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Nematic ordering in the Heisenberg spin-glass system in three dimensions
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Nematic ordering, where the spins globally align along a spontaneously chosen axis irrespective of direction,
occurs in spin-glass systems of classical Heisenberg spins in d = 3. In this system where the nearest-neighbor
interactions are quenched randomly ferromagnetic or antiferromagnetic, instead of the locally randomly ordered
spin-glass phase, the system orders globally as a nematic phase. This nematic ordering of the Heisenberg spin-
glass system is dramatically different from the spin-glass ordering of the Ising spin-glass system. The system
is solved exactly on a hierarchical lattice and, equivalently, Migdal-Kadanoff approximately on a cubic lattice.
The global phase diagram is calculated, exhibiting this nematic phase, and ferromagnetic, antiferromagnetic,
disordered phases. The nematic phase of the classical Heisenberg spin-glass system is also found in other
dimensions d > 2: We calculate nematic transition temperatures in 24 different dimensions in 2 < d � 4.
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I. INTRODUCTION: NEMATIC ORDER DUE TO
QUENCHED RANDOMNESS

Spin glasses [1–8], broadly defined as systems with frozen
(quenched) disorder that have locally annulling interactions
(frustration), present complex systems with a plethora of
distinctive characteristics. These distinctions include the spin-
glass phase and its signature: chaos under repeated scale
changes [9–11]. The fractal spectrum of spin-glass chaos
has recently been shown to be used as a classification and
clustering tool for the broadest of complex data, including
multigeographic multicultural music and brain signals [12].
The ordering of the spin-glass phase has local fixation within
spatial nonuniformity, the direction and magnitude of the lo-
cal magnetization varying between neighboring points of a
lattice, but the direction of local magnetization being firmly
fixed relative to the local magnetizations of the neighbors.

The above discussion has been in terms of Ising spins,
namely one-component spins, on which the preponderance of
spin-glass research has been done. We find here that for three-
component Heisenberg spins [7,8,13–22], the new ordering
evades the directional fixation: The spins globally align along
a spontaneously chosen axis irrespective of direction, thus
creating a nematic spin phase. Thus, symmetry is globally
broken by the spontaneous choice of a spin axis, but all local
magnetizations are zero.

In previous research on the d = 3 classical Heisenberg
spin-glass systems [7,8,13–22], the existence of a phase tran-
sition has been established by Monte Carlo simulation, but
without our nematic-order characterization. However, as ex-
plained below, the existence of a narrow intermediate chiral
spin-glass phase is controversial. We definitely find a low-
temperature phase of nematic order, dramatically different

from Ising spin-glass order as explained below, in 24 differ-
ent spatial dimensions that we calculated in 2.26 � d � 4,
including d = 3, and no intermediate chiral spin-glass phase.
We find no ordered phase in d = 2, as expected since the
pure Heisenberg ferromagnet or antiferromagnet itself does
not order in d = 2 [23].

II. MODEL AND GENERAL METHOD

The classical Heisenberg spin-glass system is defined by
the Hamiltonian

−βH =
∑
〈i j〉

Ji j �si · �s j, (1)

where β = 1/kBT , Ji j = +|J| or −|J| (ferromagnetic or anti-
ferromagnetic) with probability 1 − p and p, respectively, the
classical spin �si is the unit spherical vector at lattice site i, and
the sum is over all nearest-neighbor pairs of sites.

We solve the classical Heisenberg spin glass by a
renormalization-group transformation that is exact on the
d = 3 hierarchical lattice (Fig. 1) and, equivalently, Migdal-
Kadanoff approximate [28,29] on the d = 3 cubic lattice.
The latter much-used approximation is physically intuitive:
In a hypercubic lattice where an exact renormalization-
group transformation cannot be applied, as an approximation
some of the bonds are removed, which weakens the con-
nectivity of the system and, to compensate, for every bond
removed, a bond is added to the remaining bonds (before
or after the decimation, in two different versions of the
procedure [29]). This step is the bond-moving step and con-
stitutes the approximate step of the renormalization-group
transformation. At this point, the intermediate sites can be
eliminated by an exact integration over their spin values in

