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Quantum critical behaviors and decoherence of weakly coupled quantum Ising
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We discuss the quantum dynamics of an isolated composite system consisting of weakly interacting many-
body subsystems. We focus on one of the subsystems, S, and study the dependence of its quantum correlations
and decoherence rate on the state of the weakly-coupled complementary part E , which represents the envi-
ronment. As a theoretical laboratory, we consider a composite system made of two stacked quantum Ising
chains, locally and homogeneously weakly coupled. One of the chains is identified with the subsystem S under
scrutiny, and the other one with the environment E . We investigate the behavior of S at equilibrium, when the
global system is in its ground state, and under out-of-equilibrium conditions, when the global system evolves
unitarily after a quench of the coupling between S and E . When S develops quantum critical correlations in
the weak-coupling regime, the associated scaling behavior crucially depends on the quantum state of E , whether
it is characterized by short-range correlations (analogous to those characterizing disordered phases in closed
systems), algebraically decaying correlations (typical of critical systems), or long-range correlations (typical
of magnetized ordered phases). In particular, different scaling behaviors, depending on the state of E , are
observed for the decoherence of the subsystem S, as demonstrated by the different power-law divergences of
the decoherence susceptibility that quantifies the sensitivity of the coherence to the interaction with E .
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I. INTRODUCTION

The recent progress on the nanoscale control of physical
systems has opened the road to investigations of the quantum
properties and of the coherent quantum dynamics of coupled
systems, addressing also issues concerning the relative deco-
herence and the energy flow among the various subsystems
[1]. These investigations improve our understanding of the
emergence of interference and entanglement, which is useful
for quantum-information purposes [2] or for enhancing the
efficiency of energy conversion in complex networks [3]. The
presence of different quantum phases and the development of
critical behaviors in interacting subsystems are expected to
play a crucial role for the emergence of new phenomena in
the equilibrium and out-of-equilibrium dynamics of isolated
and open quantum systems [4,5].

If we consider a quantum system made up of various
components, then any subsystem can be seen as an effec-
tive bath for the other ones. In this context, one may study
the quantum dynamics of an open system subject to the
interaction with the environment, while the global system
(composed of the open system and its environment) evolves
unitarily. These issues have been already addressed within
some paradigmatic, relatively simple, composite models, such
as the so-called central-spin models, where one or few qubits
are globally coupled to an environmental many-body system
[5–18], and sunburst models where sets of isolated qubits are
locally coupled to a many-body system [19,20]. The deco-
herence properties of the subsystems crucially depend on the

large scale feature of their state, for instance, on whether the
subsystem is in an ordered or a disordered quantum phase,
or it is close to a critical point, where large-scale critical
correlations develop [4].

In this paper we focus on the open dynamics of one many-
body subsystem S weakly coupled with a complementary
environment E . We study the dependence of the critical be-
havior of S on the coupling between S and E , and on the state
of the environment E , which can be controlled by varying the
Hamiltonian parameters.

As a theoretical laboratory, we consider two stacked one-
dimensional Ising chains, locally and homogeneously weakly
coupled, as sketched in Fig. 1. One of the chains represents the
subsystem S , the other one is the environment E . The Hamil-
tonian parameters of the two chains (for example, the Hamil-
tonian parameter associated with the external transverse field)
differ, so that S and E may be in different quantum phases. We
discuss how a weak interaction between S and E (controlled
by one parameter κ that vanishes when S and E are decoupled)
affects the quantum scaling behaviors and the decoherence
rate of S , close to critical transitions. We discuss static prop-
erties, assuming that the global system is in its ground state,
and the out-of-equilibrium behavior when a sudden quench
of the interactions between S and E is performed. We show
that the scaling behavior in the weak-coupling regime depends
on the quantum state of E . More precisely, a disordered,
critical, ordered environment, characterized by short-range,
algebraically decaying, and long-range correlations, respec-
tively, differently affects the critical scaling behavior of S .
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FIG. 1. Sketch of a system made of two stacked Ising chains,
weakly coupled by local and homogenous interactions controlled by
a parameter κ . One of the chains represents the subsystem S, while
the other one plays the role of environment E .

To characterize the scaling behavior in the presence of a
coupling between S and E controlled by a parameter κ , we
use the renormalization-group (RG) approach, which provides
the natural theoretical framework to effectively describe the
behavior of systems in proximity of quantum transitions; see,
e.g., Refs. [4,5]. We focus, in particular, on the large-size
behavior of the system, deriving finite-size scaling (FSS)
relations, which are largely independent of the microscopic
details. Therefore, they hold in widely different systems and
in very different physical contexts. Moreover, they allow us to
describe complex phenomena using a relatively small number
of relevant variables, providing a notable simplification of the
analysis.

As we mentioned above, in the presence of a coupling
between S and E , some features of the critical behavior of
S depend on whether E is disordered, critical, or ordered.
For instance, the sensitivity of the coherence properties of S
to the coupling strength κ is significantly different in these
three cases. Such a sensitivity can be effectively quantified
by using the susceptibility χQ of the decoherence factor of S
with respect to the parameter κ , since this quantity shows a
different power-law divergence with the size L of the system
in the three cases mentioned above. The RG predictions de-
rived in this work have been confirmed by the FSS analysis of
numerical results for stacked Ising chains.

In a dynamic perspective, the study of the phase diagram
and of the scaling properties of the global system determines
the adiabatic limit of a slow dynamics for a finite-size system
(we recall that finite-size many-body systems are generally
gapped). We also extend the discussion to out-of-equilibrium
conditions, determining the effects of an instantaneous quench
of the coupling between S and E . Again we use a RG
framework, deriving general dynamic FSS relations in the
weak-coupling regime, extending those obtained for the sys-
tem in equilibrium.

The paper is organized as follows. In Sec. II we define the
system we consider, composed of two coupled (stacked) d-
dimensional quantum Ising systems. In Sec. III we introduce
the observables we use to characterize the critical properties
of the subsystem S . In Sec. IV we derive general FSS relations
that characterize the equilibrium behavior of the subsystem S
in the presence of a weak coupling with the environment E .
The different RG scaling ansätze, which depend on the quan-
tum phase of the environment, are supported by numerical

results for coupled quantum Ising chains. In Sec. V we discuss
the general features of the phase diagram for finite values of
the coupling κ between S and E . In Sec. VI we extend the
discussion to out-of-equilibrium dynamic processes, consid-
ering a soft quench of the interaction between S and E , when
the variation of κ is sufficiently small to maintain S within its
critical regime. Finally, in Sec. VII we summarize and draw
our conclusions. Appendix A provides a mean-field analysis
of the phase diagram of stacked Ising systems. Appendix B
reports exact results in some limiting cases.

