw(iu)

(shown by the dashed line). The location R′′
il and R′′

ih are values of R
on the left- and the right-hand sides of the shell where βw(i)(R) =
[βw(iu) − 1] (shown by the full line). βw(id ) is the depth of the ith
shell.

II. COOPERATIVELY REORGANIZING CLUSTER,
ACTIVATION ENERGY AND THE RELAXATION TIME τα

The theory developed in Refs. [44–46] provides a method
to distinguish and calculate a number of dynamically free,
metastable, and stable (long-lived) neighbors of a tagged (cen-
tral) particle in a system as a function of T and η. This is
achieved by including momentum distribution in the defini-
tion of the correlation function gαγ (R). Thus,

gαγ (R) =
(

β

2πμ

)3/2 ∫
dp e−β[(p2/2μ)+wαγ (R)]. (2.1)

where p is the relative momentum of a particle of mass μ

and βwαγ (R) = − ln gαγ (R) is the potential of mean force
(reduced potential) [53] between a pair of particles α and γ

(α, γ ∈ [a, b]) separated by distance R in the mixture. In
writing the above equation we assumed particles of species
a and b have equal mass and identical Maxwell-Boltzmann
distribution of momentum p. The peaks and troughs of gαγ (R)
create, respectively, minima and maxima in βwαγ (R) as
shown in Fig. 1. In the figure a region between two maxima,
leveled as i − 1 and i (i � 1) is denoted as the ith shell and the
minimum of the shell as βw(id )

αγ . The value of the ith maximum
(barrier) is denoted as βw(iu)

αγ , and its location is denoted by
Rih.

In a classical system, all those particles whose energies are
less or equal to βw(iu)

αγ would be trapped in the ith shell as
they do not have enough energy to escape the barrier, and
all those particles whose energies are higher than βw(iu)

αγ are
free to move around. The number of trapped particles that can
be considered to be bonded (nonchemical) with the central
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particle is found to form a part of gαγ (R) defined as [44–46]

g(ib)
αγ (R) = 4π

(
β

2πμ

)3/2

e−βw(i)
αγ (R)

×
∫ √

2μ[w(iu)
αγ −w

(i)
αγ (R)]

0
e−βp2/2μ p2d p, (2.2)

where w(i)
αγ (R) is the potential in the range of Ril � R � Rih of

the ith shell. Here Ril is the value of R where w(i)
αγ (R) = w(iu)

αγ

on the left-hand side of the shell (see Fig. 1). The total number
of particles that form bonds with the central particle of species
α is

n(b)
α = 4π

∑
i

∑
γ

ργ

∫ Rih

Ril

g(ib)
αγ (R)R2dR, (2.3)

where summations are over all shells and over all species and
ργ is the number density of the γ component. The number
n(b)

α increases rapidly as η is increased. However, fluctuations
embedded in the system (bath) activate some of these bonded
particles to escape the barrier. These particles are referred to
as metastable (or m) particles. The remaining bonded particles
stay trapped in shells and form stable bonds with the cen-
tral particle and are referred to as l particles. In the case of
hard spheres, all those particles whose energies lie between
βw(iu)

αγ − 1 and βw(iu)
αγ are m particles [44]. All those particles

whose energies are between βw(id )
αγ and [βw(iu)

αγ − 1] are l
particles. The number of l particles is found from a part of
gαγ (R) defined as

g(il )
αγ (R) = 4π

(
β

2πμ

)3/2

e−βw(i)
αγ (R)

×
∫ √

2μ[w(iu)
αγ −kBT −w

(i)
αγ (R)]

0
e−βp2/2μ p2d p, (2.4)

where w(i)
αγ (R) is in the range of R′′

il � R � R′′
ih. Here R′′

il
and R′′

ih are, respectively, the value of R on the left- and the
right-hand sides of the shell where βw(i)

αγ (R) = βw(iu)
αγ − 1.

The number of l particles around an α particle is

n(l )
α = 4π

∑
i

∑
γ

ργ

∫ R′′
ih

R′′
il

g(il )
αγ (R)R2dR. (2.5)

The averaged number of l particles bonded with a central
particle in a binary mixture is

n(l ) = xan(l )
a + xbn(l )

b , (2.6)

where xα is the concentration of species α. The cluster of
n(l ) + 1, particles form a CRC. The effective activation energy
of relaxation is given as

βE (l )(η) = 4π
∑

i

∑
γ

xγ ργ

∫ R′′
ih

R′′
il

[
βw(iu)

αγ − 1 − βw(i)
αγ (R)

]
× g(il )

αγ (R)R2dR, (2.7)

where energy is measured from the effective barrier βw(iu)
αγ −

1. The structural relaxation time τα is obtained from the Ar-
rhenius law,

τα (η) = τ0 exp [βE (l )(η)], (2.8)

where τ0 is a microscopic timescale.
The only input we need to calculate τα is the values of

gαγ (R) at different values of ηc and ηs. In the following sec-
tion, we describe a method used to coarse grain the system and
derive equations which are used to calculate values of gαγ (R).