2470-0045/2023/107(1)/014116(7) 014116-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5190-681X
https://orcid.org/0000-0002-5172-2172
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.014116&domain=pdf&date_stamp=2023-01-13
https://doi.org/10.1103/PhysRevE.107.014116


EGEMEN TUNCA AND A. NIHAT BERKER PHYSICAL REVIEW E 107, 014116 (2023)

FIG. 1. Construction of the d = 3 hierarchical model used in
this study. A hierarchical model is constructed by repeatedly self-
imbedding a graph into each of its bonds. This hierarchical model
is the d = 3, b = 3 generalization of the original d = 2, b = 2 hier-
archical model introduced in Fig. 2(c) of Ref. [24] in 1979 and is
a member of the most used family of hierarchical models, namely
the so-called “diamond” family. For example, this model family has
been used [25] in the determination of the spin-glass lower-critical
dimension by solving in 23 sequenced dimensions d . The exact
solution of a hierarchical model proceeds in the opposite direction
of its construction [24,26,27].

the partition function, which yields the interaction between
the remaining sites. This is called the (exact) decimation step
and completes the renormalization-group transformation. In
any case, the renormalization-group recursion relations of
the Migdal-Kadanoff approximation are identical to those
of an exact solution of a hierarchical model [24,26,27].
That the Migdal-Kadanoff renormalization-group calcula-
tion is the exact solution on a d-dimensional hierarchical
lattice [11,24,26,27] makes it a physically realizable approx-
imation, for example used in polymers [30,31], disordered
alloys [32], and turbulence [33]. For recent works directly
using hierarchical models, see Refs. [34–46].

This simple, physically intuitive, and easily implemented
renormalization-group transformation has been widely suc-
cessful on different systems, namely on essentially the entire
range of standard and complex systems in the physical dimen-
sions: Among the early achievements were the nonadjustedly
experimentally matching global phase diagrams of surface
systems [47,48] starting with known microscopic potentials
and later work includes the calculation of high-temperature
superconductivity phase diagrams [49]. The lower-critical
dimension dc below which no ordering occurs has been cor-
rectly determined as dc = 1 for the Ising model [28,29], dc =
2 for the XY [50,51] and Heisenberg [23] models, and the
presence of an algebraically ordered phase has been seen
for the XY model [42,50,51]. In q-state Potts models, the
number of states qc for the changeover from second-order
to first-order phase transitions has been correctly obtained in
d = 2 and 3 [52]. In systems with frozen microscopic disor-
der (quenched randomness), dc = 2 has been determined for
the random-field Ising [53,54] and XY models [55], and the
noninteger value of dc = 2.46 for the Ising spin glass [25,56–
61]. In systems with quenched bond (temperature) random-
ness, the changeover from first-order to second-order phase
transitions, with infinitesimal randomness in d = 2 [62–65]
and with a threshold randomness in d > 2 [64,65], has
been calculated. The chaotic nature of the Ising spin-glass
phases [9–11] has been obtained and Lyapunov exponent-
wise quantitatively analyzed, both for quenched randomly

mixed ferromagnetic-antiferromagnetic spin glasses [66–68]
and right- and left-chiral (helical) spin glasses [69–71].

III. RENORMALIZATION-GROUP TRANSFORMATION
FOR THE HEISENBERG MODEL WITH NONUNIFORM

INTERACTIONS

The algebra of this renormalization-group transformation
for discrete spin systems such as Ising, Potts, and clock
models is quite simple. The transformation for the three-
component classical Heisenberg model, with each spin having
two continuously varying sterangles, has only been recently
achieved [23], for systems without randomness, and is not
simple. Here, we generalize this renormalization-group trans-
formation to quenched random systems.

