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Contrasting pseudocriticality in the classical two-dimensional Heisenberg and RP2 models:
Zero-temperature phase transition versus finite-temperature crossover
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Tensor-network methods are used to perform a comparative study of the two-dimensional classical Heisenberg
and RP2 models. We demonstrate that uniform matrix product states (MPSs) with explicit SO(3) symmetry
can probe correlation lengths up to O(103) sites accurately, and we study the scaling of entanglement entropy
and universal features of MPS entanglement spectra. For the Heisenberg model, we find no signs of a finite-
temperature phase transition, supporting the scenario of asymptotic freedom. For the RP2 model we observe
an abrupt onset of scaling behavior, consistent with hints of a finite-temperature phase transition reported in
previous studies. A careful analysis of the softening of the correlation length divergence, the scaling of the
entanglement entropy, and the MPS entanglement spectra shows that our results are inconsistent with true
criticality, but are rather in agreement with the scenario of a crossover to a pseudocritical region which exhibits
strong signatures of nematic quasi-long-range order at length scales below the true correlation length. Our results
reveal a fundamental difference in scaling behavior between the Heisenberg and RP2 models: Whereas the
emergence of scaling in the former shifts to zero temperature if the bond dimension is increased, it occurs at
a finite bond-dimension independent crossover temperature in the latter.
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I. INTRODUCTION

The classical O(N) models are among the most studied sta-
tistical mechanics models and serve as paradigmatic examples
of different types of critical behavior of spin systems at equi-
librium [1]. Especially the two-dimensional versions remain
of particularly great interest: Whereas the two-dimensional
Ising model (N = 1) serves as the prototypical system ex-
hibiting a symmetry breaking phase transition, this symmetry
breaking is forbidden for all models with N > 1 by virtue
of the Mermin-Wagner theorem [2]. This, however, does not
rule out a finite-temperature phase transition, as for the XY
(N = 2) model a topological Berezinsky-Kosterlitz-Thouless
(BKT) transition separates the gapped phase from a low-
temperature critical phase [3,4]. The N = 3 Heisenberg model
on the other hand is thought to exhibit asymptotic freedom,
making it an ideal testing ground for uncovering some of the
nonperturbative aspects of quantum chromodynamics.

In this work we investigate the latter model in a
comparative study with a modification thereof, the RP2

model [5], which was originally introduced to capture the
isotropic-nematic transition in liquid crystals. Most known
results for either of these models have been obtained us-
ing high-temperature expansions, Monte Carlo simulations
and field-theoretical perturbative renormalization group (RG)
treatments. However, despite an extensive list of works on
the topic, several fundamental questions remain largely un-
settled. The purpose of this work is to shed light on one of
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these questions, namely, whether or not the two-dimensional
RP2 model exhibits a finite-temperature phase transition to
a critical low-temperature phase with quasi-long-range order
(QLRO). To achieve this we make use of an entanglement-
based approach which provides access to aspects of these
models in an entirely different manner from the established
methods mentioned above, namely, the framework of tensor
networks [6–8]. This approach gives a precise characterization
of the entanglement structure of the leading eigenvectors of
the transfer matrix, works directly in the thermodynamic limit
and allows, in combination with appropriate entanglement-
scaling techniques, for a fine-grained determination of the
critical behavior in these models.

Following the recent successful tensor-network studies of
the XY model [9–11], we use the formalism of boundary
matrix product states (MPS) [12–14] for the variational char-
acterization of the leading eigenvalue and eigenvector of
the row-to-row transfer matrix, and make use of the theory
of entanglement scaling [15–19] to characterize the scaling
behavior of the Heisenberg and RP2 models in the low-
temperature region. A similar approach was recently pursued
for the case of the Heisenberg model in Ref. [20].

The outline of this paper is as follows. We start with
an overview of the Heisenberg and RP2 models in Sec. II.
We proceed in Sec. III by writing the partition function of
both models as a two-dimensional tensor network, as well
as providing some details on our boundary-MPS approach
for its contraction. In Sec. IV we establish the validity of
our approach by computing thermodynamic quantities in both
models and comparing to known Monte Carlo results. Sec-
tion V details a study of the correlation length, confirming
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a drastic difference in its qualitative behavior for the two
models. This observation is explored further in Sec. VI, where
it is characterized in terms of a fundamental difference in
scaling behavior of the entanglement entropy. Combined with
an investigation of the entanglement spectrum, these results
lead to a characterization of the observed signatures of QLRO
in the RP2 model. We conclude in Sec. VII by summarizing
our results and providing some perspective on future related
work.

II. MODELS

The two-dimensional Heisenberg model is comprised of
three-component classical spins of unit length placed on the
sites of a square lattice which are subject to a nearest-neighbor
interaction of the form

HHeis = −
∑
〈i j〉

�si · �s j . (1)

This model possesses a global O(3) symmetry, as its Hamilto-
nian is invariant under rotations and reflections of all spins. It
is generally accepted, based on a perturbative RG description
of the zero-temperature continuum limit, that this model is
asymptotically free with a nonperturbatively generated mass
gap [21,22]. Analytic expressions for the exponential diver-
gence of the correlation length near the zero-temperature fixed
point have been put forward [23], and these results have been
previously confirmed by Monte Carlo studies to some degree
[24–26]. Yet it has been noted that truly good agreement with
asymptotic scaling can only occur at very large scales [27],
making the direct verification of the presence of asymptotic
freedom in numerical approaches a challenging task. More-
over, some conflicting results questioning the validity of the
perturbative RG results with respect to the actual lattice model
have surfaced over the past decades [28–32].

The two-dimensional RP2 or Lebwohl-Lasher model [5]
consists of a modification of the Heisenberg interaction to the
form

HRP2 = −
∑
〈i j〉

(�si · �s j )
2, (2)

which possesses an additional local reflection symmetry in
addition to the global O(3) symmetry. This local symmetry
effectively reduces the phase space of the model to the real
projective plane, RP2. As the RP2 manifold has a nontrivial
first homotopy group, π1(RP2) = Z2, the model hosts sta-
ble topological defects, in contrast to the Heisenberg model.
Whereas the phase diagram of the Heisenberg model is more
or less agreed upon, the situation for the RP2 model is much
less established. One reason for this continuing debate orig-
inates from the three-dimensional case: From a perturbative
point of view the Heisenberg and RP2 models are equivalent
and should therefore belong to the same universality class
[23], yet Monte Carlo studies have established that the three-
dimensional RP2 model exhibits a weakly first-order phase
transition as opposed to a continuous transition, which would
be consistent with the three-dimensional Heisenberg univer-
sality class [5]. Similarly, while the perturbative field-theory
treatment predicts the two-dimensional RP2 model to have a
nonvanishing mass gap everywhere, if Z2 vortices correspond

to a relevant perturbation in two dimensions their existence
might alter the nonperturbative properties of the model. In
particular, this could open up a path to an extended critical
region via a topological transition, similar to what happens in
the two-dimensional XY model.