III. THEORY TO TRACE OUT THE SOLVENT DEGREES
OF FREEDOM AND REDUCTION OF THE SYSTEM

TO AN EFFECTIVE BINARY MIXTURE OF
COLLOIDAL PARTICLES

When one traces out all variables belonging to solvent
particles from the system partition function, one ends up
with a coarse-grained partition function of the surviving com-
ponents. If the coarse graining is performed exactly, the
coarse-grained partition functions account exactly for the ef-
fect of the degrees of freedom that have been subsumed.
Thus, the structural and thermodynamic properties of col-
loidal components of the mixture will be identical in both the
coarse-grained and the full-system description.

The grand partition function of the ternary mixture is
written as


(μa, μb,V, T ) =
∑
Na�0

∑
Nb�0

TraTrb exp(β(μa + μb)

−Ws[ �Ra, �Rb] − βHaa
{ �RNa

a

}
−βHbb

{ �RNb
b

} − βHab
{ �RNa

a , �RNb
b

})
, (3.1)

where

eWs[ �Ra, �Rb] =
∑
Ns�0

Trs exp
(
βμsNs − βUss

{ �RNs
s

}
−β

∑
α

Hαs
{ �RNα

α , �rNs
})

. (3.2)

In (3.1) and (3.2), Trα stands for 1
Nα!�3Nα

∫
V d �RNα , � is

the thermal wavelength, μα is the chemical potential, Nα is
number of particles of species α in volume V . β = (kBT )−1 is
the inverse temperature in units of the Boltzmann constant kB,
�Ra, �Rb, and �r are the position vectors of particles of species a,
b, and s, respectively. Hαγ represents the interaction potential
between particles of similar and different species. Ws[ �Ra, �Rb]
is the grand thermodynamics potential of the solvent in the
presence of solute and cosolute particles that exert “external”
potential field on solvent particles.

Since position vectors of a and b particles are held fixed
when integration over s particles is performed, Ws depends
on the constrained position vectors of solute and co-solute
particles. This fact is emphasized by the square bracket. The
constrained spatial configurations of a and b particles can be
described in terms of single particle density operators defined
as

ρ̂a( �Ra) =
Na∑

i=1

δ( �Ra − �Rai ) and ρ̂b( �Rb) =
Nb∑

i=1

δ( �Rb − �Rbi ),

(3.3)
where δ is the Dirac function. The potential field that acts on
a tagged s particle at position �r due to a and b particles is as
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follows:

φs(�r) =
∑

α

Nα∑
i=1

uαs(| �Rαi − �r|), (3.4)

where α stands for a and b and uαs is the pair potential between
particles of species α and s. The above relation is used to
rewrite (3.2) as

eWs[ �Ra, �Rb] =
∑
Ns�0

Trs exp

(
Ns∑

i=1

ψ (�ri ) − β
∑
i< j

uss(|�ri − �r j |)
)

,

(3.5)

where ψ (�r) = β[μs − φs(�r)] is the reduced intrinsic chemical
potential [55] which acts as a field variable conjugate to single
particle density ρs(�r).

Since Ws[ �R] is a local functional of ψs(�r) [55] its functional
derivatives with respect to ψs(�r) taken at constant T give

δWs[ �Ra, �Rb]

δψ (�r1)
= ρs(�r1), (3.6)

and

δ2Ws[ �Ra, �Rb]

δψ (�r1)δψ (�r2)
= ρ (2)

s (�r1, �r2) − ρs(�r1)ρs(�r2)

+ ρs(�r1)δ(|�r1 − �r2|)
= χss(�r1, �r2). (3.7)

Here ρs(�r) and ρ (2)
s (�r1, �r2) are the ensemble-averaged one-

and two-body density, and χss is the density-density correla-
tion function of the solvent [56]. When functional integrals
of (3.6) and (3.7) are performed along a linear integration
path between the reference (pure solvent) and the final state
(full mixture) such that ψs,λ(�r) = βμs + λ�ψs(�r), where
�ψs(�r) = ψs(�r) − βμs, one gets

