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Ergodicity and slow relaxation in the one-dimensional self-gravitating system
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We show that homogeneous and nonhomogeneous states of the one-dimensional self-gravitating sheets models
have different ergodic properties. The former are nonergodic and the one-particle distribution function has a zero
collision term if a proper limit is taken for the periodic boundary conditions. As a consequence, homogeneous
states of the sheets model are nonergodic and do not relax to the equilibrium state, while nonhomogeneous states
are ergodic in a time window of the order of the relaxation time to equilibrium, as similarly observed in other
systems with a long range interaction.
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I. INTRODUCTION

Toy models retaining the main characteristics of realis-
tic systems have always been an important tool to grasp
the phenomenology of many-body systems. They have been
particularly important in understanding the nonequilibrium
dynamics and equilibrium properties of systems with long
range interactions, which often present unusual properties not
observed if the interaction is short ranged, such as nonergodic-
ity, anomalous diffusion, non-Gaussian quasistationary states,
negative microcanonical heat capacity, ensemble inequiva-
lence, and a very long relaxation time to thermodynamic
equilibrium, diverging with the particle number N [1–19].
Some one-dimensional models have been extensively stud-
ied in the literature, such as one-dimensional plasmas [20],
one-dimensional self-gravitating systems such as the sheets
and shell models [21], and derived models, e.g., the ring
[22] and the Hamiltonian mean field (HMF) models [23].
The dynamics of systems with long range interactions can
typically be divided into three stages: A violent collisionless
relaxation from the initial condition into a quasistationary
state (or an oscillating state close to it), occurring in a very
short time [24], followed by a very slow evolution towards
thermodynamic equilibrium, caused by the small cumulative
effects of collisions (graininess). The final and third stage is
the thermodynamic equilibrium, that may never be attained in
the N → ∞ limit, when the mean-field description becomes
exact and the collisional contributions to the Kinetic equa-
tion vanish. In this limit, and under suitable conditions, the
dynamics is exactly described by the Vlasov equation [7,25].

Let us consider a system of identical particles described by
the Hamiltonian

H =
N∑

i=1

p2
i

2m
+ 1

N

N∑
i< j=1

Vi j, (1)

with the interparticle potential Vi j ≡ V (|ri − r j |); pi, ri are
the momentum and position for particle i, respectively, and m
is the mass of the particles. The factor 1/N in the potential
energy term in Eq. (1) is introduced such that the total energy
is extensive [26] (the so-called Kac factor). In the limit N →
∞ the one-particle distribution function f (p, r; t ) satisfies the
Vlasov equation [25],

ḟ ≡ df

dt
= ∂ f

∂t
+ p

m
· ∂ f

∂r
+ F · ∂ f

∂p
= 0, (2)

where the mean-field force is given by

F(r; t ) = − ∂

∂r

∫
V (r − r′) f (r′, p′; t )dp′dr′. (3)

Collisional effects modify the Vlasov equation such that ḟ =
I[ f ], where the collisional integral I[ f ] is a functional of
f , usually obtained using some approximation such as the
weak coupling limit, with the interparticle force taken to be of
order α � 1 and I[ f ] computed up to order α2, or retaining
terms of order 1/N . The resulting kinetic equations are called
respectively the Landau and Balescu-Lenard equations [27].
For one-dimensional systems the collisional integral in the
Balescu-Lenard, Landau, and Boltzmann equations vanish
identically in a homogeneous state and one must go to the
next term in the approximation, i.e., by computing I[ f ] up to
order α3 or 1/N2 [8,9,28,29].

Let us consider the example of a system with a vanishing
collisional integral, for both homogeneous and nonhomoge-
neous states, given by N identical particles in one dimension
interacting only through zero-distance hard-core potential. In
this case the interaction causes a swap of particle veloci-
ties, and by simply relabeling the particles at the time of
the collision one obtains a statistically equivalent system of
free particles, such that the one-particle distribution function
only evolves due to the free flux. The corresponding kinetic
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equation is then given by the one-dimensional Liouville equa-
tion with zero force:

∂ f

∂t
+ p

m

∂ f

∂x
= 0, (4)

where m is the mass, x is the position, and p the momentum.
For a homogeneous state the one-particle distribution function
is thus strictly constant.

