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Entropy of rigid k-mers on a square lattice
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Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named
k-mers), which cover completely a square lattice. Our calculations were made considering three different
constructions, using periodical and helical boundary conditions. One of those constructions, which we call profile
method, was based on the calculations performed by Dhar and Rajesh to obtain a lower limit to the entropy of
very large chains placed on the square lattice. This method, so far as we know, was never used before to define
the transfer matrix, but turned out to be very useful, since it produces matrices with smaller dimensions than
those obtained using the usual approach. Our results were obtained for chain sizes ranging from k = 2 to k = 10
and they are compared with results already available in the literature. In the case of dimers (k = 2) our results
are compatible with the exact result. For trimers (k = 3), recently investigated by Ghosh et al., also our results
were compatible, with the same happening for the simulational estimates obtained by Pasinetti et al. in the whole
range of rod sizes. Our results are also consistent with the asymptotic expression for the behavior of the entropy
as a function of the size k, proposed by Dhar and Rajesh for very large rods (k � 1).
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I. INTRODUCTION

We study a system of rigid rods formed by k consecutive
monomers placed on the square lattice. This is a prob-
lem which has a long history in statistical mechanics. The
particular case when k = 2 (dimers) in the full lattice limit,
when the rods occupy all sites of the lattice, is one of the
few exact solutions of interacting models which were obtained
so far [1]. Another aspect of the thermodynamic behavior of
long rodlike molecules was already anticipated by Onsager in
the 1940s: he argued that at high densities they should show
orientational (nematic) order [2], due to the excluded volume
interactions. In a seminal paper, for the case of rods on the
square lattice [3], Ghosh and Dhar found, using simulations,
that for k � 7 at low density of rods an isotropic phase ap-
pears, but as the density is increased a continuous transition
to a nematic phase happens. Evidence was found that close
to the full lattice limit the orientational order disappears at
a density 1 − ρc ∼ k−2. The presence of the nematic phase
at intermediate densities of rods was proven rigorously [4].
Because simulations at high densities of rods are difficult, an
alternative simulational procedure allowed for more precise
results for the transition from the nematic to the high density
isotropic phase [5]. Recent results suggested this transition to
be discontinuous [6].

Here we consider the estimation of the entropy of k-mers
on the square lattice in the full lattice limit, for k � 2. This has
been discussed before in the literature. Baumgärtner [7] gen-
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erated exact enumerations of rods for 2 � k � 12 on L × L
square lattices, but did not attempt to extrapolate his results to
the two-dimensional limit L → ∞. His interest was actually
more focused on the question if the system is isotropic or
nematic in this limit. Bawendi and Freed [8] used cluster
expansions in the inverse of the coordination number of the
lattice to improve on mean field approximations. For dimers
on the square lattice, their result is about 8% lower than the
exact result [1], and there are indications that the differences
are larger for increasing rod lengths k. A study of trimers
(k = 3) on the square lattice using transfer matrix techniques
similar to the ones we use here was undertaken by Ghosh,
Dhar, and Jacobsen [9] and has led to a rather precise estimate
for the entropy. Computer simulations have also been useful in
this field, and estimates for the entropy of k-mers on the square
lattice were obtained by Pasinetti et al. [10] for 2 � k � 10,
besides studying other statistical properties of the high density
phase of the system. Another analytic approximation to this
problem may be found in the paper by Rodrigues, Stilck, and
Oliveira [11], where the solution of the problem of rods on the
Bethe lattice for arbitrary density of rods [12] was performed
for a generalization of this lattice called the Husimi lattice.
These solutions on the central region of treelike lattices may
be seen as improvements of mean field approximations to
the problem. Again there are evidences that the quality of
the estimates decreases for increasing values of k; while the
difference of the estimate for dimers to the exact value is of
only 0.03%, it already grows to 3% when compared to the
estimate for trimers presented in [9].

The approach we employ here to study the problem is
to formulate it in terms of a transfer matrix, as was done
for trimers in [9]. It consists of defining the problem on
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strips of finite widths L with periodic and helical boundary
conditions in the finite transverse direction. The leading
eigenvalue of the transfer matrix determines the entropy of
the system, as will be discussed below. The values of the
entropies for growing widths are then extrapolated to the
two-dimensional limit L → ∞, generating estimates and con-
fidence intervals for each case. For the case of periodic
boundary conditions (pbc), besides using the conventional
definition of the transfer matrix, in which L sites are added
at each application of it, we used an alternative approach,
inspired on the generating function formalism which was
developed by Dhar and Rajesh in [13] to obtain a lower
bound for the entropy of the system. This alternative proce-
dure turned out to be more efficient for this problem than
the conventional one, in the sense that the size of the transfer
matrices were smaller, thus allowing us to solve the problem
for larger widths L. For helical boundary conditions (hbc),
only the conventional formulation of the transfer matrix was
used.

Finally, we already mentioned that the possible orienta-
tional ordering of the rods in the full lattice limit was, for
example, a point which motivated the exact enumerations in
[7]. For dimers, it is known exactly that no orientational order
exists [14], but on the square and hexagonal lattices, which
are bipartite, orientational correlations decay with a power
law [1], while there is no long range orientational order on
the triangular lattice in the same limit [15]. This point is also
investigated numerically for trimers in [9], with compelling
evidence that the dense phase in the full lattice limit is not
only critical but has conformal invariance. As already men-
tioned, so far all indications are that the high density phase
of the system is isotropic on the square lattice, possibly with
orientational correlations decaying with a power law.