δρs(�r1) = ρs(�r1) − ρs =
∫

d�r2χ̃ss(�r1, �r2)�ψs(�r2), (3.8)

and

Ws[ �Ra, �Rb] − W (0)
s = ρs

∫
d�r1�ψs(�r1) − 1

2

∫
d�r1

×
∫

d�r2�ψs(�r1)χ̄ss(�r1, �r2)�ψs(�r2),

(3.9)

where

χ̃ss(�r1, �r2) =
∫ 1

0
dλχss(�r1, �r2; λ), (3.10)

and

χ̄ss(�r1, �r2) = 2
∫ 1

0
dλ(1 − λ)χss(�r1, �r2; λ). (3.11)

The field �ψs(�r) can be defined in terms of a functional
that couples the solvent to the solute and the cosolute density
fields as [53]

δ�ψs(�r)

δρα ( �Rα )
= cαs(�r, �Rα ). (3.12)

The functional integration of (3.12) gives

�ψs(�r) =
∑

α

∫ 1

0
dλ

∫
d �Rαcαs(�r, �Rα; λ)ρ̂α ( �Rα ) (3.13)

=
∑

α

Nα∑
i

c̄αs(�r, �Rα,i ), (3.14)

where

c̄αs(�r, �Rα,i ) =
∫ 1

0
dξ cαs(�r, �Rα; ξ ). (3.15)

Here ξ acts as a charging parameter that raises the solute and
cosolute potential fields that act on the solvent particle from
zero to their full value as it varies from 0 to 1. Combining (3.9)
and (3.14) we get

Ws[ �Ra, �Rb] = W (0)
s −

∑
α

Nα∑
i=1

φα ( �Rαi )

−1

2

Ns∑
i �= j

∑ Nα∑
α

Nγ∑
γ

vα,γ ( �Rαi, �Rγ j ), (3.16)

where

φα ( �Rαi ) = −
∫

d�r1cαs(�r1, �Rα,i )

×
[
ρs + 1

2

∫
d�r2χ̄ss(�r1, �r2)cγ s(�r2, �Rγ ,i )

]
,

(3.17)

and

vαγ ( �Rαi, �Rγ j ) = −
∫

d�r1

∫
d�r2c̄αs(�r1, �Rα,i )

× χ̄ss(�r1, �r2)c̄γ s(�r2, �Rγ ,i ). (3.18)

Here α, γ ∈ [a, b], φα ( �Rα ) is the solvent-induced potential
field acting on an α particle at �Rα and vαγ ( �Rαi, �Rγ j ) is the
SII between α and γ particles.

From (3.1) and (3.16) we now have


(μa, μb, μc,V, T ) = eW (0)
s 
c(μa, μb,V, T ), (3.19)

where


c(μa, μb,V, T )

=
∑
Na�0

∑
Nb�0

TraTrb exp

(
β

∑
α

Nα∑
i=1

ψα ( �Rαi )

− 1

2
β

Na∑
i �= j

Uaa( �Rai, �Ra j ) − 1

2
β

Nb∑
i �= j

Ubb( �Rbi, �Rb j )

−β

Na∑
i= j

Nb∑
i= j

Uab( �Rai, �Rb j )

)
. (3.20)

Here

ψα ( �Rαi ) = β[μα − kBT φα ( �Rαi )], (3.21)
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and

Uαγ ( �Rαi, �Rγ j ) = uαγ (| �Rαi − �Rα j |) + kBT vαγ ( �Rαi, �Rγ j ).

(3.22)

Equation (3.20) defines the CG grand partition functions of
a binary mixture of solute and cosolute particles in volume V
and temperature T .

The function c̄αs is determined from a relation given as
[52,53]

ρshαs(|�r − �Rαi|)
= ρs +

∑
γ

∫
d �r′χ̃ss(�r, �r′)c̄γ s(�r′) +

∑
γ

∑
j

(1 − δi j )

×
∫

d �r′χ̃ss(�r, �r′)c̄γ s(�r′, �Rγ j ), (3.23)

where distances are measured from a colloidal particle of
species α fixed at �Rαi. This relation is found from functional
derivatives of �W with respect to cαs(�r, �Rαi ) or from (3.8).
Note that all relations given above and expressed in terms of
functionals c̄αs and χ̄ss are exact. However, they correspond
to constrained configurations of colloidal particles. As argued
in Refs. [52,53] we can simplify these expressions by re-
placing the constrained configurations by the most probable
configurations determined by the configurational probability
density defined in terms of the Boltzmann factor of the CG
Hamiltonian of the effective binary mixture. This allows us to
rewrite (3.23) as (see Ref. [53])

ρshαs(r) =
∑

γ

[ ∫
d �r′χ̃ss(�r, �r′)c̄γ s(�r′)

+
∫

d �r′
∫

d �Rγ χ̃ss(�r, �r′)c̄γ s(�r′, �Rγ )hαγ ( �Rα, �Rγ )

]
.