II. COUPLED QUANTUM ISING SYSTEMS

We consider a system composed of two interacting
(stacked) d-dimensional quantum Ising models: one of them
is identified as the subsystem S under observation and the
other one as the environment E . The Hamiltonian of the global
system is

H = HS (J, g) + HE (Je, ge) + HSE (κ ), (1)

where

HS (J, g) = −J
∑
〈xy〉

σ (1)
x σ (1)

y − g
∑

x

σ (3)
x , (2)

HE (Je, ge) = −Je

∑
〈xy〉

τ (1)
x τ (1)

y − ge

∑
x

τ (3)
x , (3)

HSE (κ ) = −κ
∑

x

σ (1)
x τ (1)

x , (4)

where x are the sites of a cubic-like lattice of size Ld , 〈xy〉 indi-
cates nearest-neighbor sites, σ (k)

x and τ (k)
x are two independent

sets of Pauli matrices. In the following, we consider generic
boundary conditions, for example, open or periodic boundary
conditions (OBC and PBC, respectively). The coupling κ con-
trols the strength of the interactions between the subsystems
S and E , while the Hamiltonian parameters Je and ge allow us
to control the quantum state of the environment (in the regime
of weak coupling between S and E). To reduce the number of
input parameters, we set

J = Je = 1, (5)

which does not limit the generality of our discussion (unless
one is interested in some particular limits that we do not con-
sider). For d = 1 we obtain the stacked Ising chains sketched
in Fig. 1.

For κ = 0, the system is invariant under the Z2 ⊗ Z2 group
of transformations that independently change the signs of
the σ (1)

x and τ (1)
x operators. The interaction Hamiltonian HSE

breaks this invariance, leaving only a global Z2 symmetry
under the simultaneous transformations

σ
(1/2)
x → −σ

(1/2)
x , σ (3)

x → σ (3)
x ,

τ
(1/2)
x → −τ

(1/2)
x , τ (3)

x → τ (3)
x . (6)

Note that, if we only change the sign of one of the longitudinal
spin operators, i.e., σ (1)

x → −σ (1)
x or τ (1)

x → −τ (1)
x , then we

obtain the same Hamiltonian with κ replaced by −κ . Thus,
the phase diagram does not depend on the sign of κ . Without
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loss of generality, we assume κ � 0. Moreover, at fixed κ ,
the phase diagram of the global system is invariant under the
exchange g ↔ ge, due to the fact that the two subsystems S
and E are identical apart from their transverse-field parameters
g and ge.

A simplified model is obtained for g = ge. In this case, the
global system has an additional Z2 symmetry, as it is invariant
under the interchange σx ↔ τx. Thus, the symmetry group
enlarges to Z2 ⊗ Z2 ⊗ Z2 for κ = 0 and to Z2 ⊗ Z2 when the
two systems are coupled (κ �= 0).

It is worth noting that the symmetry properties of the
global system change, if the coupling Hamiltonian involves
the transverse spin operators, i.e., if HSE , defined in Eq. (4),
is replaced by

H̃SE = −κ̃
∑

x

σ (3)
x τ (3)

x , (7)

where κ̃ is the parameter controlling the strength of the inter-
action. Indeed, such a coupling term preserves the Z2 ⊗ Z2

symmetry present for κ̃ = 0. Note that, in the symmetric case
g = ge, the global model with the interacting term H̃SE is
equivalent to the so-called quantum Ashkin-Teller model; see,
e.g., Refs. [21,22]. In this paper we only consider models
coupled through their longitudinal spin operators, such as in
Eq. (4), breaking the independent Z2 invariance of the two
subsystems. The alternative case, corresponding to the cou-
pling H̃SE , is also worth investigating, as it would provide
insights on the quantum dynamics, when the interaction term
between S and E does not break any symmetry of the isolated
system. We do not pursue it in this paper.

When the interaction between the subsystems vanishes,
i.e., when κ = 0, one recovers two decoupled d-dimensional
quantum Ising systems. Therefore, it is useful to recall
that d-dimensional quantum Ising systems, described by the
Hamiltonian (2) supplemented by an additional longitudi-
nal term Hh = −h

∑
x σ (1)

x , undergo a quantum continuous
transition at a finite value g = gI and h = 0; see, e.g.,
Refs. [4,5,23]. The corresponding quantum critical behavior
belongs to the (d + 1)-dimensional Ising universality class.
In particular, we have gI = 1 for the one-dimensional Ising
chain. The relevant parameters r ≡ g − gI and h, associ-
ated with the transverse and longitudinal spin operators σ (3)

x
and σ (1)

x , represent the leading even and odd RG perturba-
tions at the (d + 1)-dimensional Ising fixed point. Their RG
dimensions are yr = 1/ν and yh, respectively, so that the
length scale ξ of the critical modes behaves as ξ ∼ |g − gI |−ν

for h = 0, and ξ ∼ |h|−1/yh for g = gI . The RG exponents
are exactly known for one-dimensional systems: yr = 1 and
yh = 15/8; see, e.g., Ref. [4]. Accurate estimates are avail-
able for two-dimensional quantum Ising systems; see, e.g.,
Refs. [24–30]. Reference [28] reports yr = 1.58737(1) and
yh = 2.481852(1). For d = 3, the critical exponents take their
mean-field values, yr = 2 and yh = 3; moreover, the critical
singular behavior is characterized by additional multiplicative
logarithmic factors [4,5,24]. The dynamic exponent z, con-
trolling the vanishing of the gap � ∼ ξ−z at the transition
point, is 1 in any dimension. For later use, we recall that
the RG dimension yφ of the longitudinal spin operator σ (1)

x
(it represents the order parameter of the model) is given by
yφ = d + z − yh = (d + z − 2 + η)/2, where η is the critical

exponent characterizing the spatial decay of the critical cor-
relations. Using the above-reported results for yh, we have
yφ = 1/8 for d = 1, yφ = 0.518148(1) for d = 2, and yφ = 1
for d = 3.

We finally mention that similar stacked quantum systems
have been also considered in other contexts, such as those
discussed in Refs. [31,32].

III. OBSERVABLES AT EQUILIBRIUM

To study the equilibrium properties of the subsystem S
when the global system is in the ground state |�0〉, consid-
ering E as the environment, we introduce the reduced density
matrix of S ,

ρS = TrE [|�0〉〈�0|], (8)

where TrE [ · ] denotes the partial trace over the Hilbert space
associated with the subsystem E .

The coherence properties of S can be quantified through
the purity P, the corresponding Rényi entanglement entropy
S, and the decoherence factor Q, defined as

P = Tr
[
ρ2
S
]
, S = −ln P, Q = 1 − P. (9)

Exploiting the Schmidt decomposition for bipartitions of pure
states, one can easily prove that the purity P of the subsystem
S equals that of the complementary environment E . The de-
coherence factor varies between zero (corresponding to P = 1
and S = 0, for a pure reduced state) and 1 (corresponding to
P = 0, for a completely incoherent many-body state).