This paper is organized as follows. The construction of the
transfer matrices and determination of the leading eigenvalues
and the entropies are described in Sec. II. The numerical
results for the entropies of the rods on strips, the extrapolation
procedure, and the estimates for the entropy of the rods on the
square lattice may be found in Sec. III. Final discussions and
the conclusion are found in Sec. IV.

II. TRANSFER MATRIX, LEADING EIGENVALUES,
AND ENTROPY

The transfer matrix will be determined by the approach
used to describe the transverse configurations of the strips at
different levels, which define the states of lines and columns of
the matrix. The two approaches we used are described below.
We consider a lattice in the (x, y) plane, with 1 � x � L
and 0 � y � ∞. Periodical or helical boundary conditions
are used in the transverse direction, that is, horizontal bonds
are placed between sites (L, y) and (1, y) in the first case
and (L, y) and (1, y + 1) in the second case. Fixed boundary
conditions are used in the longitudinal direction. For periodic
boundary conditions, we use two approaches in order to obtain
the transfer matrix, which we call usual approach and the
profile method. Those two approaches, although defining the
states of the matrix in different ways, will of course produce
exactly the same results for the entropy per site of chains with
length k placed on a lattice with width L. For helical boundary

R2

R 1

y=n−1

y=n

y=n+1

FIG. 1. Example of a possible continuation for a state defined by
vertical bonds in a strip of width L = 4, identified by the reference
line R1, followed by a state connected to it defined by the reference
line R2.

conditions, only the usual approach is used. In the following,
we shall describe each of those approaches.

A. Periodical boundary conditions

In the usual approach, at each application of the transfer
matrix L new sites are incorporated into the lattice, while in
the second approach a variable number of k-mers is added
to the system at each step, so that the ensemble is grand
canonical in this case.

1. Usual approach

This way of building the transfer matrix is the same used
by Ghosh et al. [9] (named “Second Construction”) to study
the case of trimers (k = 3). It was also applied in previous
works by two of the authors [16,17]. As mentioned in those
papers, this method is inspired by the work of Derrida [18],
which applied it to the problem of an infinite chain placed on
a cylinder.

The states which define the transfer matrix in this formu-
lation are determined by the possible configurations of the set
of L vertical lattice edges cut by a horizontal reference line
which is located between two rows of horizontal edges of the
lattice, such as the dashed lines R1 and R2 in Fig. 1. These
states may be represented by a vector, where each component
corresponds to the number of monomers already connected to
it, i.e., those located on sites below the reference line. Thus
the components are restricted to the domain [0, k − 1]. So,
from the information given by this vector, we can find all pos-
sible configurations of the vertical edges cut by the reference
line situated one lattice spacing above, allowing us to define
the transfer matrix of the problem. An illustration of possible
configurations and their representative vectors for pbc can be
observed in Fig. 1, where we have a state defined for the
case k = 3 and L = 4. At the reference line R1, separating
the levels yn−1 and yn, we have the vector |v1〉 = (0, 0, 2, 0),
while at R2, linking the levels yn and yn+1, the configuration
is represented by |v2〉 = (1, 1, 0, 1). We proceed developing
an algorithm to obtain the elements of the transfer matrix,
for given values of k and L. However, we are limited by the
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amount of computational memory and by the time necessary
to compute those elements. For a given value of k, the number
of states grows roughly exponentially with L. Even consid-
ering rotation symmetry, which makes states such |v1〉 =
(0, 1, 0) and |v2〉 = (0, 0, 1) equivalent, and reflection sym-
metry, where |v1〉 = (0, 1, 2, 3) and |v2〉 = (3, 2, 1, 0) can be
treated as the same state, this property imposes an upper limit
to the widths that we are able to study for each rod size, k.

In principle, without considering the reduction of the size
of the transfer matrix due to symmetries, one would suppose
that this size would be equal to kL, but the transfer matrix is ac-
tually block diagonal, each state being associated to one of the
blocks. It happens that the leading eigenvalue always belongs
to the block generated by the state |v0〉 = (0, 0, . . . , 0). So,
instead of determining the entire transfer matrix, we proceed
using the same strategy developed by Ghosh et al. [9] for
trimers, generating the subset of states which starts with the
state |v0〉 and generating all other states connected to it.

Once we compute the transfer matrix, T , to obtain the
value of the entropy per site for the case of gas of monodis-
perse rigid chains with size k in a strip of size L, we may then
compute the dimensionless entropy per lattice site

sL = lim
N→∞

S

NkB
= lim

N→∞
ln �, (1)

where N = L� is the number of the sites and � is the number
of configurations of the rods of size k placed on the strip. So,
that number is related with the transfer matrix as � = Tr(T �)
and, if λ1 is the largest eigenvalue of T , we get, in the ther-
modynamic limit � → ∞:

sL = 1

L
ln λ1. (2)

So, to obtain the entropy of a given width L, we should
determine the largest eigenvalue for the transfer matrix. Fortu-
nately, the typical transfer matrix is always very sparse, which
allows us to use a method such as the power method, so that
the determination of this eigenvalue becomes a possible task
for quite large widths.