Yet another simple model, but with long range interact-
ing particles and real collisions (due to the discontinuity
in the force at zero distance) is the one-dimensional self-
gravitating system of identical particles, with unit mass and
Hamiltonian [30]

H =
N∑

i=1

p2
i

2
+ 1

N

N∑
i< j=1

|xi − x j |. (5)

In Eq. (5) units were chosen such that we have a unit mass
and the Kac factor in the potential energy term. The force on
particle i is given by Fi = (N (i)

+ − N (i)
− )/N , where N (i)

+ (N (i)
− )

is the number of particles with coordinate x > xi (x < xi). In
this model particles can cross each other freely. The potential
in the Hamiltonian is obtained from the solution of the Pois-
son equation in one spatial dimension, and corresponds to a
system of N infinite sheets with total finite mass.

The initial violent relaxation of this model is mainly a colli-
sionless process, and is well described by the Vlasov equation
(see [18,19] and references therein). On the other hand, after
the violent relaxation, the evolution towards thermodynamic
equilibrium is due to collisional corrections to the Vlasov
equation, which are required to properly describe it. This
relaxation process has been studied in the literature in the last
few decades, with the recurrent question, does the system re-
lax to thermodynamic equilibrium, due to the extremely slow
dynamics of its macroscopic parameters [30–34]? Joyce and
Worrakitpoonpon introduced an order parameter to measure
the distance to equilibrium and showed that this system in a
nonhomogeneous state evolves to thermodynamic equilibrium
[35]. They showed this for a number of particles up to N =
800, and yet requiried a very large simulation time to observe
the complete relaxation. This implies that the contribution of
the collisional integral of the corresponding kinetic equation is
very small.

The very slow relaxation towards equilibrium also man-
ifests in the ergodic properties of the system. In order to
assess if a given system is ergodic, and to discuss the time
windowed required to evidence this property, we use an ap-
proach introduced in Refs. [10,15], which is based on the
fact that the mean-field description is valid for long range
systems with sufficiently large N (up to very small correc-
tions) [25]. In this case, correlations among particles are
negligible, and observable averages can be computed from
one-particle reduced distribution functions f1(p, x; t ) (see for
instance Ref. [27]). Thence one can formulate the physics in
μ space (one-particle phase space), such that all information
required on the statistics of the system derive from the time
evolution of the one-particle distribution function f1(p, x; t ).
The usual definition of ergodicity, i.e., that that the time aver-
age of an observable along a trajectory in the N-particle phase
space is equal to the ensemble equilibrium (a large number

mental copies of the N-particle system), then translates into
the one-particle phase space as the equality of averages over
the history of a single particle to averages over the N particles
at a given time. This amounts to considering the N particles
as our ensemble, which is only valid for long range systems
where the mean-field description is valid for sufficiently large
N . As shown in Ref. [10] for two-dimensional self-gravitating
systems, this approach is equivalent to other methods used to
assess ergodicity. Therefore, a system with long range inter-
actions is ergodic if averages of observables over the history
of a single particle are equal to the ensemble average, i.e., to
an average computed at a fixed time for the N particles in the
system. This approach was used for the HMF model [15,36]
and for a two-dimensional self-gravitating system [10]. It was
shown that in the limit N → ∞ these systems are nonergodic,
and never reach the true thermodynamic equilibrium, while
for finite N they are ergodic only after a time window of the
order of the relaxation time to equilibrium.

Here we show that these results are also valid for the
one-dimensional self-gravitating system with Hamiltonian in
Eq. (5) for a nonhomogeneous state, but not for the homo-
geneous case. Indeed in the latter we show that by properly
considering periodic boundary conditions and then taking the
limit of the size of the unit cell going to infinity, while keep-
ing the density constant, the one-particle distribution function
does not evolve in time, i.e., the collisional effects vanish.
The present paper is structured as follows: In Sec. II we
discuss separately the ergodic properties of homogeneous and
nonhomogeneous states of the sheets model. The kinetic equa-
tion for the homogeneous state is obtained in Sec. III with
identically vanishing collisional contributions. We close the
paper with some concluding remarks in Sec. IV.