To quantify the loss of coherence of the subsystem S due to
a weak interaction term HSE , we look at the behavior of Q for
small values of κ . Since Q is an even function of κ , assuming
analyticity at κ = 0 (which is certainly true for finite-size
systems), we can expand it as

Q = 1

2
κ2χQ + O(κ4), χQ ≡ ∂2Q

∂κ2

∣∣∣∣
κ=0

, (10)

where χQ represents the decoherence susceptibility with re-
spect to the coupling κ .

We also consider the correlations of the spin operators σ (1)
x .

Due to the global Z2 symmetry, we have

Tr
[
ρS σ (1)

x

] = 0. (11)

The two-point correlation function can be written as

G(x, y) ≡ Tr
[
ρS σ (1)

x σ (1)
y

]
. (12)

We consider odd values of L, we set L = 2� + 1, and choose
coordinates such that −� � xi � �, so that we can identify
a central site x0 with vanishing coordinates (this coordinate
system is particularly convenient in the case of OBC). We con-
sider a susceptibility and second-moment correlation length,
defined as

χ =
∑

x

G(x0, x), ξ 2 = 1

2dχ

∑
x

x2G(x0, x). (13)

The ratio

Rξ = ξ/L (14)

is a RG invariant quantity. In the FSS limit, it scales as
Rξ (g, L) ≈ R(rLyr ), where r = g − gI and R is a function
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that is universal apart from a rescaling of its argument [24,33].
Moreover, the susceptibility χ behaves as χ ≈ Ld−2yφC(rLyr ),
where d − 2yφ = 2 − z − η = 1 − η, or, equivalently, as

χ ≈ L1−ηaχFχ (Rξ ). (15)

The function Fχ (Rξ ) is universal, while aχ is a nonuniversal
constant that depends on the model parameters.

IV. SCALING BEHAVIORS FOR WEAKLY COUPLED
SUBSYSTEMS

We now discuss how the coupling term HSE affects the
quantum critical properties of S for small values of κ . Using
RG arguments, we show that S develops different scaling
behaviors, that depend on the state of the environment E ,
controlled by the Hamiltonian parameter ge, cf. Eq. (3). We
refer here to the state of E for κ = 0. Indeed, the addition of
a coupling term HSE also changes the properties of the envi-
ronment. We distinguish three cases: (i) the environment E is
disordered, ge > gI ; (ii) E is in the critical regime, ge ≈ gI ;
(iii) the environment is ordered (magnetized), i.e., ge < gI .

The predicted scaling behaviors will be compared with the
results of numerical FSS analyses for the one-dimensional
model (1), i.e., for two stacked Ising chains, sketched in Fig. 1.
To compute correlation functions, we use the density-matrix
RG (DMRG) algorithm with OBC, which allows us to obtain
results for systems of size up to L ≈ 40. As for the im-
plementation, we use matrix-product-state (MPS) algorithms
taken from the iTensor library [34]. The DMRG algorithm is
very convenient to compute coherence properties for left-right
bipartitions of the system. In principle, it could also be used
to compute Q in our case, by considering S and E as the
left and right ordering of the ladder model that we consider.
However, in this type of implementation, one would generate
nonlocal interactions between the two subsystems, making
the algorithm inefficient. Therefore, the decoherence factor Q
has been computed by performing an exact diagonalization of
the global Hamiltonian, using standard Lanczos techniques.
Of course, smaller systems can be considered (we obtained
results up L ≈ 10, thus about 20 spins). In this case we used
PBC.

A. Disordered environment

Let us first assume that the environment E is disordered
for κ = 0. It presents only short-range correlations, so that
it may be effectively considered as a collection of a large
number of independent subsystems. For an Ising system, such
as the one described by the Hamiltonian (3), the environment
E is disordered for ge > gI . We focus on the subsystem S ,
and, in particular, on the scaling behavior of its decoherence
properties for small values of the coupling κ .

1. Scaling behavior for small κ

For ge > gI , we conjecture that the interaction HSE be-
tween S and E is an irrelevant perturbation at the quantum
critical point of the subsystem S . Under this hypothesis, the
subsystem S has an Ising critical transition also for finite κ , at
a critical point gc(κ ) that depends on κ . Since the coupling κ

is irrelevant, there is only one relevant operator also for κ �= 0.
We indicate the corresponding scaling field with ur (ur ∼ r in

the absence of coupling κ). Its RG dimension yr is the same
as that of the thermal operator in the Ising universality class;
see the end of Sec. II.

We recall that the scaling fields associated with the RG
perturbations are analytic functions of the model parameters
[5,24,33,35]. In the case at hand, in which there is only one
relevant RG perturbation, the singular part of the free-energy
density in the zero-temperature and FSS limit is expected to
scale as [5,33]

Fsing(g, ge > gI, κ, L) ≈ L−(d+z)F (Ws), (16)

where

Ws = urLyr . (17)

Correspondingly, any RG invariant quantity R, such as Rξ

defined in Eq. (14) or the decoherence factor Q defined in
Eq. (9), is expected to asymptotically scale as [33]

R ≈ FR(Ws). (18)

The scaling field ur is an analytic function of g, κ , and ge,
such that ur ∼ r for κ = 0. Due to the symmetry of the phase
diagram under κ → −κ , for small values of r and κ it behaves
as

ur (r, κ ) ≈ r + bκ2, r = g − gI, (19)

where the nonuniversal constant b depends on the environ-
ment coupling ge, and we fixed an arbitrary normalization
requiring ur ≈ r for κ = 0.

The RG irrelevance of the coupling between the two sub-
systems does not imply that this coupling is negligible. First,
the coupling gives rise to a shift of the critical point gc(κ ); see
the next subsection. Moreover, it implies that, along the line
r = 0 and for small κ , R scales as (we assume κ � 0)

R ≈ Fc(KD), KD ≡ κLyr/2. (20)

The scaling behavior of the decoherence susceptibility defined
in Eq. (10) can be derived by differentiating the scaling equa-
tion Q ≈ Q(Ws) with respect to κ . We obtain

χQ(g, ge, L) ≈ LyrC(rLyr ). (21)

The power-law divergence of χQ shows that the coherence
properties of S are strongly affected by the coupling with the
environment.