2. Profile method

This alternative method of defining the transfer matrix is
inspired on the generation function approach used by Dhar
and Rajesh to obtain lower bounds for the entropy of k-mers
in the full lattice limit [13]. It is convenient in this case to
consider the dual square lattice, whose center of elementary
squares corresponds to sites in the lattice of the previous
section, and represent the k-mers as k × 1 rectangles on this
lattice. Unlike the usual approach, where L sites are added
at each multiplication of the transfer matrix, in this method a
variable number of k-mers is added at each step. We consider
the profile of the upper end of the strip at a particular point
in filling it up with rods, such as the one shown in Fig. 2, as
defining the states to build the transfer matrix. For a particular
profile, we define the baseline as the horizontal line passing
through the lowest points of the profile. We then consider
the operation of adding rods to all points in the baseline, so
that a new baseline is generated at a level at least one lattice
parameter higher than the previous one. There may be more
than one way to accomplish this, involving different numbers

FIG. 2. Illustration of one step of the process of filling the strip of
width L = 7 with trimers (k = 3). The initial profile is the thick black
line and its baseline is at the level pointed by the black arrow. The
height profile in this case will be (0,0,0,0,1,1,0); notice that there are
two steps (5 and 6, from left to right) which are at the same height in
both profiles. One possibility is to aggregate one horizontal rod (red
on line) and two vertical rods (yellow on line). The new baseline is
pointed at by the blue arrow and the new profile will be represented
by (0,0,2,2,0,0,0). The contribution of this configuration is z3.

of added rods. We will denote by z the fugacity of one rod,
so that the contribution to the element of the transfer matrix
corresponding to a particular choice of new rods added to
the strip will be znr , where nr is the number of new rods
added to the strip. Notice that no k-mer will be added which
will not have at least one monomer located on the baseline.
The profiles, which define the states of the transfer matrix,
may be represented by a vector with L integer components,
ranging between 0 (the intervals on the baseline) and k − 1.
Thus, in general, there will be kL possible states. However, as
mentioned before, this general transfer matrix will be block
diagonal, and as was done before for the case of trimers [9]
we will restrict ourselves to the subset of states which include
the horizontal profile (0, 0, . . . , 0), since in all cases where we
were able to consider all profiles the leading eigenvalue of the
transfer matrix was found in this block.

In the grand-canonical ensemble we are considering, let
M be the number of times the transfer matrix is applied. In
the thermodynamic limit M → ∞ the partition function YM (z)
will be determined by the leading eigenvalue λ1 of the transfer
matrix YM (z) ≈ λM

1 , so that the thermodynamic potential will
be

�(T,V, μ) = −kBT ln YM (z) = −kBT M ln λ1(z), (3)

where z = eβμ, with μ being the chemical potential of a rod.
The entropy will be given by the state equation

S(z) = −
(

∂�

∂T

)
M,μ

= kBM

[
ln λ1(z) − z ln z

1

λ1(z)

∂λ1(z)

∂z

]
(4)

and the total number of rods will be

Nr (z) = −
(

∂�

∂μ

)
T,M

= M
z

λ1

(
∂λ1

∂z

)
. (5)
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The dimensionless entropy per lattice site occupied by rods
will then be

s(z) = S(z)

kBNr (z)k
= ln λ1(z)

kz
λ1

(
∂λ1
∂z

) − ln z

k
. (6)

In the grand-canonical ensemble, the remaining extensive
variable of the potential is usually the volume. The number of
rods will be different in the configurations which contribute
to the partition function, and by construction they occupy the
lower part of the lattice in a compact way. For simplicity, let
us consider widths L that are multiples of k. We then see that,
for a given value of M, the height H of the region occupied
by the rods will be in the range [M, kM], so that the volume
should be at least equal to L × kM. Actually, it could be fixed
at any value above this one without changing the results. This
means that this condensed phase of k-mers actually coexists
with the part of the lattice which is empty, and since the
grand-canonical potential of the coexisting phases should be
equal we conclude that �(T,V, μ) = 0, because this will be
the potential of the phase which corresponds to the empty
lattice. In other words, we recall that the grand-canonical
potential is proportional to the pressure (force per unit length
in the two-dimensional case), which should be the same in the
coexisting phases. This condition of coexistence determines
the activity of a rod

λ1(zc) = 1, (7)

and substitution of this restriction into Eq. (6) leads to the
final result for the entropy per site occupied by the rods in
this formulation of the transfer matrix:

sL = − ln zc

k
. (8)

In summary, in the formulation where the states are deter-
mined by the height profile of the k-mers in the strip, we solve
numerically Eq. (7) for the activity zc which corresponds to
a vanishing pressure of the condensed phase of rods and then
determine the entropy per site of this phase using Eq. (8).

It is then interesting to consider explicitly the simplest non-
trivial case using the profile method, which is L = k. Starting
with the horizontal profile, we notice that for L = k there will
be two possibilities to add a new set of rods and shift the
baseline upwards: either a single horizontal rod or k vertical
rods are added, and the new profile is again horizontal in both
cases. Due to the periodic boundary conditions, in the first
case there are L = k different ways to place the horizontal rod.
We thus conclude that there is a single profile state in this case
and the size of the transfer matrix is 1 × 1 so that

λ1 = kz + zk . (9)

We see then that zc is defined by the equation zk
c + kzc − 1 = 0

and the entropy per site will be given by Eq. (8).
We proceeded using both methods described above to cal-

culate the entropy for a set of rod sizes k and growing widths
L. To reduce the size of the transfer matrices, we use rotational
and reflection symmetries of the states. Since we want to ob-
tain estimates for the entropies per site in the two-dimensional
limit L → ∞, it is important to reach the largest possible
widths L for each rod size k. It should be noticed that in
the profile method we have to solve numerically Eq. (7) for

 1
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FIG. 3. Ratio between the number of states of the transfer matrix
considering the usual approach and the profile method. The dashed
lines are just a guide for the eye.

zc, so that the leading eigenvalue λ1 has to be calculated
several times, while in the conventional method only one
determination of the leading eigenvalue is needed. This seems
to indicate that the usual approach should allow us to reach the
largest widths. However, if we compare the numbers of states
(size of the transfer matrices) in both methods, we obtain the
results shown in Fig. 3. We notice that the transfer matrices
are systematically larger for the usual approach, the difference
increasing monotonically with the rod size. Therefore, at the
end the profile method allowed us to reach the largest widths
in all cases, which are determined by the limitations in time
and memory of the computational resources available to us.