II. SLOW DYNAMICS AND ERGODICITY

We investigate the ergodic properties of the sheets model
system using the approach in Ref. [10]. The system is ergodic
if time averages, computed over a given time window of
length te, equals the ensemble average over the N particles
at this same fixed time te, which we call ergodicity time.
The value of te must be seen as an estimate of the order of
magnitude such that the difference between the time and en-
semble averages, in the sense discussed above, is sufficiently
negligible. Following the discussion in the Introduction, we
define the time average of the momentum of the kth particle,

pk (t ) = 1

M

M∑
j=1

pk ( j�t ), (6)

and similarly the time average of its position,

xk (t ) = 1

M

M∑
j=1

xk ( j�t ), (7)

with a fixed time step �t , M = t/�t . We also consider the
time dependent standard deviations (supposing the averages
over all particles vanish 〈x〉 = 0 and 〈p〉 = 0):

σp ≡
√√√√ 1

N

N∑
k=1

p2
k (t ) (8)
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FIG. 1. Left: Reduced moments μ4 and μ6 as a function of time for N = 100 and a waterbag initial state with x0 = 10.0 and p0 = 0.5
for the system with the Hamiltonian in Eq. (5) and open boundary conditions. A running average was performed over a time window of
δt = 10 000. The straight lines correspond to the equilibrium values of μ4 = 3 and μ6 = 15 introduced for comparison purposes. Right:
Standard deviations for pk and xk in Eqs. (8) and (9).

and

σx ≡
√√√√ 1

N

N∑
k=1

x2
k (t ). (9)

Ergodicity for a system with long range interaction is then
equivalent to stating that σp(t ) → 0 and σx(t ) → 0 for suf-
ficiently large t . The order of magnitude of t required such
that σp(t ) and σx(t ) are significantly small is thus ergodicity
time te. It was discussed for the HMF model and for a two-
dimensional self-gravitating system that te ≈ tr , with tr the
relaxation time to thermodynamic equilibrium [10,15,36].

We now consider separately the ergodic properties of non-
homogeneous and homogeneous states of the sheets model.
Nonhomogeneous states of this model can for instance be
used to model the dynamics of stars moving in a direction
perpendicular to highly flattened galactic planes [37], while
homogeneous states were studied as simplified cosmologi-
cal models (see [38] and references therein). For the latter
case, homogeneous states representing a homogeneous sim-
plified cosmological model are of particular interest. A purely

attractive potential can only have a homogeneous equilibrium
state (for sufficiently high temperature) if it is infinite, and
are modeled using periodic boundary conditions, considering
the forces due to the images of the unit cell (see below). A
thorough discussion of the equilibrium properties for both
cases is given in Ref. [19].

A. Nonhomogeneous state

In order to find evidence of the very large value of the
ergodic time te, we implemented a molecular dynamics sim-
ulation of an open N-particle system (no spatial boundary
conditions) with the Hamiltonian in Eq. (5) using an event-
driven algorithm [39]. The dynamics between two successive
particle crossings is integrable, and can be computed up to
machine precision. Collisions are then implemented straight-
forwardly by updating the force on the particles after each
crossing. Due to very high local densities at the core of the
spatial distribution, a high numeric precision is required, and
we used quadruple precision in order to avoid missing any col-
lision due to round-off errors (which indeed occur for double
precision). The initial state is a waterbag state defined by

f (x, p; 0) =
{

1/(4p0x0) if − x0 < x < x0 and − p0 < p < p0,

0 otherwise, (10)

with x0 and p0 given constants. To measure the distance to the
Gaussian distribution we use the reduced moments,

μk ≡ 〈pk〉
〈p2〉k/2 . (11)

The reduced moment of order 4 is called the kurtosis of the
distribution, and for any Gaussian distribution we have that
μ4 = 3 and μ6 = 15. The left panel of Fig. 1 shows the time
evolution of μ4 and μ6 for the system, with x0 = 10.0 and
p0 = 0.5 for the initial condition and N = 100. In this case the
relaxation time to equilibrium is of the order of tr ≈ 106. The
right panel of Fig. 1 shows that the condition for ergodicity
stated above is satisfied for a value of time of the order of

magnitude of the relaxation time te ≈ tr . By increasing the
number of particles in the simulation the relaxation time tr
rapidly becomes too large for a feasible simulation using the
event driven algorithm. We also note that collisional effects
are more important for smaller values of N .