(3.24)

Solution of (3.24) gives c̄αs which is used to find potential
vαγ (R) from (3.18). From known effective interaction Uαγ one
calculates hαγ (R) and gαγ (R) using the one component OZ
equation with a closure relation.

IV. RESULTS

A. Pair correlation function gαγ (R) and number of particles
in a cooperatively reorganizing cluster

We use a numerical procedure developed in Ref. [53] and
summarized in the Appendix to calculate the effective poten-
tial Uαγ (R), and correlation function gαγ (R) for the effective
binary mixture at different values of ηs. When ηs = 0, the sys-
tem, as stated above reduces to a binary mixture of colloidal
particles interacting via pair potential uαγ (R). We use the mix-
ture OZ equation and the thermodynamically self-consistent
closure relation of Rogers and Young [57] to calculate pair
correlation function g(bm)

αγ (R). Here superscript bm is used to
indicate that the results correspond to the colloidal mixture
when ηs = 0. In Fig. 2(a) we compare calculated values of
g(bm)(R) defined as

g(bm)(R) = x2
ag(bm)

aa (R) + 2xaxbg(bm)
ab (R) + x2

bg(bm)
bb (R), (4.1)
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FIG. 2. (a) Comparison of calculated values of pair correlation
function g(bm)

αγ (R) at packing fraction ηc = 0.58 with the Monte Carlo
simulation values [54]. R is expressed in units of σbb. The three
peaks correspond to the separation at contact for the binary mixture.
(b) Comparison of calculated values of equilibrium pressure with
the Monte Carlo simulation values [43]. The agreement between the
values is very good over the entire range of ηc shown in the figure.

with simulation values reported by Callaham and Machta [54]
for ηc = 0.58 and in Fig. 2(b) values of Z (ηc) = βPc

ρc
(Pc is the

pressure) with simulation values given in Ref. [43]. We note
that the calculated values of correlation function and pressure
are in excellent agreement with simulation values. When ηs

is nonzero we use an iterative method in which gαγ (R) is
calculated using the hypernetted chain (HNC) and reference
hypernetted chain (RHNC) closure relation where g(bm)

αγ (R)
appears as a reference term [see Eq. (A7)].

In Figs. 3–6, we plot values of βUαγ (R) and gαγ (R) for
several values of ηc at solvent packing fraction ηs = 0.1 and
ηs = 0.2. These figures give a quantitative measure of the
solvent-induced effective potential between colloidal particles
and their distributions in the solvent. In all the cases βUαγ (R)
is attractive at contact and rises to form a repulsive peak at R ∼
σαγ + 1

2 qbs; 1
2 qbs is the radius of a solvent particle. All lengths

are expressed in units of σbb. This attraction is attributed to
the depletion region formed between colloidal particles when
their separation is less than the radius of the solvent particle.
Due to the depletion, a pressure gradient originates giving rise
to a short-range entropy-driven attractive effective potential;
the depletion potential. Depending on values of ηs and ηc,
βUαγ (R) may form a few more minima and maxima before
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FIG. 3. Effective potential βUαγ (R) between a pair of solute and
cosolute (colloidal) particles separated by distance R (measured in
units of σbb) at solvent packing fraction ηs = 0.1 for several values
of ηc.

decaying to zero. The minima occur at preferential distances
allowing for an integer number of layers of solvent particles
between colloidal particles. Repulsion arises when solvent
particles move to disturb these layers of solvent particles.
The minimum at R ∼ σαγ + qbs in βUαγ (R) corresponds to
the configuration when one layer of solvent particles is sand-
wiched between two colloidal particles. These features of
βUαγ (R) are reflected in the nature of gαγ (R) which gives
information about the distribution of colloidal particles. In
gαγ (R) a deep minimum appears at R ∼ σαγ + 1