The previous scaling relations hold modulo scaling cor-
rections that vanish as L → ∞. They are expected to be
analogous to those arising at the critical point of isolated Ising
chains. They depend on the observable and on a variety of
sources, such as irrelevant operators, analytic backgrounds,
analytic expansions of the scaling fields, the presence of
boundaries, etc.; see, for example, Ref. [33] for a thorough
discussion of this point. In particular, in the presence of
boundaries (for instance, when OBC are used), one expects
boundary-related corrections decaying as L−1. These correc-
tions are absent when PBC are used [33]. However, we note
that, at criticality (r = 0), the corrections due to the terms
of order κ4 in the expansion (19) of the scaling field ur

may become the most relevant ones. If ur ≈ bκ2 + b2 κ4 for
r = 0, then we have Ws ≈ b K2

D + b2K4
DL−yr , which shows

that these terms contribute corrections of order L−yr , at fixed
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FIG. 2. Scaling behavior of the decoherence factor Q of the chain
S in the critical regime (g = 1), when it is coupled with a disordered
environment E (ge = 2). The data are plotted versus KD = κL1/2.
PBC are used. The results are consistent with the scaling relation
(20). The inset shows that the scaling corrections at fixed KD = 1
decay as L−1 (the straight line is only meant to guide the eye),
consistently with the RG arguments reported in the text.

KD = κLyr/2. For one-dimensional Ising systems with PBC,
these corrections, of order 1/L, are the leading ones for the
decoherence factor Q. However, the scaling corrections for
Rξ are still dominated by the analytic background [33]—they
decay as L−3/4.

To verify the previous scaling predictions, we present nu-
merical results for one-dimensional stacked Ising chains. We
fix g = 1 and a value ge > 1, so that the system S is critical
and the environment E is disordered for κ = 0. In Fig. 2
we show data for the decoherence factor Q for systems with
PBC up to L = 11. The results are consistent with the RG
prediction, Eq. (20), which, in turn, implies Eq. (21), i.e., the
divergence of the decoherence susceptibility as Lyr . Also the
behavior of the scaling corrections—they decay as 1/L—is
consistent with the general theory (see the inset). We also
computed the ratio Rξ ≡ ξ/L for systems with OBC up to
L ≈ 40. In Fig. 3 we plot the ratio

Rκ (g, ge, κ, L) ≡ Rξ (g, ge, κ, L)

Rξ (g = 1, ge, κ = 0, L)
, (22)

which should scale as reported in Eq. (18) or, for g = 1, as
in Eq. (20). The ratio Rκ is particularly convenient because
its scaling corrections turn out to be significantly smaller than
those affecting Rξ . Again results nicely support the RG predic-
tions. Also the scaling corrections, see the inset, are consistent
with the RG theory.

2. Ising-like transition lines for small κ

As already anticipated, we may also predict the behavior
of the Ising transition line gc(κ ), starting at the critical point
gc = gI for κ = 0. Transitions occur on the line ur = 0. Equa-
tion (19) implies

gc(ge, κ ) − gc(ge, κ = 0) = gc(ge, κ ) − gI ≈ b(ge) κ2,

(23)

FIG. 3. Scaling plot of the ratio Rκ , defined in Eq. (22), versus
KD = κL1/2, for g = 1 and ge = 2. Data appear to converge toward
a single asymptotic curve with increasing L, supporting the scaling
behavior reported in Eq. (20). In the inset we show data for KD = 1:
scaling corrections apparently behave as L−3/4 (the straight line is
only meant to guide the eye), as predicted by RG arguments; see
text.

where b depends only on ge. The behavior (23) holds for
sufficiently small values of κ , when higher-order O(κ4) terms
in the expansion (19) can be neglected.

In Appendix B we determine b(ge) for large values of ge,
obtaining

b(ge) ≈ 3

2g2
e

for ge → ∞. (24)

The vanishing of b(ge) far large ge follows from the more
general result gc(ge, κ ) = gI for any κ in the limit ge → ∞.
Indeed, in this limit the ground state of the global system
is an eigenvector of τ (3)

x with eigenvalue 1 for all lattice
points x. The global ground state is therefore factorized, i.e.,
|�0〉 = |φ0〉E ⊗ |ψ0〉S , where |φ0〉E = �x|+〉x, |+〉x is the +1
eigenvector of τ (3)

x , and |ψ0〉S is defined on S only. Since the
matrix element of HSE on this factorized state vanishes, |ψ0〉S
is the ground state of an isolated single Ising chain, that has a
critical point for g = gI , independently of κ .

We now consider the opposite limit, re ≡ ge − gI → 0.
In this case the coefficient b(ge) is expected to diverge as
b(ge) ∼ r−ζ

e . with ζ > 0. The exponent ζ will be determined
in Sec. IV B 2, by matching Eq. (23) with the asymptotic
multicritical behavior arising when also the environment is
critical. This allows us to obtain the exponent ζ in terms of
the Ising critical exponents. We find ζ = 2(2 − η)ν − 1 > 0
and, in particular, ζ = 5/2 for one-dimensional stacked Ising
chains. The divergence of b(ge) for re → 0, indicates that a
different regime emerges when the environment E is critical,
as it will be discussed in Sec. IV B.

The prediction (23) is nicely confirmed by the numerical
results. In Fig. 4 we report the critical points gc(κ ) for ge = 2
and ge = 4 and a few values of κ . The critical points were
identified by looking at the crossing points of the ratio Rκ

defined in Eq. (22), for systems with OBC and lattice sizes
up to L ≈ 20.
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FIG. 4. The g–κ phase diagram when the environment is disor-
dered in the absence of coupling, i.e., for ge > gI = 1. We report the
estimates of the critical points for ge = 4 and some values of κ . In
the inset we report analogous data for ge = 2. The uncertainty on the
estimates is smaller than, or at the most of the order of, the size of
the symbols. The critical lines are obtained by fitting the data for the
smallest values of κ (those along the full lines) to gc(κ ) = 1 + bκ2,
obtaining b ≈ 0.14 for ge = 4, and b ≈ 1.29 gor ge = 2. These re-
sults fully support the RG prediction, cf. Eq. (23). The coefficient
b rapidly increases when ge approaches the critical value gI = 1,
consistently with the asymptotic behavior b(ge) ∼ (ge − 1)−5/2; see
Eq. (42).

Finally, we consider the susceptibility χ as a function of
Rξ = ξ/L. In Fig. 5 we report χ/L1−η computed varying g
around the critical point gc(κ ) for several different values of L
and κ , and for two values of ge. According to the RG theory,
data should scale according to Eq. (15). The results reported
in Fig. 5 show an excellent scaling, provided we use the Ising
exponent η = 1/4. They confirm that all transitions for κ > 0
belong to the 2D Ising universality class. Note, moreover, that
data corresponding to different values of ge and κ appear to
approximately collapse onto the same curve. This implies that

FIG. 5. Scaling plot of χ/L1−η, using the 2D Ising exponent η =
1/4, versus Rξ . For each L, κ , and ge, data are obtained by varying
g around the critical point gc(κ ). They show the scaling behavior
reported in Eq. (15).

the nonuniversal constant aχ is Eq. (15) depends very weakly
on the system parameters.

To conclude, let us finally note that the coupling κ also
significantly affects the properties of the environment E : For
κ �= 0 the environment becomes critical when S is driven to
criticality. Thus, only for g > gc(κ ) is the environment still
disordered. For g = gc(κ ), E is critical, while, for g < gc(κ )
the environment is fully ordered. These features will be dis-
cussed and explained on general grounds in Sec. V.