In order to discuss the physical meaning of ergodicity for a
long range interacting system, we define the one-particle mo-
mentum and position probability densities φ(p; t ) and ρ(x; t )
for the N particles at a given time t as the probability density
for the given values of p and x, respectively. We also define
the density distribution for the values of p and x of a fixed
particle, say the kth particle, along its history up to time t ,
and denoted by g(p; t ) and h(x; t ), respectively. Then, in the
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FIG. 2. Distributions φ(p; t ) (dotted line) and g(p; t ) (histogram) for the same initial condition as in Fig. 1 with N = 100, and for few
values of t . The dashed line is the equilibrium Gaussian with inverse temperature β = 0.225. This value of β as obtained by averaging the
kinetic energy for a time window of size δt = 10 000 at the end of the simulation. The precision for the histogram for pk (t ) was increased
by collecting the values of the momenta of all particle from time t − 100 up to t , justified by an expected negligible change in the statistical
distribution for a relatively short period of time.

present case, ergodicity is equivalent to the relations

φ(p; t ) = g(p; t ) (12)

and

ρ(x; t ) = h(x; t ), (13)

for t � tr ≈ te. Figures 2 and 3 show these distributions for a
few values of time, and also the spatial distribution function
at equilibrium given by ρ(x) = Csech(x/
), with 
 = 4e/3
and e the mean-field energy per-particle [40], and the momen-
tum Gaussian distribution at equilibrium. It is evident that
the time and ensemble distributions become very close as t
approaches tr . So the momentum φ and g, and spatial ρ and h,
distribution functions satisfy Eqs. (12) and (13) and are also
equal to the equilibrium distribution for a time of the order of
magnitude of the relaxation time to equilibrium, as was also
observed for other long range interacting systems [10,15,36].

B. Homogeneous state

We now turn to the case of a homogeneous state. Periodic
boundary conditions can be implemented using an Ewald
sum with a unit cell x ∈ [−L, L] such that the force on each
particle, due to the particles in the unit cell and the infinite
number of images, is determined by a direct sum over replicas
[41]. For the one-dimensional self-gravitating system a closed
analytical form was obtained by Miller and Rouet [42] as an
additional potential representing all replicas, and given with

our choice of units by

VEwald = − 1

N

N∑
i=1

(xCM − xi )2

2L
, (14)

where xCM ≡ (1/N )
∑N

i=1 xi is the position of the center of
the mass in the unit cell. Therefore the total force on the ith
particle, for xi �= x j for i, j = 1, . . . , N , is given by

Fi = − ∂

∂xi

⎡
⎣ 1

N

N∑
i, j=1

|xi − x j | + VEwald

⎤
⎦

= N (i)
> − N (i)

<

N
+ 1

LN
(xi − xCM ), (15)

where Ni)
> (N (i)

< ) is the number of particles at the right (left) of
particle i on the straight line. The full effective Hamiltonian
with periodic boundary conditions is then

H =
N∑

i=1

p2
i

2
+ V (x), (16)

with x ≡ (x1, . . . , xN ) and

V (x) = 1

N

N∑
i< j=1

|xi − x j | − 1

N

N∑
i=1

(xCM − xi )2

2L
. (17)

The resulting equations of motion are then integrated using
a fourth-order symplectic integrator [43,44]. Figure 4 shows
the reduced moments μ4 and μ6 as a function of time for
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FIG. 3. Same as Fig. 2 but for h(x; t ) and ρ(x; t ). The dashed line is the spatial distribution function at equilibrium ρ(x) = Csech(x/
),

 = 4e/3 and e the mean-field energy per-particle [40].