Indeed, several previous results provide evidence for a
transition to a critical low-temperature phase with QLRO
[33–39]. At the same time, numerical arguments against
QLRO have also been given, either arguing that there is
no finite-temperature phase transition [40,41] or pointing to-
wards a weakly first-order transition [42]. More recently,
additional arguments against the occurrence of QLRO have
arisen from careful considerations of scaling theory [43–45]
and novel analytical approaches [46,47]. In addition to this
finite-temperature debate, there has been an associated discus-
sion on the asymptotic scaling in the zero-temperature limit.
While some authors claim that the additional local symmetry
is irrelevant and therefore the zero-temperature behavior in
the RP2 model is controlled by the O(3) fixed point [48–50],
others argue that Z2 vortices constitute a relevant perturbation
leading to the existence of a distinct zero-temperature RP2

fixed point [45,51–53].
While the direct verification of the asymptotic zero-

temperature behavior of the RP2 model falls beyond the scope
of this work, we will offer a characterization of the sig-
natures of criticality observed in numerical studies of the
low-temperature region. In relation to this problem we men-
tion here two relevant models which exhibit similar behavior.
The first is the classical fully frustrated antiferromagnetic
Heisenberg model on the triangular lattice, which also hosts
stable topological Z2 defects. Here too, it was established
that the nontrivial topological content has a dramatic effect
on the behavior of the system [54]. While previous works have
alluded to a vortex-mediated low-temperature phase transition
[55,56], there remains uncertainty whether this constitutes a
phase transition in the true sense [57,58]. In particular, while
the correlation length is thought to be finite everywhere, it
was shown to be enormous near the conjectured transition
point [59], making it difficult to distinguish from criticality.
Secondly, there is the quantum bilinear-biquadratic spin-1
Heisenberg chain, for which there is a related discussion on
the possible occurrence of nematic QLRO in the vicinity of
the SU(3) point of the phase diagram. While the general
consensus leans towards the absence of a nematic phase,
possible explanations for the observed signatures of criticality
will prove highly relevant to the interpretation of our results
[60–62].

Indeed, it has been suggested that the contradicting results
obtained for the RP2 model might be explained by the ab-
sence of true QLRO, but rather by a sharp finite-temperature
crossover to a pseudocritical region with an associated drastic
change in vortex density [39,42–44], similar to what was
suggested in the triangular-lattice antiferromagnet. A possible
mechanism explaining the onset of this pseudocritical behav-
ior at a seemingly size-independent crossover temperature
may be found in Ref. [50]. Here the authors argue that the
observed pseudoscaling is due to the proximity of the line of
RP2 models to a novel RG trajectory and its associated fixed
point which lie just outside of the model parameter space.
Such a scenario would indeed give rise to the existence of a
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size-independent crossover temperature below which scaling
behavior originates. In a similar vein, proximity to a true
critical phase has been recently suggested as the cause for the
observed pseudocriticality in the bilinear-biquadratic chain
[62]. Our results turn out to be consistent with such a scenario.
We also note the possibility that such a fixed point outside the
model parameter space may be situated at a complex coupling,
as proposed in Ref. [63].

III. METHODOLOGY

We start by providing a broad overview of our framework
in this section; readers familiar with symmetric boundary-
MPS methods may skip ahead to further sections. All
technical details can be found in Appendix A.

In order to study the statistical-mechanics models in
Eqs. (1) and (2), we must first write their partition function
as the contraction of a tensor network directly in the ther-
modynamic limit. The relevant partition function at inverse
temperature β = 1/T reads

Z =
(∏

i

∫
d�i

4π

)⎛
⎝∏

〈i j〉
eβ(�si ·�s j )p

⎞
⎠, (3)

where p = 1 or p = 2 for the Heisenberg and RP2 models
respectively, and d�i = sin θidθidφi represents the integra-
tion measure over the spin configurations at site i. In order to
arrive at a network contracted over discrete indices, we apply
a duality transformation which maps the continuous angle
variables appearing in Eq. (3) to the irreducible representation
of O(3) [64,65]. This is achieved by performing a character
expansion of the Boltzmann weights in terms of spherical
harmonics

eβ(�si ·�s j )p =
∑

�

f�(β )
�∑

m=−�

Ȳ�m(θi, φi )Y�m(θ j, φ j ). (4)

The expansion coefficients f�(β ) are defined in terms of Leg-
endre polynomials P�(x),

f�(β ) = 2π

∫ 1

−1
dx P�(x)eβxp

, (5)

and decay rapidly with increasing angular momentum �. After
performing this expansion the angle variables can be inte-
grated out at each site individually, resulting in an expression
for the partition function of the form

(6)

The fundamental object in this expression is the four-leg
tensor

(7)

where each leg is labeled by an angular momentum and a mag-
netic quantum number which are contracted over to obtain the
total partition function, and the arrows indicate the direction
of these charges. For an explicit expression, see Appendix A.

In order to contract the partition function we consider the
corresponding row-to-row transfer matrix

(8)

which can be viewed as an operator acting on an infinite
one-dimensional chain. The value of the partition function is
therefore entirely determined by the leading eigenvalue �(β )
of this operator, which scales as the number of sites per row
�(β ) = λ(β )Nx . A well-established method for determining
the leading eigenvalue of a one-dimensional transfer matrix is
to approximate the corresponding eigenvector, or fixed point,
as an MPS [12]. As we are dealing with a translation-invariant
operator, we make use of a uniform MPS characterized by a
single tensor A to parametrize the fixed point directly in the
thermodynamic limit,

(9)

The dimension D of the virtual legs of the tensor A is a control
parameter, called the bond dimension, that affects how well
this variational ansatz can capture the true physical properties
of the system. Note that we have added arrows on the virtual
legs as well, in anticipation of the underlying symmetry struc-
ture of the local MPS tensor. The fixed-point MPS must then
satisfy

(10)

For the problem at hand, the transfer matrix is Hermitian
by construction. This allows us to reformulate the task of
finding the optimal MPS tensor A as a variational optimiza-
tion problem for the corresponding free energy density. This
optimization problem can be solved efficiently using the vari-
ational uniform MPS (VUMPS) algorithm [13,14,66].

In the tensor-network representation, the global O(3) sym-
metry at the level of the Hamiltonians is translated into a
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symmetry of the local tensor O,

(11)

where Ug is the representation of an arbitrary rotation or
reflection g ∈ O(3). The Mermin-Wagner theorem now pre-
cludes the breaking of a global continuous symmetry at finite
temperature in both models, implying that the fixed point
MPS of the transfer matrix must be invariant under any global
rotation g ∈ SO(3). By virtue of the fundamental theorem of
MPS [8,67], this in turn leads to a symmetry constraint on the
local MPS tensor of the form

(12)

where vg is a (possibly projective) representation of SO(3).
Making use of the fact that the faithful representations of
SO(3) correspond to the integer representations of SU(2),
while its projective representations correspond to the half-
integer representations of SU(2), this means that all tensors
under consideration are fully SU(2) invariant. As such, they
possess a block structure where each block is labeled by
the irreducible representations of SU(2) on each leg of the
corresponding tensor. By exploiting this inherent block struc-
ture and automatically taking into account the corresponding
symmetry constraints the efficiency of all tensor manipula-
tions is greatly improved, allowing access to effective bond
dimensions that are out of reach for conventional dense tensor-
network approaches [68–70].

In order to put this framework into practice for the models
at hand, one must first introduce an approximation in the
representation of the partition function. Indeed, the tensor
Eq. (7) has nontrivial entries for any value of the angular
momenta labeling its legs, such that each leg in principle has
an infinite dimension. For the purpose of numerical simula-
tions, all indices must therefore be truncated at a certain cutoff
value �max for the angular momentum on all legs. Due to the
specific structure of the tensor O (cf. Appendix A) such an
approximation does not result in a significant loss of accuracy.
In particular, all results in the main text below were obtained
using �max = 5 for the Heisenberg model and �max = 6 for
the RP2 model. In Appendix C we provide evidence that this
cutoff is indeed sufficient to accurately capture the behavior
of the true untruncated model in the considered temperature
range, as well as show that a more heavily truncated model
gives rise to the same universal behavior.