B. Critical environment

We now discuss how the coupling with a critical envi-
ronment E affects the critical behavior of the subsystem S .
Therefore, we assume that E is close to criticality for κ = 0,
i.e., ge ≈ gI . As we shall see, the effect of a weak coupling
between S and E is substantially different from that occurring
when S is coupled with a disordered environment.

1. FSS at the multicritical point for κ = 0

As we shall show below, if the environment E is criti-
cal, the interaction HSE gives rise to a relevant perturbation
of the critical behavior of the subsystem S . In this case
there are three relevant perturbations at the uncoupled crit-
ical point (g = gI, ge = gI, κ = 0). Two of them are those
that drive criticality in the two isolated subsystems. The cou-
pling κ gives rise to an additional independent relevant RG
perturbation.

The uncoupled critical point is multicritical. To describe
the multicritical behavior close to it [24,36–39], we introduce
three independent scaling fields:

ur ∼ r ≡ g − gI, uer ∼ re ≡ ge − gI, uκ ∼ κ. (25)

Because of the equivalence of the environment and the system,
ur and uer have the same RG dimension yr . The scaling field
uκ has RG dimension yκ . All scaling fields are relevant: yr and
yκ are both positive; see below. Then, in the zero-temperature
and FSS limit, the singular part of the free-energy density is
expected to scale as [5,24,33,35,38]

Fsing(g, ge, κ, L) ≈ L−(d+z)F (Ws,Wes, Ks), (26)

Ws = urLyr , Wes = uerLyr , Ks = uκLyκ . (27)

The scaling fields ur , uer , and uκ are analytic functions of the
Hamiltonian parameters g, ge, and κ . Close to the multicritical
point they can be expanded as

ur = r + bκκ
2 + brr2 + berrre . . . , (28)

uer = re + cκκ
2 + crr2

e + cerrre . . . , (29)

uκ = κ + drrκ + derreκ . . . . (30)

The scaling fields ur and uer are expected to be even under
the symmetry κ → −κ (therefore, they can only depend on
κ2), while uκ should be odd. Since we are interested in the
asymptotic FSS, we may equivalently consider the simpler
linear scaling variables

W = rLyr , We = reLyr , K = κLyκ . (31)
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This substitution is equivalent to neglecting some (typically
next-to-leading [33], see also below) scaling corrections.

Close to the multicritical point, the effects of a small cou-
pling κ are controlled by its RG dimension yκ . To compute
it, we note that the interaction term can be rewritten in the
field-theory framework as [40,41]∫

dDx κ φs(x)φe(x), D = d + z, (32)

where φs and φe are the order-parameter fields for the two
critical systems S and E . Then, we straightforwardly obtain

yκ = d + z − 2yφ = 2 − η, (33)

where yφ is the RG dimension of the order parameter at the
(d + 1)-dimensional Ising fixed point. These relations give
yκ = 7/4 for d = 1, yκ = 1.963702(2) for d = 2, and yκ = 2
for d = 3, confirming that the coupling κ gives rise to a
relevant perturbation, as anticipated above.

On the basis of the above RG analysis, we expect any RG
invariant quantity R defined on the subsystem S , such as Rξ =
ξ/L or the decoherence factor Q, to behave as

R(g, ge, κ, L) ≈ R(W,We, K ), (34)

where R is a universal scaling function of its arguments. In
particular, if we set r = re = 0, therefore moving along the
line g = ge = gI , then Eq. (34) predicts

R(g = gI, ge = gI, κ, L) ≈ R0(K ). (35)

Differentiating twice Eq. (34) with respect to κ , and then
setting κ = 0, we obtain the leading FSS behavior of the
decoherence susceptibility χQ defined in Eq. (10):

χQ(g, ge, L) ≈ L2yκC(W,We). (36)

Again this demonstrates that the coherence properties of the
quantum critical behavior of S are very sensitive to the cou-
pling with the environment E . We may compare the power-law
behavior χQ(g, ge, L) ≈ L2yκ with that obtained when E is dis-
ordered for κ = 0, i.e., χQ ∼ Lyr , cf. Eq. (21). The exponent
2yκ is significantly larger than yr in any dimension (indeed
yr = 1 and 2yκ = 7/2 in d = 1; yr ≈ 1.587 and 2yκ ≈ 3.928
in d = 2; yr = 2 and yκ = 4 in d = 3) and thus, not surpris-
ingly, the decoherence rate for a critical environment is much
larger than that for a disordered environment.

To verify the previous scaling predictions, we have consid-
ered two coupled chains at criticality, i.e., for g = ge = gI =
1. We recall that yr = 1 and yκ = 7/4 for one-dimensional
systems. Figures 6 and 7 show the behavior of the decoher-
ence factor Q (we use PBC) and of the ratio Rκ defined in
Eq. (22) (we use OBC), respectively. The results for both Q
and Rκ nicely support the scaling behavior, Eq. (35). In par-
ticular, the scaling function Q0 associated with Q, cf. Eq. (35),
scales as K2 for small K = κLyκ , which implies the divergence
of the decoherence susceptibility, χQ ∼ L2yκ .

Scaling corrections are expected to be similar to those
arising in the case of an isolated critical Ising chain; see also
Sec. IV A. For one-dimensional quantum Ising systems, the
leading scaling correction for the ratio Rξ = ξ/L is expected
to be due to the analytic background [33]: it should decay
as L−3/4 for both PBC and OBC. The scaling corrections
associated with Q are expected to decay faster, as L−2 in the

FIG. 6. The decoherence function Q of the subsystem S for g =
ge = 1 (correspondingly, r = re = 0). The data show an excellent
FSS when plotted versus K = κL7/4, confirming the RG analysis.
The inset shows the data at fixed K = 1: size corrections apparently
decay as L−2, as predicted by the RG arguments (the line is only
drawn to guide the eye).

absence of boundaries (for instance, for PBC), and as L−1

for systems with boundaries (in the OBC case). The insets of
Figs. 6 and 7 show that scaling corrections behave as predicted
by the RG arguments.

We remark that similar multicritical behaviors should also
emerge when the two subsystems S and E are different. The
multicritical fixed point is given by the two decoupled fixed
points associated with the critical behaviors of S and E in the
absence of any coupling. The RG dimension of the parameter
κ that parametrizes the coupling of the two subsystems can
be computed again using Eq. (32), where φs and φe represent
the operators defined in S and E entering the interaction
Hamiltonian HSE .