N = 128, up to t = 105, for an initial waterbag state with
x0 = L = 1 and p0 = 3. The system remains in a homoge-
neous state for the whole simulation time. We observe that the
time evolution is extremely slow if compared to the nonhomo-
geneous case, with only a very small variation in μ6 visible in
the graphic. Figure 5 shows the distribution functions g(p; t )
and h(x; t ) at the final time, also clearly at variance to what
is observed for the nonhomogeneous cases. Although the spa-
tial distribution g(x; t ) is roughly uniform, as expected since
particles can cross each other and the mean-field force is
very small, the distribution of the momentum g(p; t ) over the
history of one single particle is not even symmetrical, as is
the case for the nonhomogeneous systems at all time values,
except for a very short initial time. The particle in Fig. 5
will eventually change the sign of its momentum after a suffi-

FIG. 4. Reduced moments of p for a homogeneous state with a
waterbag initial condition with N = 128, x0 = 1.0, and p0 = 3.0.

ciently long time (see for instance Fig. 2 of Ref. [36]). The fact
that in this example it keeps the same sign up to the referenced
time results from the value of time in the figure being much
less than the ergodicity time. We note here that, although
the average momentum over the N particles is zero, the time
average of the momentum of a single particle does not have to
vanish, unless the system is ergodic. We conclude that the time
for ergodicity, if finite, is certainly many orders of magnitude
greater than for a nonhomogeneous state. We will shed some
light and explain the physical origin of this difference, and of
the peculiar dynamics of the homogeneous state, in the next
section by discussing the kinetic theory for a homogeneous
state.

III. KINETIC EQUATION FOR A HOMOGENEOUS STATE

The statistical dynamics of a system of many-particle
systems can be studied by determining a kinetic equation de-
scribing the time evolution of the one-particle distribution
function. We first define the N-particle distribution function
fN (x1, p1, . . . , xn, pn; t ) as the probability density in the N-
particle phase space, which satisfies the Liouville equation,
and is assumed fully symmetric by particle permutations. The
s-particle reduced distribution function is obtained by inte-
grating out N − s particles as

fs(x1, p1, . . . , xs, ps; t )

≡
∫

dxs+1 ps+1 · · · xN pN fN (x1, p1, . . . , xN , pN ; t ). (18)

An usual starting point to determine a kinetic equation is
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
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FIG. 5. Left: Momentum distribution function g(p; t ) over the history of a fixed single particle at t = 105 for the same simulation as in
Fig. 4. Right: Position distribution function h(x; t ) over the history of a fixed single particle for the same simulation.

hierarchy for the reduced distribution functions [27,45]:

∂

∂t
fs(1, . . . , s; t )

= −
s∑

k=1

pk
∂

∂xk
fs(1, . . . , s; t )+ 1

2

s∑
k,l=1
(k �=l )

v′
kl ∂kl fs(1, . . . , s; t )

+ (N− s)
s∑

k=1

∫
d (s+ 1) v′

k,(s+1)
∂

∂ pk
fs+1(1, . . . , s + 1; t ),

(19)

where v jk ≡ v(x j − xk ) is the interparticle potential, ∂kl ≡
pk∂/∂xk − pl∂/∂xl , 1 ≡ x1, p1, 2 ≡ x2, p2, ..., d1 ≡ dx1d p1,
d2 ≡ dx2d p2, ..., and so on. The potential in Eq. (17) corre-
sponds to the interparticle potential

vi j = v(xi − x j ) = 1

N
|xi − x j | − 1

2LN2

N∑
i, j=1

(xi − x j )
2, (20)

such that V = ∑N
i, j=1 vi, j , after some straightforward algebra

and using the expression for the center of mass position. The
case with s = 1 leads to the prototypical kinetic equation,

[
∂

∂t
+ p1

∂

∂x1

]
f1(1; t ) = (N − 1)

∂

∂ p1

∫
d2 v′

12 f2(1, 2; t ).

(21)
In order to obtain a closed-form expression for the ki-
netic equation one must determine an expression for the
two-particle distribution f2 in terms of f1. For uncorrelated
particles we have f2(1, 2; t ) = f1(1; t ) f1(2; t ), and Eq. (21)
then results in the Vlasov equation (2).