In our numerical analyses, we optimize several fixed-point
MPSs of the transfer matrix throughout a temperature range
which is compatible with our angular momentum cutoff,
where for each temperature we use MPSs with a variety of
bond dimensions. This is achieved by dynamically distribut-
ing the bond dimensions over charge sectors at the virtual
level up to a given truncation error of the corresponding MPS.

FIG. 1. The (a) free energy density, (b) energy per link, and
(c) specific heat as a function of temperature in the Heisenberg
model. A comparison to the Monte Carlo results of [71] was added
in (b). (d) Convergence of the energy per link with MPS truncation
error at T = 0.55

Systematically lowering this truncation error then gives rise to
an increasing bond dimension, where the minimal truncation
error we employ corresponds to an MPS with a maximal
effective bond dimension of D ≈ 1000. In order to distribute
the bond dimension over the virtual level one must first decide
which spin charges will be used on the virtual indices. While
in principle both integer and half-integer spin charges may
occur on the virtual MPS legs, we observe that using only
integer spins yields superior results over the half-integer case.
Motivation for this choice is provided in Appendix B. We
note here that the occurrence of half-integer spin charges on
the virtual level would indicate the existence of a symmetry-
protected topological phase in the system, but this is therefore
ruled out by our results.

Due to the explicit use of symmetries we were able to
obtain all results shown in this work using a regular desktop
computer with 32 CPU cores and a few 100 GB of RAM,
requiring roughly a month’s worth of computation time in
total.

IV. THERMODYNAMIC QUANTITIES

As a first baseline, we establish the validity of our approach
by computing some thermodynamic quantities and observ-
ables for both the Heisenberg and RP2 models. The way in
which these quantities are obtained is detailed in Appendix A.
In particular, we consider here the free energy density, the en-
ergy per link and the specific heat as a function of temperature,
where the latter is computed as the temperature derivative of
the energy per site. Our results are depicted in Figs. 1 and 2
for the Heisenberg and RP2 models, respectively.

For the Heisenberg model, we observe good agreement of
the energy per link obtained with MPS compared to the Monte
Carlo results of Ref. [71], as shown in Fig. 1(b). In addition,
Fig. 1(d) shows excellent convergence of the energy per link
with MPS truncation error, confirming the ability of uniform
MPS to accurately probe local observables in the model. For
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FIG. 2. The (a) free energy density, (b) energy per link, and
(c) specific heat as a function of temperature in the RP2 model.
A comparison with the results of [42] was added in (b) and (c),
depicting the data obtained using both Boltzmann sampling (B) and
equilibrium ensembles constructed from the density of states (RW).
(d) Convergence of the energy per link with MPS truncation error at
T = 0.35.

the RP2 model we observe a similar agreement with previ-
ous works and adequate convergence of local observables. In
particular, we compare the energy per link and the specific
heat with the, to our knowledge, most recent Monte Carlo
results of Ref. [42]. As can be seen from Figs. 2(b) and 2(c)
we achieve an excellent agreement of our MPS results with
Monte Carlo results obtained using conventional Boltzmann
sampling, while we observe a strong deviation from the results
obtained through a different sampling procedure used in [42]
based on constructing equilibrium ensembles from the density
of states. Finally, we note that the occurrence of a distinct but
rounded peak in the specific heat of the RP2 model has been
previously attributed to the development of nematic order at
short scales associated to the binding-unbinding of Z2 vortices
[56].

V. CORRELATION LENGTH

We proceed our analysis with an investigation of the cor-
relation length, an essential quantity in diagnosing possible
finite-temperature phase transitions. While MPS are generally
known to faithfully capture local quantities as long as the
corresponding bond dimension is increased sufficiently, re-
covering asymptotic properties such as the correlation length
is far less straightforward. By introducing an extrapolation
scheme in terms of a refinement parameter which quantifies
the deviation of the inherently discrete MPS transfer matrix
spectrum from a continuous one, this issue can be overcome,
giving robust access to asymptotic quantities and critical prop-
erties [18,19]. In order to extract the exact correlation length
from our finite bond dimension MPS results we adopt such an
extrapolation procedure introduced in Ref. [18].

FIG. 3. Illustration of the correlation length extrapolation
Eq. (14) for the RP2 model at T = 0.36. While the lowest bond
dimensions clearly fall outside of the proper scaling regime, the inset
shows that restricting to the 10 largest bond dimensions yields a
particularly clean result of ξ = 188 ± 1.

The correlation length of an MPS of bond dimension D is
given by

ξD = 1/ε, where ε = − ln |λ1| (13)

represents the magnitude of the second largest eigenvalue of
the MPS transfer matrix, and we assume a normalized MPS
with |λ0| = 1. Reference [18] details that this latter quantity
scales with the gap between the second and third largest
transfer matrix eigenvalues δ = ln(|λ1|/|λ2|) as

ε = a δb + ε∞, (14)

where ξ = 1/ε∞ is the extrapolated correlation length. For
our purposes, a simple linear relation (b = 1) proved adequate
in all applications. By restricting the eigenvalues λ1 and λ2

to a specific SO(3) charge sector within the symmetric tensor
framework, we can directly probe the correlation length in that
sector. For the Heisenberg and RP2 models we will always
consider correlation lengths in the � = 1 and � = 2 sectors,
respectively, which are the largest correlation lengths and cor-
respond to the relevant spin-spin correlation functions in the
respective models. The extrapolation procedure is illustrated
for the RP2 model at T = 0.36 in Fig. 3.

Using this procedure, we extrapolate the correlation length
in a temperature range compatible with our angular momen-
tum cutoff for both the Heisenberg and RP2 models. The
results are depicted in Fig. 4. We immediately note that for
correlation lengths that exceed ξ ≈ 103 sites, the correspond-
ing extrapolations are quite unreliable. This is caused by the
fact that the corresponding MPS fixed points are highly en-
tangled, which results in a significant increase in the bond
dimension required to access similar values of the refinement
parameter δ as compared to less-entangled fixed points. As
such, we are unable to accurately probe the proper scaling
regime using currently accessible bond dimensions for these
values. For values up to ξ ≈ 103, however, extrapolation re-
sults are unchanged by an increase or decrease in maximal
bond dimension used, indicating that we are able to access the
proper scaling regime. Thus, we may regard values ξ � 103 as
being quasiexact, while values ξ > 103 were added to indicate
changes with temperature in a qualitative manner. From Fig. 4
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FIG. 4. Extrapolated correlation length as a function of tempera-
ture for the (a) Heisenberg and (b) RP2 models.

a stark contrast in the qualitative behavior of the correlation
length with temperature in both models is immediately ap-
parent. While for the Heisenberg model we observe a steady
increase of the correlation length when lowering the temper-
ature, the RP2 model exhibits a very abrupt increase at finite
temperature.