B. Helical boundary conditions

An alternative way to define the boundary conditions of
strips of width L is to make them helical. This was already
used by Kramers and Wannier in their seminal paper about
the Ising model [19]. To visualize these boundary conditions,
if we consider the model on a cylinder with perimeter of size
L, the transverse lattice edges are on a helix with pitch L as
seen in Fig. 4. The states are defined, as in the usual approach,
by the number of monomers already incorporated into the rods
on the L + 1 edges cut by a line which divides the strip into
two sectors. In the usual approach, this line, as may be seen in
Fig. 1, is horizontal and cuts L edges, while for helical bound-
ary conditions it is also parallel to the transverse edges for
L steps, ending with a vertical step. This is illustrated by the
dashed line in Fig. 4; at a given step the line starts at point A,
cuts L vertical edges, and finally cuts an additional transverse
edge. All sites below the curve are occupied by monomers.
While for periodic boundary conditions L lattices sites are
added to the system as the transfer matrix is applied (the sites
between lines R1 and R2 in Fig. 1), a single site is added for
helical boundary conditions, the line which defines the new
state starts at point B, and the last two steps of the previous
line are replaced by the dotted steps. For the particular case

014115-4



ENTROPY OF RIGID k-MERS ON A SQUARE LATTICE PHYSICAL REVIEW E 107, 014115 (2023)

B
A

FIG. 4. Strip of width L = 4 with helical boundary conditions
in the transverse direction. The L + 1 lattice edges crossed by the
dashed line, starting at point A and in the direction indicated by the
arrow, define the vector which represents the state at this point. An
additional site is incorporated when the transfer matrix is applied, so
that the new starting point of the line is B. Trimers are represented
by thick lines (red on line).

in the figure, the state associated to the line starting at A is
(0,0,0,0,0), while there are two possibilities for the state B,
(0,0,0,0,1) or (0,0,0,1,0), since a new trimer has to start at
the edge incorporated in this step and it may be horizontal
or vertical.

Thus an important aspect of this boundary condition, as
compared to the periodic one, is that only one or two elements
of each line of the transfer matrix are equal to 1; all others
vanish, so in general they lead to sparser transfer matrices,
which of course is desirable if we use the power method to
calculate the leading eigenvalue. The drawback is that the
reflection and rotation symmetries are not present in this case.

III. NUMERICAL RESULTS

In this section, we discuss the numerical results obtained
using the three approaches to determine the transfer matrix
for the case of a monodisperse gas of rigid chains with size k,
filling a strip of width L with periodical and helical boundary
conditions.

Besides presenting the values of the entropy for each case,
we also discuss the question of the transfer matrix dimension,
which turns out to be the major obstacle in obtaining the
entropy for a given (k, L) pair. Also, after collecting some
figures for the entropies we should deal with the task of how
to extrapolate them to obtain an estimate for s∞(k), from a set
{sL(k)}, to the two-dimensional limit, i.e., when L → ∞. For
that, we are aware that, for critical two-dimensional isotropic
statistical systems, presenting only short-range interactions,
conformal invariance predicts that in a cylinder of width L,
the entropy per site must follow the asymptotic behavior [20],

sL(k) = s∞(k) + A

L2
+ o(L−2), (10)

where A is related to the central charge.
Using the methods previously described to build the trans-

fer matrix, we could determine the entropy of a given size
of rods k for different values of L, limited by the amount

of computer memory required in each case and/or by the
processing time. Once we have obtained the elements of the
matrix, the calculation of its dominant eigenvalue was carried
out using the power method to diagonalize the matrix,

T ′ = T + pI, (11)

where p is a positive real number and I is the unitary matrix.
Such procedure was necessary because the original matrix,
T , usually has a set of dominant eigenvalues, which, despite
always presenting at least one of those eigenvalues at the real
axis, has others with the same modulus in the complex plane.
Such a feature turns out to make it difficult for the power
method to work properly. However, using that translation we
can shift all the eigenvalues along the real axis, making the
positive real one the only dominant eigenvalue, λ′ for the
matrix T ′. Then, to recover the value which we are looking
for, λ, we have λ = λ′ − p.

The choice of the parameter p may be a sensitive issue in
order to get the right results for the dominant eigenvalues in
an efficient way. We adopted the strategy to fix this parameter
maximizing the ratio between the real positive eigenvalue and
the one with the second largest modulus. However, in the
cases we verified here, even spanning the values of p over a
large interval, such as [1 : 100], only minor differences among
the results (≈10−14) appear. In fact, the only noticeable effect
caused by changing the size of this translation is observed in
the number of steps needed for the power method to converge
with a given precision (in our case this precision is about
10−13). For growing values of p the number of steps increases,
roughly, in a linear fashion.

Just as it happens for trimers [9], each other k-mer has its
entropy values following the relation Eq. (10) in separate sets
depending on the remainder, R, of the division L/k. Hence, if
for trimers we have three sets (values with remainders 0, 1,
and 2), in other cases there will be k sets of values for the
entropy obeying the asymptotic behavior, as we can see in
Fig. 5(a) for the case k = 4. Such behavior obviously poses
an additional difficulty in order to get from each set a good
extrapolation for the entropy in the two-dimensional limit,
when L → ∞.

Now we start to discuss the results obtained from each of
the approaches presented in the previous section, considering
its peculiarities and the limitations of each of them concerning
widths which could be reached.