We perform the cluster expansion [27]:

f2(1, 2; t ) = f1(1; t ) f1(2; t ) + g2(1, 2; t ),

f3(1, 2, 3; t ) = f1(1; t ) f1(2; t ) f1(3; t ) + f1(1; t )g2(2, 3; t )

+ f1(2; t )g2(1, 3; t ) + f1(3; t )g2(1, 2; t )

+ g3(1, 2, 3; t ), (22)

and so on, where gs is the s-particle correlation function. By
plugging Eq. (22) into Eq. (19) for s = 1 we have

∂

∂t
f1(1; t ) = N

∫
d2 v′

12∂12[ f1(1; t ) f1(2; t ) + g2(1, 2; t )].

(23)
From Eqs. (19), (22), and (23) we obtain the following equa-
tion for the two-particle correlation function [27]:(

∂

∂t
+ p1

∂

∂x1
+ p2

∂

∂x2

)
g2(1, 2, t )

= v′
12∂12 f1(1; t ) f1(2; t ) + v′

12∂12g2(1, 2; t )

+ N
∫

d3[v′
13∂13 f1(1; t )g2(2, 3; t ) + v′

23∂23 f1(2; t )

× g2(1, 3; t ) + (v′
13∂13 + v′

23∂23){ f1(3; t )g2(1, 2; t )

+ g3(1, 2, 3; t )}]. (24)

By neglecting three-particle correlations in Eq. (24) we ob-
tain a closed integrodifferential equation for g2, and plugging
its solution into Eq. (23) yields the Balescu-Lenard kinetic
equation [27]. The case with non-negligible three particle
correlations was considered in Refs. [8,29].

The derivative of the interparticle potential v in Eq. (20)
appears in Eq. (24) and we must consequently account for the
singularity of its derivative at zero interparticle distance. In
order to deal with this, we consider the following relabeling
of particle indices: At the moment two particles (sheets) cross
each other, we interchange their labels. In this way, at each
collision (at zero distance) particles simple exchange their
momenta and the force is constant in time. If the particles
are initially labeled such that xi < x j if i < j, the ordering
in position is preserved. Then the force on particle i due to
particle j is now given by

Fi, j = −∂vi, j/∂xi + FHC, (25)

and FHC stands for the hard-core force that swaps particle
momenta when they collide at zero distance. It is important
here to note that although the resulting kinetic equation for
the one-particle reduced distribution function is the same in
both pictures (particles not being able to cross each other), the
resulting ergodic properties are different, as the history of a
fixed given particle is different in both. The contribution of
the first term in the right-hand sides of Eqs. (25) to (24), then
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FIG. 6. (a) Force on a particle as a function of its position as given by Eq. (15) for the one-dimensional self-gravitating system with an
additional potential from the Ewald sum, for different number of particles but same density n = N/L. The position was rescaled to the interval
[−1, 1] for comparison purposes. The unit cell for N = 2048 is given by L = 20, and is obtained accordingly for other values of N in order to
keep the spatial density constant. (b) Standard deviations σF for the force in (a) for each value of N . The dashed line is the best fit of a power
law for the three larger values of N with σF ∝ N−0.645 ∝ L−0.645.

it vanishes in the limit L → ∞ as the gravitational force in a
homogeneous state vanishes. To illustrate this fact, Fig. 6(a)
shows the force Fgrav due to both the self-gravitating potential
and the Ewald sum, for a few values of the number of particles
N but keeping the density n = N/L constant. The standard
deviation σF of the force is shown in Fig. 6(b) with the best
fit of a power law in N and L, evidencing that the force
on each particle does tend to zero as N (and L) increase;
i.e., that, as the size L = N/n of the unit cell increases, Fgrav

approaches zero. We conclude that increasing N in this way
is not equivalent to considering the Vlasov limit, that would
correspond to taking N → ∞ but keeping L constant. As a
consequence, only contributions from hard-core collisions are
retained in Eq. (24). This result in fact proves the validity of
the “Jeans swindle” for the model considered here, i.e., that
the contribution of the background interaction to the infinite
homogeneous contribution vanishes, and one must consider
only the effects of local fluctuations in density [46,47]. These
fluctuations vanish as the size of the unit cell goes to infinity,
with constant particle density.