FIG. 7. Scaling behavior of the ratio Rκ , defined in Eq. (22),
for g = ge = 1 (corresponding to r = re = 0). The data show an
asymptotic FSS when plotted versus K = κL7/4, confirming the RG
analysis. The inset shows the data at fixed K = 1.5: size corrections
decay as L−3/4, as expected from the RG arguments (the line is only
drawn to guide the eye).
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2. Ising transition lines for small κ

So far we have considered the behavior around the
multicritical point. In the parameter space (g, ge, κ ), the
multicritical point (g = gI, ge = gI, κ = 0) belongs to a two-
dimensional surface of critical transitions that lies, for κ �= 0,
in the region g > gI , ge > gI . Such transitions are related to
the spontaneous breaking of the residual Z2 symmetry of the
global system when κ �= 0. Therefore, they are expected to
belong to the (d + 1)-dimensional Ising universality class. A
more general discussion will be presented in Sec. V. Here, we
wish to discuss the shape of the critical surface close to the
multicritical point.

To make the discussion simple, let us consider a plane in
the parameter space such that the ratio s ≡ re/r is constant,
and such that it intersects the transition surface along a line.
The scaling behavior (26) of the free energy also determines
the behavior of the transition line close to the multicritical
point; see, e.g., Refs. [36–38]. As re/r = We/W is kept con-
stant, we can neglect the scaling field We, and we can rewrite
the singular free-energy density as

F ≈ ξ−(d+z)
r F̃ (X,Y ), (37)

X = ξr/L, ξr ∼ r−1/yr , Y = r−yκ /yr κ, (38)

where ξr plays the role of a critical length scale. In the large-L
limit, i.e., for X → 0, we may write

F ≈ ξ−(d+z)
r F∞(Y ). (39)

Consistency of the phase diagram with Eq. (39) requires that,
for κ → 0, the critical line gc(s, κ ) is tangent to the line
corresponding to a fixed finite value of the scaling variable Y .
Therefore, for small values of κ , the above scaling arguments
predict that

gc(s, κ ) − gI ≈ w(s) κε, ε = yr

yκ

� 1, s = re

r
, (40)

where the coefficient w(s) depends on the ratio s = re/r.
Substituting the known values of yr and yκ , we find ε = 4/7 ≈
0.5714 for d = 1, ε ≈ 0.8084 for d = 2, and ε = 1 for d = 3
[in d = 3, there are probably additional multiplicative loga-
rithms in Eq. (40)]. The small-κ behavior (40) significantly
differs from that holding for a disordered environment; see
Eq. (23).

As discussed in Sec. IV A 2, gc(s, κ ) − gI = O(κ2) for
finite re ≡ ge − gI > 0, thus the coefficient w(s) of the power
κε (where ε < 2) must vanish for s → ∞. The consistency of
the scaling equation (40) with Eq. (23) in the limit ge → gI
allows us to predict the limiting behavior of b(ge) appearing
in Eq. (23) for ge → gI and of w(s) for s → ∞. Indeed, for
small values of κ , Eq. (23) can be rewritten as

gc(ge, κ ) − gI = {b(ge) [gc(ge, κ ) − gI]2/ε−1}ε/2κε. (41)

We require this relation to be consistent with the scaling
behavior Eq. (40) for re ≡ ge − gI → 0. This implies

b(ge) ∼ r−ζ
e , ζ = 2

ε
− 1 = 2(2 − η)ν − 1. (42)

Explicitly, ζ = 5/2, 1.47, 1 for d = 1, 2, 3, respectively.
Equation (41) also predicts the behavior of w(s) when

w(s) → 0, i.e., for large values of s. We find

w(s) ∼ s−ρ, ρ = 1 − ε/2 > 0. (43)

For d = 1, 2, 3 we have ρ = 5/7, ρ ≈ 0.596, ρ = 1/2,
respectively.

We stress that the above RG arguments determine the be-
havior of the critical lines starting from the multicritical point,
provided they exist. However, they do not ensure the existence
of such lines for any value of s. Indeed, the mean-field calcu-
lations reported in Appendix A, suggest that the critical lines
exist only for s > 0. Our numerical results, see below, confirm
this prediction.

As we shall discuss in Sec. V, if the S correlations are
critical, then correlations defined on E are critical. Using the
symmetry of the system under the exchange of S and E ,
see Sec. II, we can straightforwardly obtain a relation on the
location of the (common) critical points. The coefficient w(s)
in Eq. (40) must satisfy the relation

w(s−1) = s w(s). (44)

This relation combined with Eq. (43) implies that w(s) di-
verges as s → 0, as

w(s) ∼ s−ε/2 for s → 0. (45)

The divergence of w(s) for s → 0 suggests that the transition
line starting from the multicritical point disappears for s = 0,
i.e., when ge = gI , confirming the mean-field analysis. This is
also supported by the numerical results for the stacked Ising
chains; see below.

To check these predictions, we again consider the stacked
Ising chains and numerically determine gc(s, κ ) for a few
small values of κ . For this purpose, we determine the energy
gap �, i.e., the difference of the energies of the two lowest
states of the global system, focusing on the ratio

R�(s, r, κ, L) = �(s, r, κ, L)

�I (L)
, (46)

where �I ∼ L−1 is the gap of the single critical Ising chain.
We consider systems with PBC and compute the gap using
exact-diagonalization techniques. Since the transition line is
expected to belong to the Ising universality class—therefore
z = 1—the ratio R� is expected to vanish for g < gc(s, κ ) and
to diverge for g > gc(s, κ ). In particular, close to the transition
point, at fixed κ , it should scale as

R�(s, g, κ ) ≈ R�(ULyr ), U = g − gc(s, κ ), (47)

where R�(x) is a universal scaling function, apart from a
multiplicative factor and a rescaling of its argument. The RG
invariant ratio Rξ should scale analogously, i.e., we should
have Rξ (s, g, κ ) ≈ Rξ (ULyr ) where Rξ is universal apart
from a rescaling of its argument. Therefore, the transition
point gc(s, κ ) can be determined by looking for the crossing
point of data sets for different sizes L.

In Fig. 8 we show R� at fixed κ = 0.2 for two values of s,
that is, s = 1 and s = 0. The data for s = 1 show a crossing
point indicating the existence of a transition point, while those
for s = 0 are always smaller than 1 and do not show any
crossing, indicating that there is no transition for finite κ

and s = 0 (i.e., ge = 1). Note that for s = 0 the ratio R� is
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FIG. 8. Plot of the ratio R� defined in Eq. (46) for κ = 0.2.
Top: results for s = 1; bottom: results for s = 0. Results for s = 1
show a clear crossing point for g ≈ 1.31, indicating the presence of
a transition. For s = 0 the ratio R� is always smaller than 1 and does
not show any crossing, indicating that no transition occurs.

expected to approach 1 for g → ∞. Indeed, when g → ∞, the
ground state becomes an eigenvector of all σ (3)

x operators. It is
immediate to verify that this implies an effective decoupling
of the critical environment E (the argument is the same as the
one used to discuss the limit ge → ∞ in Sec. IV A 2). The gap
of the global system therefore converges to the gap �I of the
isolated environment.