Our results for the Heisenberg model show no sign of
a possible finite-temperature continuous transition in the
temperature range accessible to us, in accordance with the
most broadly accepted scenario that the model is gapped
everywhere [21,22]. From the theoretical side, an analytic
prediction for the asymptotic scaling of the correlation length
at finite temperature has been put forward, which can be
compared to numerically obtained values to directly verify
asymptotic freedom in the lattice model [72]. Although the
values extracted from our MPS results allow for a some-
what agreeable fit to a general exponential divergence of the
correlation length at T = 0, they systematically fall below
the theoretically predicted asymptotic scaling. This is con-
sistent with previous results, where correlation lengths were
also observed to be systematically smaller than the predicted
values, and it was concluded that true agreement with asymp-
totic scaling is only possible at very large correlation lengths
[27,72,73]. To quantify this statement we show in Table I a
comparison of our MPS results, pushed to an effective bond
dimension D ≈ 3000 for the selected temperatures to maxi-
mize accuracy, to the Monte Carlo results of Refs. [74] and
[27]. Our results agree perfectly with the Monte Carlo ones
for higher temperatures, whereas we seem to obtain slightly
smaller correlation lengths at lower temperatures. Note that
we have limited this comparison to values β � 2.2, as our ex-
trapolations begin to exhibit a nonnegligible bond-dimension

TABLE I. Comparison of extrapolated correlation lengths for the
Heisenberg model at large β = 1/T . MPS results using effective
bond dimensions up to D ≈ 3000 are compared to the Monte Carlo
results of Refs. [27,74].

β ξMPS ξMC

1.5 11.06(0.01) 11.04(0.01) [74]
1.6 19.00(0.01) 19.02(0.04) [74]
1.7 34.51(0.01) 34.50(0.02) [74]
1.8 64.67(0.02) 64.79(0.03) [74]
1.9 121.7(0.1) 122.3(0.1) [74]
2.0 227.6(0.3) 230.3(0.9) [74]
2.1 415.1(1.8) 422.7(2.0) [27]
2.2 727.9(4.5) 780.0(4.8) [27]

dependence at even lower temperatures, as discussed in the
previous paragraph. Since asymptotic scaling in the temper-
ature range investigated here would imply larger correlation
lengths than those found in the Monte Carlo studies we
compare to, it is clear from Table I that we can provide no
additional evidence for the scenario of asymptotic freedom
over previous works. However, as it has been established
that true agreement with asymptotic scaling is only expected
to occur at very low temperatures with extremely large cor-
relation lengths which are currently inaccessible using our
methods, we must conclude that our results also do not con-
tradict this scenario. We note that our conclusions here are
largely consistent with those of Ref. [20], where the results of
an analysis based on similar tensor-network methods leaned
more towards the scenario of asymptotic freedom than that of
a finite-temperature transition.

For the RP2 model the situation is drastically different.
First, we observe that the correlation lengths at higher tem-
peratures are several orders of magnitude too small to be
consistent with asymptotic scaling governed by the O(3) fixed
point, in line with previous observations [52]. In fact, at first
sight our results seem to point towards a sharp divergence
of the correlation length at a finite temperature. However,
no single extrapolation could ever conclusively distinguish
whether the correlation length is truly infinite, or rather finite
but extremely large. This issue is aggravated by the fact that
we are only able to reliably extrapolate correlation lengths up
to ξ ≈ 103. As such, it is instructive to investigate precisely
how the correlation length would diverge. Many previous
studies of the RP2 model support the scenario of a topological
phase transition driven by binding-unbinding of Z2 vortices,
leading to a diverging correlation length [34,36–39]. However,
the precise nature of the corresponding divergence in such a
transition remains a matter of discussion. While our results
do not allow for a satisfactory power-law fit, thereby ruling
out the scenario of a second order phase transition, they are
compatible with a divergence

ξ ∝ exp

(
b√

T − Tc

)
, T → T +

c , (15)
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FIG. 5. BKT-type fit (16) to the correlation length divergence in
the RP2 model, giving an estimate Tc = 0.339 ± 0.001.

corresponding to a possible BKT transition. Specifically, we
fit a curve of the form

ln ξ = b√
T − Tc

+ c + d
√

T − Tc (16)

to the extrapolated correlation lengths, where the extra terms
are added to account for deviations away from the critical
point. The result is shown in Fig. 5, yielding an estimated
value Tc = 0.339 ± 0.001 which is in reasonable agreement
with previous estimates [36,37,39,42,45]. However, it is im-
mediately apparent that the agreement with the form (16)
breaks down as the correlation length exceeds ξ ≈ 102, above
which the exponential divergence softens. For the paradig-
matic XY model, a similar analysis yields an impeccable
agreement with the BKT scaling form up to at least ξ ≈ 103

[10]. As our extrapolations are certainly more than reliable
up to these values we conclude that, in spite of the initial
excellent agreement, the deviation of the system from its
initial approach to a divergence provides significant evidence
against a continuous transition at finite temperature. As a
consequence, our correlation-length results are not consis-
tent with the existence of a low-temperature phase with true
QLRO. One could argue that the deviation we observe could
be attributed to approximations, either in the angular momen-
tum cutoff or in the truncation error of the fixed point MPS.
In Appendix C we provide evidence that this is in fact not the
case. We note that a similar deviation from an initial approach
towards divergence has been observed in recent studies of the
RP2 model [42,45] as well as the triangular-lattice antiferro-
magnet [56,58,59], where it has led to a similar conclusion.

We conclude this section by noting that even though a
detailed analysis rules against a true finite-temperature diver-
gence, the fact remains that a sudden and dramatic increase in
correlation length occurs at a well-defined temperature whose
value is independent of the bond dimensions used. This im-
plies that it is a fundamental property of the two-dimensional
RP2 model which merits an explanation. One possible expla-
nation is to interpret this phenomenon as a sharp crossover to
a pseudocritical region due to the vicinity of a true fixed point
just outside the model parameter space [50], as discussed at
the end of Sec. II.

VI. ENTANGLEMENT PROPERTIES AND SCALING

Next we turn to the entanglement properties of the transfer-
matrix fixed points in a more direct sense, by considering the
scaling of their entanglement entropy and the nature of their
entanglement spectra. This approach will further establish the
distinction between the Heisenberg and RP2 models. In addi-
tion, it will allow us to characterize the signatures of criticality
observed in the low-temperature region of the RP2 model in a
way that is consistent with the results of the previous section.

From the study of one-dimensional quantum spin chains
we know that for gapped systems the bipartite entanglement
entropy of the ground state is finite. As such, the entanglement
entropy of a corresponding MPS approximation will saturate
as the bond dimension is increased sufficiently. In contrast,
for a critical system described by a conformal field theory
(CFT), the entanglement entropy of an MPS approximation
to the ground state will scale as a function of its correlation
length as [16]

SD = c

6
ln(ξD) + const., (17)

where c is the central charge of the corresponding CFT. In
more recent studies of the quantum spin-1 bilinear-biquadratic
Heisenberg chain [61,62] it was observed that such a scaling
may also occur in a gapped system at scales below the true
correlation length. That is, a system may exhibit a pseudocrit-
ical region in which it appears critical at “small” length scales,
with an entanglement-entropy scaling (17) governed by an
effective central charge c. In this context the term “pseudo”
denotes an effect which occurs at finite bond dimensions, but
which would disappear if the bond dimension is increased
until the MPS correlation length approaches the true corre-
lation length sufficiently. Here we apply this characterization
of scaling behavior in terms of an effective central charge to
the Heisenberg and RP2 models. A subsequent analysis of the
corresponding results then allows us to distinguish whether
this scaling corresponds to true criticality, or rather indicates
a pseudocritical region.