In the first, decimation, step of the renormalization-group
transformation, a decimated bond is obtained by integrating
over the shared spin of two bonds. With ui j (γ ) = e−βHi j (�si,�s j )

being the exponentiated nearest-neighbor Hamiltonian be-
tween sites (i, j) and γi j being the angle between the spherical
unit vectors (�si, �s j ), the decimation proceeds as

ũ13(γ13) =
∫

u12(γ12)u23(γ23)
d�s2

4π

=
∞∑

l1=0

∞∑
l2=0

∫
λ

(12)
l1

λ
(23)
l2

Pl1 (cos γ12)Pl2 (cos γ23)
d�s2

4π
,

(2)

where the Fourier-Legendre series is used,

ui j (γ ) =
∞∑

l=0

λ
(i j)
l Pl (cos γ ), (3)

with the expansion coefficient λ
(i j)
l evaluated as

λ
(i j)
l = 2l + 1

2

∫ 1

−1
ui j (γ )Pl (cos γ ) d (cos γ ). (4)

Expressing the Legendre polynomials in terms of spherical
harmonics,

ũ13(γ13) =
∞∑

l1=0

∞∑
l2=0

l1∑
m1=−l1

l2∑
m2=−l2

λ
(12)
l1

λ
(23)
l2

(4π )2

(2l1 + 1)(2l2 + 1)

×
∫

Y m1
l1

( �s1)Y m1∗
l1

( �s2)Y m2
l2

( �s2)Y m2∗
l2

( �s3)
d�s2

4π
, (5)

evaluating the integral and summing over the resulting delta
functions,

=
∞∑

l1=0

l1∑
m1=−l1

λ
(12)
l1

λ
(23)
l1

4π

(2l1 + 1)2
Y m1

l1
( �s1)Y m1∗

l1
( �s3), (6)

due to occurring Dirac delta functions. Rearranging the spher-
ical harmonics back to Legendre polynomials, we simply
obtain

λ̃
(13)
l = λ

(12)
l λ

(23)
l

2l + 1
. (7)
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The tilde denotes decimated. This procedure is repeated until
the length-rescaling factor b is obtained, namely until b bonds
in a series are replaced by one decimated bond.

In the second, bond-moving step (Fig. 1) of the
renormalization-group transformation,

u′
i j (γ ) = ũA

i j (γ )ũB
i j (γ ), (8)

where Eq. (8) combines two different (due to quenched ran-
domness) interactions, as seen in Fig. 1, between the spins at
sites (i, j). Thus, Fourier-Legendre transforming Eq. (8),

λ′
l = 2l + 1

2

∫ 1

−1
ũA(γ )ũB(γ )Pl (cos γ ) d (cos γ )

= 2l + 1

2

∞∑
l1=0

∞∑
l2=0

λ̃A
l1 λ̃

B
l2

×
∫ 1

−1
Pl1 (cos γ )Pl2 (cos γ )Pl (cos γ )d (cos γ )

=
∞∑

l1=0

∞∑
l2=0

λ̃A
l1 λ̃

B
l2〈l1l200|l1l2l0〉2, (9)

where the bracket notation is the Clebsch-Gordan coefficient
with the restrictions l1 + l2 + l = 2s, s ∈ N; |l1 − l2| � l �
|l1 + l2|. The prime denotes renormalized. This bond moving
is repeated until the total of b(d−1) bonds are moved.

This completes the renormalization-group transformation,
which is thus in terms of the Fourier-Legendre coefficients
λ′

l ({λl}). We have kept at least l = 21 (and up to 49) Fourier-
Legendre coefficients in our numerical calculations of the
trajectories.

IV. RENORMALIZATION-GROUP TRANSFORMATION
FOR THE HEISENBERG MODEL WITH QUENCHED

RANDOMNESS

Having derived the renormalization-group transformation
for nonuniform nearby interactions, we can now proceed with
the solution of the quenched random problem of the spin-glass
Heisenberg system in d dimensions, exactly on hierarchical
lattices and Migdal-Kadanoff approximately on hypercubic
lattices.