A. Periodic boundary conditions

For these boundary conditions, we applied the usual ap-
proach and the profile method. As already mentioned before,
the profile method turns out to be more effective for larger
values of k and L. We will thus restrict ourselves to presenting
the results furnished by that method, after remarking that we
have verified that for trimers the number of states we have
obtained using the usual approach are equal to the ones in
Ref. [9] obtained from the second construction. Of course, as
already mentioned before, both approaches lead to the same
values for the entropies.

The dimension of the transfer matrix, for a given value
of k, grows nearly exponentially as a function of L—as we
can see in Fig. 1(b)—considering the behavior for each set of
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FIG. 5. Panel (a): behavior of the entropy for tetramers (k = 4)
as a function of L separated by sets, where dots, stars, squares, and
triangles are related to the remainders R = 0, 1, 2, and 3, respectively.
The dashed lines are fittings of each set according to the relation
given by Eq. (10). Panel (b) shows how the number of states of the
transfer matrix grows as a function of L for each of the sets. The
dashed lines here are used just as a guide for the eyes, indicating the
exponential behavior of that number when L is large enough.

values of a given remainder R. Then, for a high value of k the
number of elements for the set {sL} cannot be as large as it
is when we consider smaller chains. The dimension reached
in our calculations using the profile method for each set of
remainder R is discriminated in Table I.

Using the entropy values in each set, we can obtain an
extrapolated result for s∞(k). This was done using the ap-
proach known as the BST extrapolation method [21]. Since
this method can be functional even in situations where the
number of entries to extrapolate is not that big, it appears
to be convenient to use it in our problem. As is described
in Ref. [21], the BST method has a parameter ω, which in
our case should be set as ω = 2, due to the relation Eq. (10).
Also, because the desired limit, s∞, is obtained from a table
of extrapolants, T (i)

m , where m is related to the extrapolant
generation, then the uncertainty of the estimate will be defined
as

σ = 2
∣∣T (1)

m − T (0)
m

∣∣, (12)

TABLE I. Number of elements for the set {sL} for different sizes
of the chains. Each set Ri is related to the remainder, i = 0, 1, 2, . . .,
for the division L/k.

k R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

2 16 15
3 11 10 10
4 8 7 7 7
5 7 6 6 6 6
6 7 6 6 6 6 6
7 6 5 5 5 5 5 5
8 6 5 5 5 5 5 5 5
9 5 4 4 4 4 4 4 4 4
10 4 4 4 4 4 4 4 4 4 3

TABLE II. Extrapolated entropy values for each set of a given
chain size k. Results for periodic boundary conditions. For each value
of k, the extrapolated entropies and uncertainties for remainders
R = 0, 1, . . . , k − 1 are presented. Those values and their uncertain-
ties were obtained using the BST method with ω = 2 and with the
uncertainty determined by Eq. (12).

k si(σi ) k si(σi ) k si(σi )

2 0.2915609067(66) 3 0.1584937(64) 4 0.100669(73)
0.29156090403(14) 0.15850495(19) 0.1007572(55)

0.158510(25) 0.1007747(48)
0.100780(87)

5 0.0700(33) 6 0.054(29) 7 0(2)
0.0703370(82) 0.05210(76) 0.04030(68)
0.070350(44) 0.0522275(66) 0.040475(85)
0.07038344(58) 0.052244(84) 0.0404471(96)
0.070303(71) 0.05228(15) 0.040530(11)

0.052193(66) 0.040548(16)
0.040561(44)

8 0.0164(23) 9 0.016(14) 10 0.015(14)
0.03243(22) 0.02664(25) 0.02223(23)
0.03243(16) 0.02567(24) 0.02226(27)
0.03243(11) 0.02660(43) 0.02229(31)
0.0324476(43) 0.026633(29) 0.022316(57)
0.032466(11) 0.026704(73) 0.022337(12)
0.032483(22) 0.0267322(91) 0.022355(55)
0.032499(38) 0.026752(67) 0.02237(11)

0.02677(14) 0.02238(16)
0.22400(21)

when m → ∞. In practical terms, this limit is applied consid-
ering the difference between the two approximants before the
last generation. As an example, if we get N entries, then the
extrapolated value is obtained from the (N − 1)th generation,
while the uncertainty is calculated from the two approximants
of the (N − 2)th generation.

So, using the BST extrapolation method we were able to
obtain the values shown in Table II for each set associated
with the remainder of the ratio L/k. To finally get a value
s̄∞(k), representing the extrapolation for all sets considered,
we calculate an average and a total uncertainty weighted
by the uncertainties of each value of si, obtained for some
remainder R. Once we consider the values si(k) statistically
independent of each other, the average and its deviance have
to obey the following relations:

s∞ =
∑

i si/σ
2
i∑

i 1/σ 2
i

,

�s∞ =
√

1∑
i 1/σ 2

i

, (13)

where si is the extrapolated value of the entropy for some
set of ratios R, while σi is the uncertainty related to it,
which is obtained from Eq. (12). The results of the final
values of the entropies of each size k are shown in Table V,
which also shows, for comparison, the corresponding values
obtained from Monte Carlo numerical simulations developed
by Pasinetti et al. [10].
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FIG. 6. Extrapolated entropies of rods filling a square lattice

as a function of the size of chains, k. The blue dashed and the
red dotted lines correspond, respectively, to the lower and upper
bounds, obtained in [13] and [22] [Eqs. (14) and (15), respectively].
The dashed-dotted line follows the behavior predicted by Dhar and
Rajesh [13] when k → ∞, i.e., s = ln k/k2.