We begin by considering the entanglement-entropy scal-
ing in the RP2 model at temperatures T = 0.4 and T = 0.3,
chosen respectively above and below the sudden increase
in correlation length diagnosed in the previous section. The
results are depicted in Fig. 6. At the higher temperature
T = 0.4 the entanglement entropy quickly saturates with in-
creasing bond dimension. This is consistent with fact that
the correlation length at this temperature is fairly small, in-
dicating a gapped transfer matrix. At the lower temperature
T = 0.3 we observe a strong agreement with the scaling form
(17), yielding an effective central charge c = 1.82 ± 0.01.
To determine whether this scaling indicates true criticality
or rather corresponds to a pseudocritical region, we study
the change in scaling behavior with changing temperature.
Indeed, for a system exhibiting a phase transition from a
gapped high-temperature phase to a critical low-temperature
phase, such as the XY model, one would observe an abrupt
onset of scaling behavior separating a high-temperature region
with c = 0 from a low-temperature region with a constant c
corresponding to the CFT describing the critical phase [10].
Once again, we contrast the scaling behavior as a function of
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FIG. 6. Scaling of the entanglement entropy as a function of
correlation length in the RP2 model for temperatures (a) T = 0.4
and (b) T = 0.3. The dashed line in (a) represents the extrapolated
correlation length at this temperature. The line in (b) corresponds to
a fit of the scaling form (17).

temperature for the RP2 model with that of the Heisenberg
model. Figure 7 shows the effective central charge obtained
from (17) as a function of the temperature for both models.
An effective central charge c = 0 indicates a saturating entan-
glement entropy, whereas a finite value is consistent with the
occurrence of scaling behavior. This characterization again
reveals a fundamental difference between the two models.

For the Heisenberg model we observe a gradual onset of
scaling behavior around T = 0.55, after which the effective
central charge increases steadily as the temperature is lowered
further. This picture does clearly not correspond to that of a
critical low-temperature phase as sketched above, consistent
with our results in the previous section. We argue that the
observed pseudocritical scaling is caused by the proximity to
the zero-temperature O(3) fixed point. Indeed, the onset of
scaling behavior in the top panel of Fig. 7 is very sensitive to
the bond dimensions considered when extrapolating the effec-
tive central charge using (17). Namely, we observe that when
increasing the maximal bond dimension taken into account
when fitting the effective central charge, the onset of scaling
behavior is shifted towards lower temperatures. We therefore
conjecture that if one would use results for ever increasing
bond dimensions, the effective scaling curve for the Heisen-
berg model would keep shifting towards lower temperatures
until only the true T = 0 critical point remains, with central
charge c = 2 on account of the two Nambu-Goldstone modes
associated with the spontaneous symmetry breaking which
occurs at zero temperature [75]. This conclusion is supported

FIG. 7. Effective central charge as a function of temperature in
the (a) Heisenberg model and the (b) RP2 model.

by studies of the bilinear-biquadratic Heisenberg chain which
report a similar phenomenon when approaching the SU(3)
point [61,62].

Just as with the correlation length, the RP2 model exhibits
a much more abrupt behavior. At the onset of scaling behav-
ior the effective central charge increases sharply towards a
seemingly stable plateau around c ≈ 1.8 as the temperature
decreases further. As stated above, this behavior could be
consistent with a transition towards a critical low-temperature
phase. However, just as with the correlation-length divergence
there are some obstructions towards such a conclusion. First,
the effective central charge does not assume a single fixed
value in the low-temperature region, but in fact increases very
slightly as the temperature is lowered further. In addition,
the specific value c ≈ 1.8 is not expected from any known
field theoretic low energy description of the RP2 model.
Indeed, from perturbation theory one would only expect a
zero-temperature fixed point with c = 2. As such, just as be-
fore we conclude that the observed behavior is not consistent
with true criticality, but rather the signature of a pseudocritical
region. In Appendix C we again provide evidence that the ob-
served scaling is not tainted by cutoff or finite bond dimension
effects.

It is important to note that, even though the observed
scalings in the Heisenberg and RP2 models have been diag-
nosed as arising from pseudocriticality, there is a fundamental
difference between the two models. Indeed, while for the
Heisenberg model we have observed that an increase in max-
imal bond dimension leads to a shift of the effective scaling
curve towards lower temperatures, this is not the case for
the RP2 model. We found that the effective scaling curve for
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FIG. 8. Entanglement spectrum of a fixed point MPS with D =
4780 for the RP2 transfer matrix at T = 0.3. The dashed line shows
a quadratic envelope of the form a�(� + 1) + b.

the RP2 model is robust against an increase in the maximal
bond dimension (cf. also Appendix C). This observation is
consistent with the definite crossover temperature found in
the previous section, and could again be explained by the
proximity to a nearby fixed point outside the model parameter
space.

As a final characterization of the low-temperature region
in the RP2 model we investigate the entanglement spectrum
of the MPS fixed point. As pointed out in Ref. [76], in a true
critical phase the low-lying part of the entanglement spectrum
of a bipartition of the MPS fixed point should correspond to
the energy spectrum of a boundary CFT. In Ref. [10] such
a boundary-CFT spectrum was found with high precision in
the MPS fixed point of the critical XY model. In Fig. 8 we
show the entanglement spectrum of a fixed-point MPS with
bond dimension D = 4780 for the RP2 model at T = 0.3.
As we impose SO(3) symmetry on the MPS, the spectrum
is labeled by the angular momenta appearing at the virtual
level. We immediately note that the lowest-lying branch fol-
lows a quadratic envelope of the form a�(� + 1) + b, which
is indeed a hallmark of a boundary-CFT spectrum. For a
true boundary-CFT spectrum, however, a shift of the different
sectors followed by a rescaling with an overall energy gap
should yield an equidistant spectrum where each level exhibits
a specific degeneracy. This procedure is unsuccessful for the
spectrum in Fig. 8: The levels corresponding to even and
odd integer spins do not coincide, and they exhibit different
degeneracies. By splitting up the even and odd integer spin
sectors we do, however, obtain equidistant spectra, as depicted
in Fig. 9.

In fact, the obtained low-temperature entanglement spec-
trum bears a strong resemblance to spectra encountered in
quantum spin systems with nematic order [61,77], which are
inherently characterized by an alternating pattern of even and
odd-integer spins. We may therefore conclude that the low-
temperature region of the RP2 model carries a strong signature
of nematic QLRO. The slight deviations in the spectrum from
what one would expect from true nematic QLRO further
reinforce our assessment that the low-temperature region in
fact exhibits pseudocritical behavior at length scales below
the true correlation length. This conclusion is supported by
the findings of Ref. [61], where similar signatures of nematic

FIG. 9. Entanglement spectrum from Fig. 8 split into (a) even
and (b) odd integer spin sectors. After a shift of each sector followed
by a global rescaling, we obtain equidistant spectra for even and odd
integer spin sectors, respectively. The dashed lines indicate approxi-
mate energy levels.

QLRO at length scales below the true correlation length were
reported due to the proximity to the SU(3) point.

VII. DISCUSSION AND OUTLOOK

In this paper we have made use of state-of-the-art tensor-
network methods to perform a comparative study of the
two-dimensional classical Heisenberg and RP2 models, with
the main goal of providing a fresh viewpoint on the question
whether the RP2 model exhibits a finite-temperature phase
transition to a quasi-long-range ordered low-temperature
phase. In particular, using uniform MPS with explicit SO(3)
symmetry directly in the thermodynamic limit, we were able
to probe (i) correlation lengths up to O(103) sites accurately,
(ii) the scaling of entanglement entropy, and (iii) universal
features of MPS entanglement spectra, the latter of which are
inaccessible in finite-size Monte Carlo approaches.