2 qbs which
separates a pronounced peak of R ∼ σαγ and a relatively weak
peak at R ∼ σαγ + qbs where a minimum of βUαγ (R) occurs.
Maxima and minima of gαγ (R) become more pronounced on
increasing ηs. In Fig. 7 we compare gaa(R) found for η = 0.59
and ηs = 0.0, 0.1 and 0.2 to show the change that takes place
in the distribution of colloidal particles on increasing concen-
tration of solvent particles. Due to this change in gαγ (R) the
potential well βwαγ (R) changes on changing ηs and which,
in turn, changes the number of particles in CRC. We plot in
Figs. 8–10 βwαγ (R) for ηs = 0.0, 0.1, and 0.2 and for each
case several values of ηc. To compare the effect of solvent con-
centration on the potential well we compare βwaa(R) for the
three values of ηs in Fig. 11(a) for η = 0.59 and in Fig. 11(b)
for ηc = 0.39. The most noticeable change that takes place in
βwαγ (R) due to solvent particles is a change in the width of
the potential well. Although the maximum and minimum of
the first shell where most l particles appear have increased,
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FIG. 4. Pair distribution function gαγ (R) of colloidal particles vs
R (measured in units of σbb) at ηs = 0.1 for several values of ηc.
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FIG. 5. The same as for Fig. 3 but with ηs = 0.2.
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FIG. 6. The same as for Fig. 4 but with ηs = 0.2.

but the width has narrowed. As a consequence, the number of
long-lived particles that form CRC change with ηs.

In Figs. 12–14 we plot g(l )
αγ (R) vs R, respectively, for ηs =

0.0, 0.1, and 0.2. For each case, results are given for several
values of ηc to show how g(l )

αγ (R) depends on colloidal and
solvent packing fractions. The number of particles n(l ) that
form CRC is plotted in Fig. 15(a) as a function of ηc and in
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FIG. 7. Comparison of values of pair distribution function gaa(R)
as a function of R (measured in units of σbb) for total packing fraction
η = 0.59 and solvent packing fractions ηs = 0.0, 0.1 and 0.2 to show
the change that takes place in the distribution of colloidal particles of
species a on increasing concentration of solvent particles. Similar
results are also found for species b.
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FIG. 8. The potential βwαγ (R) between a pair of particles of
species α and γ separated by distance R (measured in units of σbb) in
the mixture at solvent packing fraction ηs = 0 for several values of
ηc.
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FIG. 9. The same as for Fig. 8 but with ηs = 0.1.

014119-7



ANKIT SINGH AND YASHWANT SINGH PHYSICAL REVIEW E 107, 014119 (2023)

1.4 1.6 1.8 2
-1

0

1

2

3

βω
aa

(R
)

0.14
0.29
0.39

1.4 1.41
-4

-3

-2

1.2 1.4 1.6 1.8
-1

0

1

2

βω
ab

(R
)

1 1.2 1.4 1.6
R

-1

0

1

2

βω
bb

(R
)

1.2 1.21

-3

-2

1 1.01
-3

-2

ηs = 0.20

ηc

FIG. 10. The same asfor Fig. 8 but with ηs = 0.2.

Fig. 15(b) as a function of ηc/ηg where ηg(ηs) (defined below)
is the glass transition packing fraction at a given ηs. From
these figures, it is obvious that the solvent affects the local
structure of colloidal components in a significant way.

B. Activation energy barrier and the relaxation time

In Fig. 16 we plot the activation energy βE (l ) as a function
of ηc/ηg (the glass transition packing fraction ηg is defined
below) calculated from (2.7). In the figure, symbols denote
calculated values of βE (l ), and the dashed lines denote fitting
found using a relation,

βE (l ) = 1 + A
(ηc − η̄)

(ηcr − ηc)
, (4.2)

where η̄(ηs) is a value of ηc at which βE (l ) is equal to 1 and
ηcr is the value at which βE (l ) diverges. In Fig. 17(a) we show
the variation of ηcr and ηr and in Fig. 17(b) variation of A as
ηs is increased. As expected, RCP ηr increases as ηs increases.
We note that (4.2) gives a very good account of βE (l )(ηs). A
fit with power law βE (l ) = B(n(l ) + 1)δ is shown in Fig. 18(a)
and dependence of B and δ on ηs in Fig. 18(b). Both B and δ

show a nonlinear increase on increasing ηs suggesting subtle
dependence of the activation barrier on number of particles in
the CRC.