Notice from Table II that, as the size k of the rods grows,
the precision for the values si is smaller, since the number of
entries for each set {s(k)} diminishes. It is also perceivable that
the sets associated with the remainder R = 0 lead to the worst
results for the extrapolation. This happens because such cases
have a slower approach to the limit s∞(k). Therefore, that set,
although related to the smaller transfer matrix dimensions,
needs a larger number of entries to produce a better result.
On the other hand, our final results are in excellent agreement
with the exact value obtained for the dimer case (k = 2)
[1], with s∞(2) = G/π , where G ≈ 0.9159655941772 . . . is
Catalan’s constant. From Table V we see that our estimate
coincides with this exact result up to the 11th decimal place.
Also, for the case k = 3, we can compare our result with
that obtained by Ghosh et al. [9], i.e., s∞(3) = 0.158520(15),
which is also in accordance with the one shown in Table V.
For the rest of the cases, we have also a good agreement with
the results obtained by Pasinetti et al. [10] through numerical
simulations, although our extrapolations exceed their values,
in precision, at least in one order of magnitude.

In Fig. 6 we can see how the entropy globally behaves as
a function of the chain size k. First of all, such values are
constrained between two limits. A lower bound,

s(k) � s2k×∞ � ln k

k2

(
1 − ln ln k

2 ln k
+ · · ·

)
, (14)

obtained by Dhar and Rajesh [13], considering a lattice with
dimensions 2k × ∞ and k � 1. The upper bound was calcu-
lated by Gagunashvili and Priezzhev [22], being expressed by
the equation

s(k) � ln(γ k)

k2
, (15)
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FIG. 7. Dimension for the transfer matrix as a function of the
width L, considering results coming from the periodical (pbc) and
helical (hbc) boundary conditions obtained for k = 4 and k = 5.

where γ = exp(4G/π )/2, with G being the already men-
tioned Catalan’s constant. Notice that this upper limit
coincides with the exact value of the dimer entropy on the
square lattice when k = 2.

We can also observe that, as k grows, the behavior for
s(k) has a tendency to approach that one predicted by Dhar
and Rajesh [13], s = ln k

k2 , for the case of very large chains.
Actually, beyond k = 5 the difference between our values and
the asymptotic prediction differs less than 3%.

B. Helical boundary conditions

The transfer matrices obtained through this approach dis-
play a larger number of states than those obtained considering
periodical boundary conditions. A comparison between those
numbers can be seen in Fig. 7, where besides noting the
exponential dependence between the number of states and the
width L, for a given value of k, already seen in the pbc case,
we also can perceive that these numbers can be almost 1000
times bigger when the matrix is calculated considering helical
boundary conditions. In part this drawback is compensated
by the fact that for helical boundary conditions the transfer
matrix is much sparser when compared to the case of periodic
boundary conditions, as already mentioned, but this also has
the effect that the number of iterations needed in the power
method to reach a selected convergence will be larger for
helical boundary conditions.

Evidently, because of that, the largest value of L attained
for each size of the chains is smaller than those reached for
the pbc calculations. Then, once the eigenvalues, as it also
happens for the periodical case, are arranged in sets of sizes
sharing the same remainder for the division L/k, the number
of elements for each set is smaller when compared with those
shown in Table I. For this boundary condition those numbers
are presented in Table III.
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TABLE III. Dimension of each set related to the remainder R, as
it shown in Table I, but obtained for helical boundary condition.

k R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

2 14 14
3 8 8 7
4 6 6 5 5
5 5 5 5 5 4
6 4 4 4 4 4 4
7 4 3 3 3 3 3 3
8 4 4 4 3 3 3 3 3
9 4 3 3 3 3 3 3 3 3
10 3 3 3 3 3 3 3

Another similarity found in those two approaches is the
disposition for the leading eigenvalues of the transfer matrix.
Just as it happens for the periodical boundary conditions, the
largest eigenvalue is degenerate on the complex plane, at least
one of them being located at the real axis. Again, because in
this case the transfer matrix is even sparser than those obtained
for the periodical boundary conditions, we have used the
power method in order to get this leading eigenvalue. As al-
ready mentioned in the previous discussion for the pbc case, to
circumvent this degeneracy, which puts the power method in
jeopardy, we diagonalize a transformed matrix T ′, translating
all the diagonal elements from the original matrix, T , by a real
number p—as it is illustrated by Fig. 8. Doing so, we produce
another leading eigenvalue free from any degeneracy and we
can recover the value we are looking for only subtracting p
from the largest eigenvalue of T ′.

However, unlike the pbc case, the choice of p in this
situation can be a sensitive issue. Also, we noticed that the
estimates for the leading eigenvalue as the iterations are done
show a pattern which has oscillations of a period of about
2kL with slowly decreasing amplitude. This behavior is dis-
tinct to what happens for pbc, where the convergence, after a
short transient, is usually monotonical. Therefore, great care
has to be used in establishing the condition for numerical
convergence.

(a) (b)

λλ p

FIG. 8. Illustration on how the largest eigenvalues for a transfer
matrix T are distributed with the same modulus on the complex plane
(a) and how the translation produced by the parameter p turns the
eigenvalue located at the real axis into the only dominant eigenvalue
for a transformed matrix T ′. This example corresponds to the sit-
uation we get for k = 4 with hbc, where the largest eigenvalue is
fourfold degenerate.
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FIG. 9. Behavior of the trimer entropies, separating the behavior

of remainders R = 0, 1 and R = 2 (black, blue, and red dots, respec-
tively) as a function of ln L. The linear behavior for R = 1 and R = 2
shows that s(L) follows the behavior predicted by Eq. (16), while
the logarithmic term is absent for R = 0, which follows the same
dependence observed for the pbc case. The estimates of s∞ were
obtained via BST extrapolation as discussed below.