For the Heisenberg model we have found no signs of a
finite-temperature phase transition, supporting the scenario of
asymptotic freedom. In the low-temperature region, we have
observed an effective scaling of the entanglement entropy on
length scales that are small compared to the true correlation
length in the system. A much more abrupt onset of scaling
behavior was observed in the RP2 model, hinting towards a
finite-temperature phase transition where the divergence of
the correlation can be fitted to the characteristic BKT form.
A more careful analysis has shown, however, that the diver-
gence of the correlation length softens for values around a few
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hundred sites. The scaling of the entanglement entropy and
the MPS entanglement spectra were shown to exhibit strong
signatures of nematic quasi-long-range order, but were again
found to be inconsistent with true criticality. Therefore, our
findings are in agreement with the scenario of a pseudocritical
region [43–45,50] for the RP2 model. While the scaling of
the entanglement entropy in both models was diagnosed as a
signature of pseudocriticality, our results reveal a fundamental
difference in scaling behavior between the Heisenberg and
RP2 models. While the onset of scaling in the Heisenberg
model depends on the bond dimensions considered, this onset
occurs at a temperature that is bond-dimension independent
in the RP2 model, indicating that this crossover temperature is
an inherent property of the model.

Given the similarity of the issues encountered in studies
of the two-dimensional RP2 model and the fully frustrated
Heisenberg antiferromagnet on the triangular lattice, it could
prove worthwhile to also investigate the latter model with
tensor-network methods. While the framework used in this
work was detailed for the specific case of the square lattice, it
can be readily generalized to lattices of arbitrary coordination
number. When combined with recently developed methods for
tackling frustration in statistical mechanics models using ten-
sor networks [78], this may provide insights into the physics
of the triangular-lattice antiferromagnet as well.

In the future, it will be interesting to consider more general
interaction terms within the tensor-network representation of
O(3) models. Indeed, the transformation in Eq. (4) from the
O(3) group basis to the basis of irreducible representations is
an example of a duality transformation [79]. In that context, it
would be interesting to search for models exhibiting discrete
holomorphicity [80], which might yield integrable models
within the O(3) universality class. Additionally, we can search
for additional, possibly complex, couplings that would drive
the pseudocritical region towards a true critical point.

The success of the tensor-network approach for diagnosing
criticality in classical models with continuous symmetries
serves as a motivation for investigating more exotic types of
criticality. For example, we could study the critical behavior
of the surface of a three-dimensional model. Here we can first
capture the bulk using projected entangled-pair states [81],
after which we can use the methods detailed in this work to
simulate the two-dimensional surface physics. Recent works
on surface critical behavior for O(N) models suggest that a
variety of new exotic scaling phenomena can be expected
[82–84].

We recently learned of a related study of the two-
dimensional classical Heisenberg and RP2 models by Ueda
and Oshikawa [85] using tensor-network renormalization.
Their conclusions largely coincide with ours where the studies
overlap.
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APPENDIX A: FRAMEWORK

We consider a system of three-dimensional classical spins
�si of unit length placed on the sites of a two-dimensional
square lattice L, which interact according to the Hamiltonian

H = −
∑
〈i j〉

(�si · �s j )
p. (A1)

Here p = 1 and p = 2 correspond to the Heisenberg and RP2

models, respectively, and 〈i j〉 labels all links of the lattice.

1. Partition function

The partition function for the system (A1) is given by

Z =
(∏

i

∫
d�i

4π

)⎛
⎝∏

〈i j〉
eβ(�si ·�s j )p

⎞
⎠, (A2)

where β = 1/T represents the inverse temperature and

∫
d�i =

∫ π

0
sin θidθi

∫ 2π

0
dφi, (A3)

�si · �s j = sin θi sin θ j (cos φi cos φ j

+ sin φi sin φ j ) + cos θi cos θ j . (A4)

In order to write this partition function as a tensor network,
we perform a character expansion of the Boltzmann weights
in terms of spherical harmonics [64,65]

eβ(�si ·�s j )p =
∑

�

f�(β )
�∑

m=−�

Ȳ�m(θi, φi )Y�m(θ j, φ j ), (A5)

where the expansion coefficients f�(β ) are defined in terms of
Legendre polynomials P�(x),

f�(β ) = 2π

∫ 1

−1
dxP�(x)eβxp

. (A6)

This expansion gives rise to an expression for the partition
function of the form

Z =
∑

{�i},{mi}

(∏
i∈L

f�i (β )

)(∏
s∈L

F �3m3,�4m4
�1m1,�2m2

)
, (A7)

where the products run over all links i and sites s of the lattice.
The factors F �3m3,�4m4

�1m1,�2m2
for every site are given by

F �3m3,�4m4
�1m1,�2m2

=
∫

d�i

4π
Y�1m1 (θ, φ)Y�2m2 (θ, φ)

× Ȳ�3m3 (θ, φ)Ȳ�4m4 (θ, φ). (A8)
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Using the expression for the fusion of two spherical harmonics in terms of Wigner 3 j symbols

Y�1m1 (θ, φ)Y�2m2 (θ, φ) =
√

(2�1 + 1)(2�2 + 1)

4π

∑
k,n

(−1)n
√

2k + 1

(
�1 �2 k
0 0 0

)(
�1 �2 k
m1 m2 −n

)
Ykn(θ, φ) (A9)

combined with their orthogonality we obtain

F �3m3,�4m4
�1m1,�2m2

= 1

4π

∑
k,n

G(�1, �2, k, m1, m2, n)G(�3, �4, k, m3, m4, n). (A10)

Here we have defined a modified Gaunt coefficient G associated with each fusion or splitting vertex of angular momenta,

G(�1, �2, k, m1, m2, n) = (−1)n

√
(2�1 + 1)(2�2 + 1)(2k + 1)

4π

(
�1 �2 k
0 0 0

)(
�1 �2 k
m1 m2 −n

)

= (−1)�1−�2

√
(2�1 + 1)(2�2 + 1)

4π

(
�1 �2 k
0 0 0

)
〈�1m1, �2m2|kn〉 , (A11)

where we have used the relation between Wigner 3 j symbols
and Clebsch-Gordan coefficients in the last line.

By introducing a local four-leg tensor O,

(A12)

we can write the partition function (A7) as the contraction of
a tensor network,

(A13)

Note that for the RP2 model this tensor only contains even
integer spins on its legs, as f�(β ) = 0 for any odd integer � in
this model.