In Fig. 19 we compare values of τα/τ0 where τ0 is taken
equal to 1 as a function of ηc for a binary mixture of species
a and b when ηs = 0 with simulation results reported in
Refs. [18,43]. We note that our values are in very good agree-
ment with simulation results for ηc � 0.5 where relaxation is
dominated by activations. Since for ηc � 0.5 the dynamics
is not dominated by the activation, we should not expect
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FIG. 11. Comparison of values of βwaa(R) vs R at (a) total
packing fraction η = 0.59; (b) colloidal packing fraction η = 0.39
for different solvent packing fractions ηs = 0.0, 0.1 and 0.2.

agreement in the region with simulation results. In Fig. 20
we plot τα/τ0 as a function of ηc for several values of ηs.
We choose the value of ηc as a glass transition value ηg at
which τα/τ0 = 106 and plot τα/τ0 as a function of normalized
packing fraction ηc/ηg in Fig. 21. This figure is an analog
of the Angell plot for the molecular glass [35,38]. From the
figure, we note that as ηs increases, the slope of curves of
τα/τ0 vs ηc/ηg decreases. This shows that as the concentration
of solvent increases the hard-sphere colloidal glass behavior
changes from fragile to strong. The kinetic fragility κ defined
as

κ (ηs) = d log10(τα/τ0)

d (ηc/ηg)

∣∣∣∣∣
ηc=ηg

= Aηg

ln 10

(ηcr − η̄)

(ηcr − ηg)2
(4.3)

is plotted in Fig. 22. We note that κ varies strongly with ηs and
changes from κ � 92 for ηs = 0 down to κ � 22 for ηs = 0.2.
Thus, we find the system of hard spheres dispersed in a solvent
of small-sized hard spheres displays a large variation in the
kinetic fragility on changing the concentration of the solvent.
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FIG. 12. Plot of g(l )
αγ (R) as a function R at ηs = 0 for the several

values of ηc.
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FIG. 13. The same as for Fig. 12 but with ηs = 0.1.
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FIG. 14. The same as for Fig. 12 but with ηs = 0.2.
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FIG. 15. Number of long-lived particles (l particles) n(l ) that
form CRC (a) as a function of ηc; (b) as a function of ηc/ηg, where
ηg is a glass transition packing fraction at which τα/τ0 = 106.
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FIG. 16. The activation energy βE (l ) as a function of ηc/ηg cal-
culated from (2.7). In the figure symbols denote calculated values of
βE (l ), and the dashed lines denote fitting found using a relation (4.2),
where η̄(ηs ) is a value of ηc at which βE (l ) is equal to 1, and ηcr is
the value at which βE (l ) diverges.

V. SUMMARY AND CONCLUSIONS

In this paper, we develop a theory to calculate the struc-
ture and activated dynamics of colloidal components in a
size-asymmetric ternary mixture. In particular, we present the
results for a system of a binary mixture of hard-sphere col-
loidal particles dispersed in a solvent of much smaller-sized
hard spheres. On increasing the concentration of colloidal
particles at a fixed concentration of solvent, the system ex-
hibits a dramatic rise in structural relaxation time τα , a feature
that has many hallmarks of the glass transition in molecular
materials. For several decades, colloids have served as a valu-
able model system for understanding the glass transition in
molecular systems [2–4]. The large size of colloidal particles
makes it possible to study both structure and dynamics with
light scattering and imaging [3,33,34]. However, due to tech-
nical limitations related to optical resolutions, observations
are often limited only to colloidal components; the solvent
component remains unobserved. Thus, apart from the need
of coarse graining due to the coexistence of widely different
time and length scales, integrating out of the solvent degrees
of freedom and reduction of the system to effective binary
mixture of colloidal particles is in sync with the restricted
nature of experimental observations.
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FIG. 17. (a) Variation of ηcr (filled circles) and ηr (open circles)
as a function of ηs. (b) Variation of A as a function of ηs.
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FIG. 18. (a) Plot of the activation energy βE (l ) as a function of
ηc. The symbols represent values found from the calculation, and
the dashed line represents a fit with power law βE (l ) = B(n(l ) + 1)δ ,
where n(l ) is the number of bonds in a CRC (see Fig. 15) and in
(b) dependence of B and δ on ηs. Both B and δ show a nonlinear
increase on increasing ηs.
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FIG. 19. Comparison of calculated values (solid line) of τα/τ0

where τ0 is taken equal to 1 as a function of ηc for a binary mixture
of species a and b when ηs = 0 with simulation values (open circles
[43] and filled circles [18]). Our values are in very good agreement
with simulation results for ηc � 0.5 where relaxation is dominated by
activations: For ηc � 0.5 agreement is not expected as the dynamics
in this region are dominated by other than the activation which has
not been considered in the present paper.
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FIG. 20. Plot of the relaxation time τα/τ0 as a function of ηc for
several values of ηs.