The asymptotic behavior for the entropy, as a function of
L, in this case, is not the same as the one found in the pbc
case [Eq. (10)] [23]. In fact, we have found that aside from
the dimer case, where the behavior is the same as predicted by
Eq. (10), the entropies exhibit a logarithmic correction in the
form

s(L) = s∞ + 1

L2
(A ln L + B). (16)

Figure 9 shows this kind of behavior obtained for k = 3,
where we can see clearly an evidence of such logarithmic
correction, which is not present for the pbc calculations. This
additional term shows rather clearly in our data for small
values of k larger than 2, but, as expected due to the fact that
as k grows there are more sets to extrapolate for each k with
less points in each of them, evidence is not so clear for larger
rods.

Despite that, we still are able to perform the extrapola-
tions and determine the asymptotic value for the entropy, s∞,
using the same BST approach. Unlike what is discussed in
the Appendix of [21], where a function with a logarithmic
correction is analyzed showing a poor performance of the
method, our calculations, despite displaying some fluctuations
for the average value and its uncertainty, were less affected by
the presence of the logarithm term. However, while for pbc
we have applied the extrapolation considering a fixed value
for the parameter ω, which was set at ω = 2, in the hbc case,
we estimate the value of s∞ considering two cases: for the sets
of remainder R = 0 we have kept ω = 2, just as we have done
for the ccp case. This was motivated by the fact that, at least
for rather small values of k, we found evidences that A = 0
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TABLE IV. Same results shown in Table II for the hbc case.

k si(σi ) k si(σi ) k si(σi )

2 0.2915609040290(83) 3 0.1585113(35) 4 0.1007852(60)
0.2915609040300(11) 0.15852375(20) 0.10078178(76)

0.15856889(35) 0.100737621(73)
0.10066(80)

5 0.07035(16) 6 0.05224(14) 7 0.04045(50)
0.0704471(21) 0.05209(24) 0.04037(17)
0.07028(40) 0.05247(51) 0.04128(39)
0.07026(93) 0.05297(62) 0.09952(50)
0.0709(81) 0.05321(41) 0.06014(52)

0.0646(79) 0.03978(49)
0.04075(55)

8 0.03240(44) 9 0.02660(40) 10 0.02229(36)
0.03233(13) 0.02645(11) 0.022150(68)
0.03207(15) 0.02634(64) 0.022063(12)
0.03199(14) 0.02627(34) 0.0219984(15)
0.03193(18) 0.026223(45) 0.0219569(27)
0.03188(24) 0.026186(82) 0.0219318(15)
0.03183(30) 0.02615(13) 0.021913(16)
0.03204(34) 0.02612(17) 0.021893(55)

0.02646(20) 0.021873(90)
0.021998(61)

in this case. However, for sets associated with nonvanishing
remainders, we have determined the entropy as a function of
ω over a domain ω ∈ [1, 2], adopting the value of s∞, which
minimizes the uncertainty defined by Eq. (12).

Doing so, we obtain the results shown in Table IV, where
we notice that, in some cases, the uncertainties have the same
order of magnitude as those found from pbc calculations,
although they were obtained from smaller sets of values of
the entropy (see Table III). This is possible because even with
less elements to use in the extrapolations, the values for the
entropies, in the hbc case, are closer to the asymptotic limit
when compared to those obtained with pbc. While for the
periodical boundary conditions, as we can see from Fig. 5(a),
this relaxation can be quite slow, particularly for the values
in the set with remainder R = 0, the same does not occur for
helical boundary conditions. Then, if this boundary condition
is somehow handicapped by smaller values of L attained, the
extrapolation is not much affected, since the values for finite
widths are closer to their asymptotic limit.

Given the results shown in Table IV we proceed to the final
values for the entropy per site, considering rigid chains of size
k placed at the sites of a square lattice, using Eq. (13). The fi-
nal results for such entropies are shown in Table V. We do not
have a complete agreement between the results obtained from
the pbc and hbc extrapolations. We notice that for six values of
k (3, 4, 5, 8, 9, and 10) the confidence intervals for the entropy
per site obtained for periodic and helical boundary conditions
have no intersection, while for dimers (k = 2) both intervals
contain the exact result and for trimers they are also consis-
tent, although more precise, with the previous result by Ghosh,
Dhar, and Jacobsen [9]. We suspect that the inconsistencies
are due to a possible underestimation of the uncertainties by
the BST method due to the logarithmic term in the asymp-
totic behavior of the approach to the two-dimensional limit

TABLE V. Results for the entropy of k-mers in the full lattice
limit. The first column contains averages calculated from the en-
tropies shown in Table II using the relations shown in Eq. (13), for
periodic boundary conditions. The second column shows averages
calculated from the entropies shown in Table IV, for helical bound-
ary conditions. The third column displays the results obtained by
Pasinetti et al. through computer simulations [10].

k TM (pbc) TM (hbc) MC [10]

2 0.29156090404(14) 0.2915609040293(66) 0.2930(20)
3 0.15850494(19) 0.15853458(17) 0.1590(20)
4 0.1007670(36) 0.100738034(73) 0.1010(20)
5 0.07038320(58) 0.0704470(21) 0.0700(30)
6 0.0522274(65) 0.05232(11) 0.0520(30)
7 0.0404963(64) 0.04048(14) 0.0400(30)
8 0.0324516(39) 0.032088(67) 0.0320(30)
9 0.0267234(85) 0.026266(23) 0.0270(30)
10 0.022337(12) 0.0219643(10) 0.0210(30)

of the entropy per site for helical boundary conditions when
the remainder is nonvanishing, together with the fact that as
k grows the number of points to extrapolate in each case
becomes smaller. The relative discrepancies increase with k,
which may be an indication of the effect of the reduction of
the number of cases to extrapolate on the quality of the results.
We thus believe that in general the estimates provided by the
results from strips with periodic boundary conditions are more
reliable. In general, it is apparent that the estimates obtained
here are essentially consistent with the ones obtained through
computer simulations [10], but are more accurate.