2. Transfer matrix

The corresponding row-to-row transfer matrix

(A14)

can be viewed as an operator acting on an infinite one-
dimensional chain. The value of the partition function is
therefore entirely determined by the leading eigenvalue �(β )
of this operator which scales as the number of sites per
row, �(β ) = λ(β )Nx . The corresponding eigenvector |〉 is
referred to as the fixed point of the transfer matrix,

T (β ) |〉 = �(β ) |〉 . (A15)

As the transfer matrix (A14) is Hermitian by definition of
the tensor (A12), the eigenvalue problem can be reformulated
in terms of the optimization of a corresponding free energy
density,

|〉 = arg min|〉

(
− 1

β

1

Nx

〈|T (β )|〉
〈|〉

)
. (A16)

For the infinite system at hand, we approximate the fixed point
of the transfer matrix by a uniform MPS characterized by a
single tensor A,

(A17)

The optimal A can then be characterized in terms of the varia-
tional problem

max
A

〈(Ā)|T (β )|(A)〉
〈(Ā)|(A)〉 , (A18)

which we can solve efficiently using the VUMPS algorithm
[13,14,66]. The corresponding free energy density can be
computed as

f (β ) = − 1

β
ln λ(β ), (A19)

where λ is the leading eigenvalue of the channel operator

(A20)

and we assume a normalized MPS

(A21)

3. Symmetries

The models (A1) possess a global O(3) symmetry: They
are invariant under any global rotation or reflection of the
spins. In the tensor-network representation, this global sym-
metry is reflected by the fact that the tensor (A12) is invariant
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under the transformation

(A22)

where Ug is the representation of an arbitrary rotation or
reflection g ∈ O(3). Specifically, an arbitrary rotation g = R
is represented by the matrix

(A23)

with D� the irreducible representation of SO(3) corresponding
to spin �. Similarly, a reflection g = P is represented by

(A24)

While the global rotation symmetry follows automatically
from the Clebsch-Gordan coefficients contained within (A10),
the additional global reflection symmetry is enforced by the
symmetry properties of the 3 j symbols appearing in (A11).
The tensor-network representation of the partition function
therefore explicitly exhibits the full O(3) symmetry comprised
of rotations and reflections. We note that for the RP2 model
the additional local reflection symmetry is also manifestly
preserved in this representation. Since the local tensor (A12)
only contains even integer spins in this model, it is trivially
invariant under the action of (A24) on any of its legs.

As the breaking of a global continuous symmetry is pro-
hibited by the Mermin-Wagner theorem, the fixed point MPS
of the transfer matrix must also be invariant under any trans-
formation of the form,

(A25)

The fundamental theorem of MPS [67] then allows to asso-
ciate this SO(3) invariance to a symmetry property of the local
MPS tensor

(A26)

where vg is a (possibly projective) representation of SO(3).
Specifically, this means that the MPS must transform accord-
ing to a representation of SU(2) on the virtual level. Imposing
the symmetry property (A26) enforces the MPS tensor to
have a certain block structure where each block is labeled
by the irreducible representations of SU(2) on each leg of

the MPS tensor. As the tensor (A12) also has this structure,
all of the numerics can be carried out within the framework
of SU(2) symmetric tensors [68–70]. In this framework a
tensor is explicitly stored in a block diagonal form, where
each block is split up into a degeneracy part and a concate-
nation of Clebsch-Gordan coefficients which corresponds to
the fusion tree associated to that block. For the local tensor
(A12) for example, this degeneracy tensor is readily obtained
by dividing out the two Clebsch-Gordan coefficients that oc-
cur in the expression (A10). By automatically accounting
for symmetry constraints through efficient manipulations of
fusion trees, this block diagonal structure can be exploited
to greatly improve the efficiency of numerical simulations,
allowing access to effective bond dimensions that are out of
reach for conventional dense tensor-network approaches.

As a final remark, we note that the legs of the local tensor
(A12) in principle have an infinite dimension. For the purpose
of numerical simulations, these indices must be truncated at a
certain cutoff value �max for the charge on all legs. This does
not result in a significant loss of accuracy, as the coefficients
(A6) decay rapidly when increasing � for sufficiently large
temperatures. As stated in Sec. III, all results in the main
text were obtained using �max = 5 for the Heisenberg model
and �max = 6 for the RP2 model. At very low temperatures
however, the decay of the f�(β ) occurs more slowly, and there-
fore more charges should be taken into account to accurately
represent the true untruncated model. A motivation for the
validity of our angular momentum cutoff for the temperature
range considered in the main text is given in Appendix C.
While very-low-temperature features cannot be captured in a
quantitatively accurate manner for a strict cutoff, it turns out
that the actual qualitative features are unchanged in heavily
truncated versions of the model. This is also demonstrated in
Appendix C.

4. Local observables and correlation functions

Consider now a single-site observable g(�sμ) which only
depends on the spin at site μ. Its expectation value would take
the form

〈g〉 = 1

Z

(∏
i

∫
d�i

4π

)
(g(�sμ)e−βE ({�si}) ). (A27)

Such a quantity can be readily computed by placing a modi-
fied local tensor at site μ by incorporating the factor g(�sμ) in
the integration (A10) over the angles at that site. However,
for any nontrivial single-site observable g(�sμ) will not be
invariant under rotations. As such, the corresponding modified
tensor cannot be constructed using the symmetric framework.
In addition, the expectation value of such a tensor will al-
ways be identically zero when evaluated using a manifestly
symmetric boundary MPS. Similarly, any correlation function
that is not invariant under global SO(3) transformations will
identically vanish within our framework, consistent with the
Mermin-Wagner theorem.

The interesting observables are therefore those which obey
global rotation invariance. An important class of such observ-
ables are two-point correlation functions of the form h(�sμ · �sν )
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which depend only on the inner product of spins located at sites μ and ν. Their expectation value takes the form

〈h〉 = 1

Z

(∏
i

∫
d�i

4π

)
[h(�sμ · �sν )e−βE ({�si})]. (A28)

By performing a character expansion of h(�sμ · �sν ) in exactly the same way as (A6) and adding the additional spherical harmonics
to the integration over angles at sites μ and ν, this expectation value can be computed by means of two modified local tensors

(A29a)

(A29b)

where

h� = 2π

∫ 1

−1
dxP�(x)h(x), (A30)

and

(M+)�4m4,�5m5
�1m1,�2m2,�3m3

= 1

4π

∑
k1,n1

∑
k2,n2

G(�1, �2, k1, m1, m2, n1) G(k1, �3, k2, n1, m3, n2)G(�4, �5, k2, m4, m5, n2), (A31a)

(M−)�3m3,�4m4,�5m5
�1m1,�2m2

= 1

4π

∑
k1,n1

∑
k2,n2

G(�1, �2, k1, m1, m2, n1) G(�3, k2, k1, m3, n2, n1)G(�4, �5, k2, m4, m5, n2). (A31b)

Using the same boundary MPS that was used to contract the
partition function, any such two-point correlation function can
then be evaluated as

(A32)

For the models (A1) the most relevant correlation functions
are the spin-spin correlation functions,

h(�sμ · �sν ) = (�sμ · �sν )p, (A33)

which, given (A30), are captured in terms of tensors (A29)
where the additional leg carries an angular momentum � = 1
and � = 0, 2 for the Heisenberg and RP2 models respectively.
In addition, we note that for the RP2 model any correlation
function h(�sμ · �sν ) that contains only odd integer powers of
the spin inner product must vanish. Indeed, any odd integer
power in the correlation function would, through the character
expansion, lead to odd integer values of the spin �3 on the
additional leg of the tensors (A29). However, all other legs
carry only even integer spin in the RP2 model. Thus, by
the symmetry properties of the 3 j symbols appearing in the
modified Gaunt coefficients (A11) the tensors (A29) must be
identically zero in such a case. This means that any two-point

correlation function that does not respect the local reflection
symmetry of the RP2 model vanishes by construction.