The coarse graining used to trace out solvent degrees of
freedom from the grand partition function of the ternary mix-
ture is described in Sec. III. This method is based on density
functional formalism of density profile and the grand potential
of the solvent and is an extension to ternary mixture of a
method developed in Ref. [53] for a binary mixture. In the
coarse-grained system, colloidal particles interact via effective
potential that consists of bare plus solvent-induced interac-
tion. A self-consistent iterative method summarized in the
Appendix is used to calculate values of correlation functions
c̄αs, gαs, and gαγ , and of the effective potential βUαγ (R).
These quantities can be used to describe the structural and
thermodynamic properties of the system. In particular, gαs

gives the distribution of solvent particles around a colloidal
particle of species α.
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FIG. 21. Angell plot of τα/τ0 as a function of normalized pack-
ing fraction ηc/ηg at different solvent packing fractions ηs. At lower
ηs, the relaxation time exhibits a sharp growth upon increasing ηc,
i.e., a feature of a fragile glass former, whereas at higher ηs, the
relaxation time display relatively slow growth with ηc, suggesting
a strong glass former.
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FIG. 22. Variation of kinetic fragility κ as a function of ηs.

The theory outlined in Sec. II uses the static pair correlation
function gαγ (R) to calculate the number of particles which
form (nonchemical) bonds with a central particle. The number
of these particles increases rapidly on lowering the tempera-
ture and on increasing the density due to an increase in the
number of shells surrounding the central particle and an in-
crease in values of maximum and minimum of each shell (see
Fig. 1). Depending upon their energies the bonded particles
are divided into two subsets; (i) particles which form long-
lived (l−) bonds and remain trapped in the potential shells,
at least, until the activated processes can restore diffusive
motion, and (ii) particles which form metastable (m−) bonds
with the central particles and exhibit wide ranges of spatial
and temporal dynamics. A CRC is formed by a central particle
with its neighbors of (l ) particles. The particles in a CRC
are distributed in coordination shells surrounding the central
particle and may share the space with metastable particles.
The CRC differs from the Adam and Gibbs [58] “cooper-
atively rearranging region” which is taken to be a compact
structure [58,59]. For an event of relaxation to take place, the
CRC has to reorganize irreversibly, the energy involved in this
rearrangement is the energy with which the central particle
is bonded with l particles. It may, however, be noted that a
CRC is embedded at the center of a much larger cluster of m
particles. Since m particles are loosely bonded with the central
particle, they move individually or in a group of a few particles
on a timescale much smaller than τα without affecting the
structure of CRC. However, when the CRC reorganizes at
timescales commensurate with τα , by moving its particles it
may trigger the reorganization of all particles of the cluster
turning into a large cluster of mobile particles. Therefore, in
simulation as well as in experiments, one may see relaxation
governed by rapid sporadic events characterized by the emer-
gence of a relatively large and a compact cluster of mobile
particles [60,61].

Thus, in addition to the cooperativity of relaxation defined
in terms of the number of particles in a CRC, a larger and
relatively more compact cluster consisting of l and m particles
provides another length scale of the glassy dynamics. This
length scale seems to be in agreement with the dynamics het-
erogeneity measured by the four-point susceptibility function
χ4(t ) [62–65]. The function χ4(t ) at its maximum measures
the volume on which the dynamical processes relevant to
structural relaxation at time t � τα are correlated. However,
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values of χ4(t ) determined from simulations are found (see,
e.g., Ref. [65]) to depend on the microscopic equation of
motion of the system (Newtonian vs Brownian) and on the
statistical ensemble. These subtle issues make the analysis
of the four-point susceptibilities somewhat ambiguous, espe-
cially when estimates of cooperative lengths of relaxation are
sought.

A comparison of values of τα/τ0 as a function of pack-
ing fraction ηc for a binary mixture of species a and b (see
Fig. 19) shows that our theory gives a very good account
of the activated dynamics of glass-forming fluids. When sol-
vent is added to the system the dynamics get affected. The
solvent particles which distribute around colloidal particles
affect the local structure and, therefore, the cage [potential
well βwαγ (R)] that arrests particles to form CRC. This is
evident from Fig. 15. where number of particles in a CRC
is plotted as a function of ηc as well as a function of ηc/ηg

at ηs = 0, 0.1, and 0.2. From the results of these and other
figures, we conclude that solvent has a significant effect on
the size of the CRC and, therefore,on the activated dynamics
and on the relaxation time τα .