For the renormalization-group transformation of the
quenched probability distribution [25,53–55,61,66–72], we
start with a distribution comprising 30 000 local ferromag-
netic and antiferromagnetic interactions as dictated by the
ferromagnetic probability 1 − p given after Eq. (1). From
this group, we randomly select bd interactions and effect the
local renormalization-group transformation described above,
to generate one of the renormalized interactions. We repeat
this random selection and local transformation 30 000 times,
generating 30 000 renormalized interactions and hence the
renormalized quenched probability distribution. Remember-
ing that for each interaction, at least 21 Fourier-Legendre
coefficients are kept, this is a gigantic calculation. In order
to conserve the ferromagnetic-antiferromagnetic symmetry of
the system, the length rescaling factor of b = 3 is chosen. In
the decimation step, b interactions in series are decimated into
one. In the bond-moving step, bd−1 interactions are moved
onto one interaction.

The renormalization-group trajectories (of sets of 30 000
interactions with each interaction determined by 21 Fourier-
Legendre coefficients, thus a total of 630 000 data points
flowing under renormalization group) are effected by repeated
applications of the above transformation. The initial points of
these trajectories are obtained from the Hamiltonian in Eq. (1),
which can be written as

−βH =
∑
〈i j〉

Ji j�si · �s j =
∑
〈i j〉

Ji jcos γi j . (10)

Using the plane-wave expansion for the term in the partition
function involving the two spins,

eJ cos γ =
∞∑

l=0

(2l + 1)il jl (−iJ )Pl (cos γ ) =
∞∑

l=0

λlPl (cos γ ),

(11)
where jl (−iJ ) is a spherical Bessel function and Pl (cos γ ) is
a Legendre polynomial. The middle part in Eq. (11) shows
the spherical Bessel functions as the initial conditions of the
renormalization-group flows.

With no approximation, after every bond moving and af-
ter setting up the initial conditions, the coefficients {λl} are
divided by the largest λl . This is equivalent to subtracting a
constant term from the Hamiltonian and prevents numerical
overflow problems in flows inside the ordered phases.

V. NEMATIC PHASE: GLOBAL ALIGNMENT
SPONTANEOUSLY GENERATED FROM SPIN-GLASS

DISORDER

Under repeated applications of the renormalization-group
transformation of Eq. (9), the Fourier-Legendre coefficients
flow to a stable fixed point, which is the sink of a thermo-
dynamic phase. The sinks of the disordered phase and the
ferromagnetic phase have been discussed and analyzed else-
where [23]. The sink of the ferromagnetic phase is a sharp
central peak at the nearest-neighbor angle γ = 0. The sink
of the antiferromagnetic phase is a sharp central peak at the
nearest-neighbor angle γ = π .

For d = 3 for the classical Heisenberg spin-glass system, a
new phase occurs in the low-temperature quenched-disorder
region of the phase diagram, as seen in Figs. 2 and 3,
where the spin-glass phase is for the Ising system. The sink
of this phase is shown in Figs. 4 and 5. Figure 4 shows,
at the sink, the exponentiated nearest-neighbor Hamiltonian
ui j (γ ) = e−βHi j (�si,�s j ) between sites (i, j) versus the angle γ

between the spherical unit vectors (�si, �s j ). Figure 5 shows,
at the sink, the exponentiated nearest-neighbor Hamiltonian
ui j (γ ) versus the angles θ and φ between (�si, �s j ). It is thus
seen that the neighboring spins align (nearest-neighbor angle
γ = 0) or antialign (γ = π ), globally creating the nematic
phase, with a spontaneous alignment axis along which both
spin directions occur. All points in the nematic phase flow,
under repeated renormalization-group transformations, to this
sink which epitomizes the global ordering of this phase.

The spontaneous nematic axis is spontaneously chosen
isotropically in the three-dimensional spin space of the model.
This characteristic low-temperature high-quenched-disorder
phase is also distinctive in its low-temperature penetration into
the ferromagnetic and antiferromagnetic phases, in contrast
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FIG. 2. Calculated phase diagram of the classical Heisenberg
spin-glass system in d = 3. The phase diagram shows no spin-glass
phase, but at low temperatures an extended nematic phase where the
spins globally align along a spontaneously chosen axis irrespective
of direction. This spontaneous nematic axis is spontaneously chosen
isotropically in the three-dimensional spin space of the model. This
characteristic low-temperature high-quenched-disorder phase is also
distinctive in its low-temperature penetration into the ferromagnetic
and antiferromagnetic phases, in contrast to the spin-glass phase.

to the spin-glass phase. The nematic phase distinctively pen-
etrates the ferromagnetic and antiferromagnetic phases from
higher temperature to its mid-temperature range, where the
boundary drops to zero temperature at very low quenched
randomness (p = 0.05, 0.95). Thus, the nematic phase covers
an unusually broad range between p = 0.05 and 0.95, where
it robustly stretches to finite temperatures.