For the specific case of two-point correlators between
neighboring sites, the character expansion of the correlation
function can be combined with that of the Boltzmann weight
across the same link. This allows to evaluate the correspond-
ing expectation value using a single tensor. For example, for
the energy per link E (�sμ · �sν ) = −(�sμ · �sν )p associated to a
horizontal link connecting neighboring sites μ and ν this
procedure leads to a tensor of the form

(A34)
where

el (β ) = −2π

∫ 1

−1
dxPl (x) xp eβxp

. (A35)

The energy per link can therefore be evaluated as

(A36)
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As a final remark, we note that one can easily obtain
conventional order parameters from the tensor-network rep-
resentation of two-point correlation functions. For the specific
example of spin-spin correlation function, we define the local
expectation value M�m as

(A37)

From this object we can extract an order parameter M as

M =
√√√√ p∑

m=−p

(
Mpm

)2
, (A38)

which is a measure for the amount of long-range order present
in the system. For the Heisenberg model (p = 1) (A37) is
equivalent to the conventional magnetization, while for the
RP2 model (p = 2) it corresponds to the nematic order pa-
rameter [5]. By the Mermin-Wagner theorem these order
parameters must vanish everywhere, but they are used in some
Monte Carlo studies where finite system sizes allow for some
degree of symmetry breaking. Similarly, while these order
parameters are always identically zero when evaluated within
the symmetric tensor framework, they can assume a nonzero
value if symmetries are not explicitly imposed.

APPENDIX B: REPRESENTATIONS ON THE VIRTUAL
MPS LEVEL

Here we motivate our choice to exclusively use integer spin
charges at the virtual MPS level in the simulations presented
in the main text. While in principle both integer and half-
integer spin charges can occur on the virtual level of the MPS
used to contract the partition function (A7), it is fairly simple
to exclude the half-integer case in the current context. As a
first diagnostic, in Fig. 10(a) we depict the entanglement spec-
trum of two MPSs of moderate bond dimension D = 28 which
were optimized for the Heisenberg model at T = 0.6. For one
MPS we impose no symmetries while for the other we impose
SO(3) symmetry using only integer spins on the virtual level.
Whereas the nonsymmetric spectrum can in principle take any
form, the symmetric spectrum will by construction display
odd degeneracies corresponding to integer spin charges. The
exact coincidence of the two spectra in Fig. 10(a) clearly
proves that the true fixed point contains only integer spins on
the virtual level. Fig. 10(b) shows the spectrum of a fixed point
MPS optimized at the same temperature using half-integer
spins on the virtual level. We immediately see that the entire
spectrum apart from the largest value is degenerate. This can
be understood from the fact that the corresponding MPS at-
tempts to imitate an MPS with only integer spins on the virtual
level by consistently matching pairs of half-integer spins in the

FIG. 10. Entanglement spectra of fixed points for the Heisenberg
model at T = 0.6. (a) Spectra of fixed point MPSs (left) without and
(right) with imposing SO(3) symmetry. The different integer spin
sectors in the symmetric spectrum are plotted in different colors.
(b) Spectrum for a fixed point MPS with half-integer spins on the
virtual level.

spectrum. Exactly the same behavior as that shown in Fig. 10
is observed for the RP2 model.

For low temperatures the characterization is less straight-
forward, as a uniform MPS of finite bond dimension on which
no symmetries are imposed will spontaneously break a global
continuous symmetry when close to a critical point. As the
correlation lengths at lower temperatures are enormous in

FIG. 11. Comparison of results for the RP2 model with �max = 6
and �max = 10. (a), (b) The extrapolated correlation length and effec-
tive central charge as a function of temperature. (c), (d) The relative
difference in the free energy density and the energy per link between
both cutoffs as a function of temperature.
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FIG. 12. Results for the Heisenberg model with �max = 2 and a
maximal MPS bond dimension D = 3000, showing (a) the extrap-
olated correlation length and (b) the effective central charge as a
function of temperature.

both models under consideration here, a similar phenomenon
takes place. As such, we can no longer compare to a nonsym-
metric fixed point in order to determine the virtual structure
of the true fixed point. However, it turns out that we can
still exclude half-integer spins by simple arguments. First, an
MPS with half-integer spins on the virtual level systemati-
cally requires a larger bond dimension to achieve the same
truncation error compared to an MPS with integer spins on
the virtual level, implying that it is an inferior variational
ansatz. Second, when using half-integer charges on the virtual
level the fixed points systematically converge to a noninjective
MPS for all temperatures. This implies that these fixed points
are unphysical for the models considered in this work.

APPENDIX C: UNIVERSALITY AND THE EFFECT
OF THE CUTOFF

In this Appendix we provide evidence that the conclusions
drawn in the main text are not tainted by the effect of the
approximations made. First, we motivate that the angular mo-
mentum cutoff �max = 5 and �max = 6 used in the main text
for the Heisenberg and RP2 models respectively are sufficient
to capture the true behavior of the untruncated model. To this
end, we repeat numerics for the RP2 model for a selection
of temperatures using a larger cutoff �max = 10, and compare
the results to the �max = 6 case, as shown in Fig. 11. The
values of local observables such as the free energy density
and the energy per link display a larger relative difference
as the temperature is lowered, up to values ∼10−4. This is
to be expected from the fact that the expansion coefficients
(A6) decay more slowly with increasing angular momentum
as the temperature is lowered. This is also the reason why
T = 0.3 was systematically chosen as the lower bound for the
temperature ranges considered in the main text, as the error
on local observables due to truncation would quickly become
too large below this temperature. Despite minor differences in
local quantities, it can be seen from the top panels of Fig. 11
that the extrapolated quantities for both values of the cutoff
exactly coincide. This proves that the results in the main text

FIG. 13. Results for the RP2 model with �max = 2 and a maximal
MPS bond dimension D = 3000. (a) The extrapolated correlation
length as a function of temperature. (b) A fit of the BKT scaling form
(16) to the correlation length divergence. (c) The effective central
charge as a function of the temperature. (d) The entanglement-
entropy scaling at T = 0.15.

accurately characterize the universal scaling behavior of the
true model. A similar diagnostic for the Heisenberg model
leads to exactly the same conclusion.

Next we show that the nature of the observed scaling
behavior is not affected by the truncation error due to finite
bond dimensions. To this end we repeat numerics for more
severely truncated versions of both the Heisenberg and RP2

models using a cutoff �max = 2, but with an enlarged maximal
bond dimension of D = 3000. The results are shown in Fig. 12
and Fig. 13 for the Heisenberg and RP2 models, respectively.
We immediately note that the qualitative behavior of both
the correlation length and the effective central charge looks
identical to the results obtained with larger cutoff values, but
shifted towards lower temperatures. This implies two things.
First, it means that the universal behavior is not changed by
the cutoff in the representation of the partition function. This
was to be expected, as the truncated models possess the exact
same symmetry as the true untruncated models. Second, it
shows that our conclusions were not affected by the finite
MPS truncation error, as we observe the same behavior using
a larger maximal bond dimension. In particular, we emphasize
the right panels of Fig. 13. The top-right panel shows the exact
same behavior as Fig. 5, namely, an initial approach to a true
BKT divergence followed by the softening of the exponential
increase. The bottom-right panel shows the scaling of the
entanglement entropy with correlation length at T = 0.15 for
a maximal MPS bond dimension of D = 2 × 104, exhibiting
perfect agreement with the scaling form (17) up to correlation
lengths ξ > 4 × 103. This all provides strong evidence that
our conclusions are unaffected by the approximations made.
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