Taken together, the results reported above show that solvent
can be used as a control parameter to fine-tune the micro-
scopic structural ordering of colloidal particles and, therefore,
the emergence and size of cooperatively reorganizing cluster
(CRC) that governs the glassy dynamics. Our findings suggest
that a small variation in the concentration of the solvent can
create a bigger change in kinetic fragility in hard-sphere col-
loidal systems which highlights a wide variation in behavior,
ranging from fragile to strong glasses. The underlying cause
for this change is the change in the size (number of particles)
of CRC formed by localized particles. Based on the results
reported in previous papers [44–46] and this one we conclude
that the CRC which is determined from the static pair corre-
lation function and the fluctuations embedded in the system is
probably the sole player in the physics of glass transition.
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APPENDIX

A self-consistent iterative procedure used in calculation
is based on the method described in Ref. [53]. For known
values of S̃ss(�r, �r′) and hαγ (R) Eq. ((3.24)) is solved with the
help of a suitable closure relation to find hαs(r) and c̄αs(r).
Equation ((3.24)) is rewritten as

hαs(r) =
∑

γ

[∫
d �r′S̃ss(�r, �r′)c̄γ s(�r′) + ρs

×
∫

d �r′
∫

d �Rγ S̃ss(�r, �r′)c̄γ s(�r′, �Rγ )hαγ ( �Rα, �Rγ )

]
,

(A1)

where

S̃ss(�r, �r′) =
∫ 1

0
dλ Sss(�r, �r′; λ),

and

Sss(�r, �r′; λ) = δ(|�r − �r′|) + ρs(λ)hss(�r, �r′; λ). (A2)

Since volume ηcV occupied by colloidal particles is not
available to solvent particles, the density of solvent in the
mixture effectively becomes ρ∗

s = ρs/(1 − ηc). In view of this
we define ρs(λ) = ρs/(1 − ληc) and calculate S̃ss from (A2).
Thus,

S̃ss(�r, �r′) =
∫ 1

0
dλ{δ(r̄ − r̄′) + ρs(λ)hss[�r, �r′; ρs(λ)]},

= Sss(�r, �r′) +
∫ 1

0
dλ{ρs(λ)hss[�r, �r′; ρs(λ)]

− ρshss(�r, �r′; ρs)}, (A3)

where the first term on the right-hand side of the above
equation corresponds to the linear response approximation
and the second term correction to the density-density cor-
relation function of solvent due to the presence of colloidal
particles.

Equation (A1) now has three unknowns; hαs(r), c̄αs(r),
and hαγ (R). The function hαγ (R) is calculated from effective
potential Uαγ (R) using the OZ equation of binary mixtures.
To solve (A1) we used closure relation [53],

gαs(r) = 1 + hαs(r) = g(p)
αs (r)

[
1 + Yαs(r) − Y (p)

αs (r)
]
, (A4)

where Yαs(r) = hαs(r) − c̄αs(r). The quantities with super-
script (p) represent values of previous colloidal density ρα .
In the limit ρα → 0 (A1) reduces to

hαs(r) =
∑

γ

∫
d �r′S̃γ s(�r, �r′)c̄γ s(�r′), (A5)

which is the OZ equation. It is solved using a closure relation
for h(0)

αs (r) and c(0)
αs (r) where the superscript zero is used to

indicate that these values belong to the limit ρα → 0. As
ργ is increased the role of second term of (A1) becomes
important. We have formed a grid of ργ with small spacing
and used results of lower density as input to calculate for
higher density using relation (A1). For the determination of
hαγ (R) from known Uαγ (R) we used the monocomponent OZ
equation,

hαγ (R) = cαγ (R) +
∑

k

ρk

∫
dR̄′ hαk (|R̄ − R̄′|)ckγ (R′),

(A6)
and a closure relation,

gαγ (R) = g(bm)
αγ (R) exp

[−{
vαγ (R) − v(bm)

αγ (R)
}

+Yαγ (R) − Y (bm)
αγ (R)

]
. (A7)

which is the RHNC relation where reference terms corre-
spond to binary colloidal mixture interacting via pair potential
uαγ (R). The value of g(bm)

αγ (R) is found from IET using
the Rogers-Young [57] closure relation as described in the
text.

The functions χ̄ss(�r, �r′) are calculated from the relation,

χ̄ss(�r, �r′) = 2ρs

∫ 1

0
dλ(1 − λ)[δ(|�r − �r′|)

+ ρs(λ)hss(�r, �r′; λ)]. (A8)
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