The same reasoning can be used in an analogous way for
the BBGKY hierarchy, which then takes exactly the same
form as the hierarchy obtained for a system of particles with
a hard-core potential at zero distance as the only interaction.
For such a system in an homogeneous state, the one-particle
distribution function f1(p; t ) is strictly constant in time as
the interaction only swaps the momenta of two particles at
each collision, and three-particles processes are nonexistent
(the probability that three particles collide at the same time
at the same point is zero). For the same initial condition,
the BBGKY hierarchy being identical for both systems, the
time evolution for the reduced distribution functions must be
the same, and therefore the distribution f1(p; t ) for a homo-
geneous one-dimensional self-gravitating system is constant
in time. Small deviations from this are expected to occur in
numerical simulations due to spurious nonphysical effects re-
sulting from a finite value of L, that result in small fluctuations
of the value of the force around zero. We also note that for
smaller values of the energy the homogeneous state is unsta-
ble, in the sense that any small deviation from homogeneity
creates a runaway effect out of this state, and a corresponding
violent relaxation ensues.

IV. CONCLUDING REMARKS

We showed that the sheets model describing a one-
dimensional self-gravitating system has profoundly different
dynamic properties depending on whether it is in a homo-
geneous or a nonhomogeneous state. In the former case we
showed that by considering a proper limit in the periodic
boundary conditions the one-particle evolution function does
not evolve in time, as its kinetic equation is essentially a
Boltzmann-like equation, with the exception that if the ho-
mogeneous state is unstable (for smaller energies) then an
evolution of the distribution function occurs due to the am-
plification of small deviations from homogeneity. For the
nonhomogeneous state, the system has a slow dynamics to
equilibrium, with a relaxation time much greater than for
other long range interacting systems if one uses the violent
relaxation time for comparison. The nonhomogeneous system
is ergodic but only after a time of the order of the relaxation
time to equilibrium, as also observed for other long range
interacting systems, but it is nonergodic in a homogeneous
state, as illustrated by simulations presented here.

It is interesting to compare the physical properties of the
homogeneous state of the model considered here with those
for the Hamiltonian mean field (HMF) model. The HMF
model does indeed relax to thermodynamic equilibrium for
both the homogeneous and nonhomogeneous states. For the
antiferromagnetic HMF model, quasistationary states formed
after the violent relaxation are always homogeneous, and it
was shown in Ref. [48] that the motions of the particles
are approximately ballistic, with small corrections described
in terms of independent Brownian noises. For the one-
dimensional homogeneous self-gravitating system, collisions
are pointlike and occur only when two particles are at the
same position, and otherwise the dynamics is integrable, while
for the HMF model this is not the case. Although the HMF
can be derived from the one-dimensional self-gravitating sys-
tem by truncating at first order the Fourier expansion of the
corresponding Green function, the physical properties are pro-
foundly different. For the Hamiltonian in Eq. (5) and after
taking the limit L → ∞, N → ∞ and N/L constant, colli-
sions are hard core pointlike, i.e., they occur only at zero
distance due to the discontinuity in the potential. Nevertheless,
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if the unit cell is kept finite (as N), then the force between
collisions are not zero, resulting in graininess, although no
clear relaxation to equilibrium could be observed in our sim-
ulations, possibly due for a too large timescale involved. It is
worth noticing that the number of particles is infinite for both
finite or infinite L, due to the periodic boundary condition and
the infinite number of replicas. What occurs is that graininess
is removed when a homogeneous truly (nonperiodic) infinite
system is considered. For the HMF model, and for other simi-
lar models, graininess is always present if N is finite, resulting
in corrections to the mean field description in the force acting
on each particle at every position, with no discontinuity in the
interparticle potential.

A possible way to shed some light on the slow dynamics
of this system in nonhomogeneous states is to obtain a ki-
netic equation, which for the present model is a challenging
task as it requires the determination of action-angle vari-
ables for the mean-field description of the system [49,50],
and has been possible only for very special cases (see
[51] and references therein). This is the subject of ongoing
research.
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