In Fig. 9 we show some results for the critical lines starting
from the multicritical point, for some values of s > 0. We
mention that some results for identical stacked critical Ising
chains, i.e., for g = ge, thus corresponding to s = 1, were
already reported in Ref. [40]. Our results and those reported in
Ref. [40] nicely confirm the scaling prediction (40). Moreover,
our numerical results do not provide evidence of transitions
for s � 0 (including also the marginal case s = 0, as shown
above), supporting the absence of transition lines when one

FIG. 9. Some estimates of the critical points gc(κ ) for s ≡ re/r =
2 and s = 1 (inset). The behavior for small κ is in agreement with the
scaling prediction, Eq. (40). The full lines are obtained by fitting the
data of gc(κ ) for small values of κ (κ � 0.03) to gc(κ ) = 1 + w κε

with ε = 4/7. We obtain w ≈ 0.53 for s = 2 and w ≈ 0.76 for s = 1.
Note that w decreases with increasing s, as expected on the basis of
the asymptotic behavior (43).

of the coupling g or ge is below the Ising-chain transition
point gI , as predicted by the mean-field analysis reported in
Appendix A.

We also mention that consistent results (not shown) have
also been obtained by analyzing the FSS behavior of Rξ or of
the ratio Rκ defined in Eq. (22). The DMRG results for sys-
tems with OBC show a slower convergence to the asymptotic
large-L behavior, therefore leading to less precise estimates.
This can be explained by the different behavior of the size
corrections for the two observables. If PBC are used, then R�

approaches the asymptotic value with corrections that decay
as L−2 [33]. However, for Rξ (for both PBC and OBC), size
corrections decay slower, as L−3/4.

C. Ordered environment

Finally, we discuss the behavior of S when the en-
vironment E is ordered and characterized by a nonzero
magnetization in the thermodynamic limit. In Ising systems,
this corresponds to choosing ge < gI and appropriate bound-
ary conditions (see below). We argue that, as in the case of
a critical environment, the interaction term HSE is a relevant
perturbation. However, its RG dimension ȳκ differs from that
controlling the behavior in a critical environment, since ȳκ >

yκ . Moreover, no transition lines appear at finite κ; therefore
for ge < gI , the critical point at g = gI and κ = 0 is isolated.

For a magnetized environment, the order parameter of the
subsystem E is not critical, as the ground state of E is the
superposition of magnetized states with magnetization ±m0

(the superposition must be such that the global magnetization
vanishes because of the global Z2 symmetry of the global
Hamiltonian). Therefore, in the perturbation (32) we can re-
place φe(x) with an average magnetization, which is a constant
under RG transformations. The RG perturbation (32) reduces
to ∫

dDx κ φs(x), (48)

which leads to

ȳκ = d + z − yφ = yh, (49)

where yh is the RG dimension of the leading symmetry-
breaking perturbation at the Ising fixed point, associated with
a longitudinal field h; see Sec. II. Therefore, yh = 15/8 for
d = 1, yh ≈ 2.482 for d = 2, and yh = 3 for d = 3. These
results imply that the singular part of the free-energy density
in the zero-temperature and FSS limit scales as

Fsing(r, κ, L) ≈ L−(d+z)F (W, KO), (50)

W ≈ rLyr , KO ≈ κLyh , (51)

where r = g − gI and we used linear scaling fields. The spe-
cific value of the coupling ge < gI does not play any role. It
only changes the values of the nonuniversal constants and of
the analytic backgrounds.

The scaling behavior for any observable can be straight-
forwardly obtained from those reported for the critical
environment. It is enough to replace the scaling variable K
with KO and yκ with yh, in Eqs. (34), (35), and (36). In
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FIG. 10. Decoherence function Q versus KO = κLyh , for g =
gI = 1 and ge = 0.5 (ordered environment). In the inset, we show
data for KO = 0.6: size corrections decay as L−2 in agreement with
RG arguments (the line is drawn to guide the eye).

particular, the decoherence susceptibility behaves as

χQ ∼ L2yh . (52)

Therefore, since yh > yκ for any d (indeed yh − yκ = yφ > 0),
the sensitivity of the coherence properties when E is in the
ordered phase is even larger than the one arising from a critical
environment E , where χQ ∼ L2yκ .

The leading scaling corrections for Rξ and Q are analogous
to those found for a critical environment. For example, for
one-dimensional systems with PBC, we expect O(L−2) cor-
rections for Q and O(L−3/4) corrections for Rξ .

The FSS predictions are confirmed by the results of numer-
ical computations for coupled quantum Ising chains. We fixed
g = gI = 1 and considered two values of ge, ge = 0.2 and
ge = 0.5. Results for the decoherence factor Q for a system
with PBC and for Rκ defined in Eq. (22) for a system with
OBC are shown in Figs. 10 and 11, respectively. The results
nicely support the scaling behavior (50).

Since the parameter κ effectively behaves as an external
longitudinal field when ge < gI , we do not expect any tran-
sition for finite values of κ , as in the standard quantum Ising
model in the presence of an external longitudinal field h. This
is confirmed by numerical results.

We finally stress that the derivation of the above scaling
behaviors assumes that the environment E is subject to neutral
boundary conditions, i.e., to boundary conditions that do not
favor any ordered phase, such as PBC and OBC. Only with
these boundary conditions is the ground state a superposition
of magnetized states [42]. Some important changes may oc-
cur when different boundary conditions are considered, for
example, fixed boundary conditions that favor one of the bro-
ken phases, or antiperiodic boundary conditions. Indeed, the
FSS of systems at quantum first-order transitions drastically
depends on the nature of the boundary conditions; see, e.g.,
Refs. [5,42–44].

FIG. 11. Scaling plot of the ratio Rκ , defined in Eq. (22), versus
KO = κLyh , for g = gI = 1 and ge = 0.5 (ordered environment). In
the inset, we show data at fixed KO = 0.8: size corrections decay as
L−3/4 in agreement with RG arguments (the line is drawn to guide
the eye).

V. GENERAL PHASE DIAGRAM

In Sec. IV, we discussed the behavior of the subsystem S
in the weak-coupling regime κ � 1. We wish to discuss now
the behavior for finite values of κ . We recall that the phase
diagram of the global system must be symmetric with respect
to a change of the sign of κ at fixed g and ge. Moreover, at
fixed κ , it must be symmetric with respect to interchanging g
and ge, due to the fact that the two subsystems S and E are
identical apart from the transverse couplings g and ge.

A mean-field analysis is presented in Appendix A, which
shows that, also for finite κ , the environment parameter ge

plays an important role. The main features of the mean-field
analysis are substantially confirmed by the numerical results
that we have obtained for the stacked Ising chains.