Considering the essential divergence between the estimates
obtained for both boundary conditions using the BST method
(the gap between the confidence intervals for L = 10 is of
the order of 30 times the uncertainty), we have also produced
estimates for helical boundary conditions using a simple al-
ternative method: for each size k of the rods, we find the
values of s∞ A and B of the asymptotic behavior Eq. (16),
which reproduce the three entropies for the largest widths
L for each remainder R = 0, 1, 2, . . . , k − 1. This procedure
thus produces k estimates for s∞, besides estimates for the
amplitudes A and B. The mean value of the estimates for
s∞ and its dispersion for each rod length k are displayed in
Table VI. Of course this procedure is rather crude, since to
estimate the entropies of the strips with three different widths,
we use the same weight for different values of L, but we
notice that the results are compatible with the exact value and
the extrapolated estimates for dimers, with the estimate in [9]
and the estimate for periodic boundary conditions for trimers.
For k = 4, 5, 6, and 7 we also have an agreement with the
estimates coming from the results with pbc, but for the rest
the confidence intervals for the new estimates are below the
ones obtained with pbc. So we see that, although larger uncer-
tainties are obtained in the alternative extrapolation procedure
for hbc, there are still some cases where the results are not
compatible with the ones provided by the calculations with
pbc, although the relative discrepancies are much lower than
the ones found comparing results for both boundary condi-
tions using the BST extrapolation procedure and these cases
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TABLE VI. Results for the entropy of k-mers in the full lattice
limit. Estimates obtained using an alternative procedure to extrapo-
late the results for helical boundary conditions, described in the text.

k TM (hbc)

2 0.29156104(25)
3 0.158511(14)
4 0.100822(86)
5 0.070381(70)
6 0.052213(58)
7 0.04029(21)
8 0.03210(15)
9 0.02632(13)
10 0.02202(11)

are restricted to the larger values of k, where it is clear that the
method in all approaches leads to less precise results.

IV. FINAL DISCUSSION AND CONCLUSION

In the present work, we have dealt with the problem of
determining the configurational entropy for collinear chains
of size k, named k-mers, fully covering a square lattice. To
do so, we have employed transfer matrix calculations using
three different constructions. Two of them were employed for
periodical boundary conditions, the so-called usual approach,
already used by Ghosh et al. [9] to obtain the entropy for
trimers (k = 3), and the profile method, based on the calcu-
lation developed by Dhar and Rajesh [13] in order to estimate
a lower boundary for the value of the entropy as a function
of the chain size, k, considering k � 1. To our knowledge,
this second approach was never used in the transfer matrix
method and it has been useful to deal with this problem. Since
we seek to determine the entropy for full coverage in the
thermodynamic limit from the results obtained for the entropy
of the k-mers placed on strips with finite widths equal to L,
our results tend to be better when we reach large values of L.
The profile method, in the majority of cases, produces transfer
matrices with smaller dimensions than those obtained via the
usual approach, allowing us to obtain better numerical results
for the entropies. We notice that in the usual approach the
entropy is directly related to the leading eigenvalue of the
transfer matrix, while in the profile method, which is grand
canonical, it is necessary to find the value of the activity of a
k-mer which corresponds to a leading eigenvalue with a uni-
tary modulus. So, while in the first approach we need to find
the leading eigenvalue only once, in the second approach it
is necessary to repeat this operation several times to reach the
required numerical precision. Nevertheless, the profile method

allowed us to reach larger widths. Another construction we
have applied for these calculations was the usual approach
considering helical boundary conditions. However, even being
less effective to reach large values of L, this approach has a
tendency to generate values closer to the asymptotic limits
associated with the thermodynamic limit, although displaying
greater uncertainties.

Although we have not presented results on details about the
convergence of the results of the entropies on strips of finite
widths to the two-dimensional values, as was, for instance,
done for trimers in [9] it was clear that the scaling form
Eq. (10) is followed by our results, for periodic boundary
conditions. This is an indication that the phase in the full
lattice limit is critical and conformal invariant for periodic
boundary conditions. We plan to come back to this point in
the future.

Our results show values that are in accordance with some
previous results in the available literature, such as the case
for dimers (k = 2), the only case which was exactly solved
and for which our result agrees up to the 11th decimal place,
and also for the trimer case, where the entropy obtained here
agrees with the one estimated by Ghosh et al. in [9]. Another
source for comparison are the simulational results obtained
by Pasinetti et al. [10], which also are in complete agreement
with our values, although they are less precise. We may also
compare our results with recent estimates for the entropies for
the same problem provided by a sequence of Husimi lattice
closed form approximations [11], which are numerically exact
solutions on treelike lattices that may be considered beyond
mean field approximations. These results, for k in the range
{2–6}, in a similar way to ours, become less precise for grow-
ing values of k. While the relative differences between the
present and the former estimates are of the order of 3% for
k = 2, 3, they reach about 40% for the higher values of k. It is
also noteworthy that the behavior displayed by the entropies s
and the sizes k seemingly obey the relation predicted by Dhar
and Rajesh [13], s ≈ ln k/k2, when k → ∞. As it has been
mentioned previously, from k = 5 up to k = 10 our results
differ from that expression by less than 3%.
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