Thus, it is seen that, in the Heisenberg spin-glass system,
at low temperature, this nematic phase extends wider, from
p = 0.05 to 0.95, as compared with the identically placed
spin-glass phase of the Ising spin-glass system which extends

FIG. 3. Low-temperature portion of the calculated phase diagram
of the classical Heisenberg spin-glass system in d = 3. As more fully
seen here, the phase diagram shows no spin-glass phase, but at low
temperatures an extended nematic phase where the spins globally
align along a spontaneously chosen axis irrespective of direction.
The nematic phase distinctively penetrates the ferromagnetic and
antiferromagnetic phases to its mid-temperature range, where the
boundary drops to zero temperature at very low quenched random-
ness (p = 0.05, 0.95). Thus, the nematic phase covers an unusually
broad range between p = 0.05 and 0.95, where it robustly stretches
to finite temperatures.

FIG. 4. The fixed-point exponentiated potential u(γ ) at the
renormalization-group sink of the nematic phase. The neighboring
spins align (nearest-neighbor angle γ = 0) or antialign (γ = π ),
creating the nematic phase with a global spontaneous alignment axis
along which both spin directions occur. All points in the nematic
phase flow, under repeated renormalization-group transformations, to
this sink which epitomizes the ordering of this phase. This potential
function, in terms of the nearest-neighbor angle γ , is reconstructed
from the Fourier-Legendre coefficients at the renormalization-group
sink.

between p = 0.24 and 0.76 [72]. A similar widening, from
p = 0.24 to 0.76 to essentially p = 0 to 1, is seen [72] in the
Ising spin-glass phase, when thermal vacancies are included,
making domain flipping more favorable, thus eating into the
ferromagnetic (and antiferromagnetic) phases without losing
order. A similar mechanism may be in effect in the present

FIG. 5. The fixed-point exponentiated potential u(γ ) of the sink
of the nematic phase of the d = 3 classical Heisenberg spin-glass
system. This potential function, in terms of the spherical coordinate
angles θ and φ of one spin with respect to the other, is reconstructed
from the Fourier-Legendre coefficients at the sink.
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FIG. 6. Calculated transition temperatures for the nematic phase
(at p = 0.5), squares and right vertical scale, and for the ferromag-
netic phase (at p = 0), circles and left vertical scale, for 24 different
dimensions in 2 < d � 4. No nematic (or ferromagnetic [23]) phase
occurs in d = 2, which is expected.

case, with the continuously varying directions of the Heisen-
berg spins making domain flipping more favorable.

The calculation is readily extended to other spatial di-
mensions, including noninteger dimensions, by varying the
bond-moving factor b(d−1) = 3(d−1) [11,25,52–55,61,67,69].
The nematic phase of the classical Heisenberg spin-glass sys-
tem is thus calculated in d = 2.26, 2.46, 2.63, 2.77, 2.89

dimensions and in dimensions d � 3. Our calculated transi-
tion temperatures, for 24 different dimensions in 2 < d � 4,
are shown in Fig. 6. No nematic (or ferromagnetic [23]) phase
occurs in d = 2, which is expected. Thus, the lower-critical
dimension of the nematic phase is between 2 and 2.26. The
standard spin-glass phase does not occur.

VI. CONCLUSION

We have solved the classical Heisenberg spin-glass system
by renormalization-group theory. In d > 2, in this system with
quenched local randomness, a low-temperature phase with
global order occurs over an unusually wide disorder range
and robustly in the temperature direction, in the form of a
spontaneously chosen spin easy axis, irrespective of spin di-
rection. Thus, a nematic phase occurs in the Heisenberg spin
system with competing ferromagnetic and antiferromagnetic
interactions.
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