If the environment is ordered in the absence of coupling,
i.e., for ge < gI , then no transition occurs for any value of
κ . The coupling with the environment drives the system S in
the ordered phase, independently of the value of g. A critical
behavior is only observed for κ = 0 and g = gI , as discussed
in Sec. IV C. A different behavior is observed for ge > gI ,
i.e., when the environment is disordered in the absence of cou-
pling. In this case, by tuning g to a critical value gc(κ, ge) >

gI , a critical line appears, which should be associated with the
breaking of the global Z2 symmetry, cf. Eq. (6). This is shown
in Fig. 4.

It is interesting to observe that, at the critical point, both
correlations defined on S and on E are critical. This is a
specific feature of the interaction we consider, or, more pre-
cisely, of the invariance properties of the interaction term
HSE . In general, at fixed g and ge, one may expect differ-
ent types of transitions: a transition at κ = κS (g, ge), where
S correlations are critical, and a transition at κ = κE (g, ge),
where E correlations are critical. Note that we are making
no assumption of the existence of the transitions: at fixed g
and ge, there may be no transition, one transition, or both of
them. The symmetry of the system under the exchange of S
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and E implies κS (g, ge) = κE (ge, g), but not the equality of
the two functions. The relation κS (g, ge) = κE (g, ge) follows
instead from the analysis of the symmetry breaking pattern
at the transition. Indeed, in our model the symmetry involves
transformations on both systems; see Eq. (6). Thus, we expect
both systems to be magnetized on the ordered side of the
transition, which, in turn, implies that they become critical
simultaneously. This prediction has been explicitly verified
in Sec. IV C. Note that the equality of the two transition
functions does not necessarily hold, if the interaction term
does not break the symmetry under independent longitudinal
spin reflections. This would be the case of subsystems coupled
by using the transverse spin operators, for instance, by the
Hamiltonian interaction (7). In this case, for g �= ge, one might
observe two different transitions.

Since the E and the S subsystems become simultaneously
critical, for g < gc(κ ), both S and E should be ordered, as
verified in Sec. IV C. For g > gc(κ ) instead, both subsystems
should be disordered. Since the global Z2 symmetry is broken
at gc(κ ), the transition should belong to the Ising univer-
sality class and g − gc(κ ) should represent the scaling field
associated with the leading even perturbation, analogous to
r = g − gI for standard Ising systems. This is confirmed by
the scaling plots reported in Fig. 5.

The intermediate situation where ge ≈ gI gives rise to a
multicritical behavior, as discussed in Sec. IV B. In agreement
with the mean-field analysis, the numerical results confirm
that there are no transitions at finite κ when ge � gI . In the
opposite case ge > gI , the transition lines are present. Their
behavior for κ → 0 and ge → gI , is consistent with the ex-
pected multicritical scaling; see Fig. 9.

Finally, let us consider the behavior in the limit κ → ∞. A
general discussion is reported in Appendix B. We show that
the system is fully ordered for κ → ∞ at fixed g and ge. For
finite, large values of κ , a transition always occurs for large
values of g. More precisely, gc(κ ) ≈ aκ for κ → ∞, where a
is a constant dependent on ge; see Appendix B.

VI. OUT-OF-EQUILIBRIUM DYNAMIC SCALING
BEHAVIOR

The recent progress achieved by quantum simulators in
controlling the dynamics of an increasing number of qubits
has called for theoretical investigations of the coherent time
evolution of quantum correlations in composite systems, of
the decoherence of one subsystem due to the interaction
with the remainder, and of the energy exchanges between
finite-size subsystems (see, e.g., Refs. [5,45–48]). A deeper
understanding of the decoherence and entanglement dynamics
is of fundamental importance, both for quantum-information
purposes and for the improvement of energy conversion in
complex networks [3,48]. Moreover, the study of the energy
storage and exchange among the different components of
a quantum system is relevant for quantum-thermodynamical
purposes [49,50], as well as for the efficiency optimization of
recently developed quantum batteries [51].

The study of the phase diagram and of the equilibrium
scaling properties reported in the previous sections allows
one to describe the adiabatic slow dynamics of finite-size
systems (we recall that finite-size many-body systems are

generally gapped). In this section we extend the analysis to
out-of-equilibrium dynamic protocols. In particular, we wish
to determine the dynamic scaling behaviors induced by a
time-dependent coupling between the subsystems S and E .

We consider here the following quenching protocol. Ini-
tially, the systems S and E are decoupled, i.e., κ = 0, and
are in their ground states |� (S )

0 〉 and |� (E )
0 〉, so that the initial

many-body state |�0〉 is given by

|�0〉 = ∣∣� (S )
0

〉 ⊗ ∣∣� (E )
0

〉
. (53)

Then, at t = 0, the system is suddenly driven out of equilib-
rium by quenching the parameter κ to a finite value, i.e., κ

varies instantaneously from zero to a finite value κ > 0. The
initial state |�0〉 is no longer a Hamiltonian eigenstate and it
evolves according to the Schrödinger equation,

|�(t )〉 = e−iHt |�0〉, (54)

where H is the total Hamiltonian (1).
One can easily check that a sudden quench from κ = 0 to

any κ > 0 entails a vanishing average quantum work

W = 〈�(t )|HS (g) + HE (ge) + HSE (κ )|�(t )〉
−〈�0|HS (g) + HE (ge)|�0〉. (55)

Indeed, since we are interested in a sudden quench at t =
0, and the average energy is conserved for t > 0, we can
compute the average work replacing |�(t )〉 with |�0〉, thus
obtaining

W = 〈�0|HSE (κ )|�0〉
= −κ

∑
x

〈
�

(S )
0

∣∣σ (1)
x

∣∣� (S )
0

〉〈
�

(E )
0

∣∣τ (1)
x

∣∣� (E )
0

〉 = 0, (56)

where we used the fact that 〈� (S )
0 |σ (1)

x |� (S )
0 〉 and

〈� (E )
0 |τ (1)

x |� (E )
0 〉 vanish due to the Z2 symmetry of the

Hamiltonians HS and HE . It is also worth mentioning that
some average work Wb is instead necessary to suddenly turn
the coupling κ off after some time t > 0, to go back to the
original decoupled Hamiltonian, because

Wb(t ) = 〈�(t )|HS + HE |�(t )〉 − 〈�0|HS + HE |�0〉 > 0.

(57)
After quenching at t = 0, the energy of the global system

is conserved along the evolution for t > 0. However, we may
have some energy exchange between the subsystems S and
E . This can be quantified by the average energy exchange Eex

defined as

Eex(t ) = 〈�(t )|HS |�(t )〉 − 〈�0|HS |�0〉. (58)

To monitor the coherence properties of the subsystem S
along the time evolution, one may define a time-dependent
decoherence function Q(t ) analogous to the equilibrium de-
coherence factor Q, cf. Eq. (9),

Q(t ) = 1 − Tr ρS (t )2, ρS (t ) ≡ TrE [|�(t )〉〈�(t )|], (59)

where ρS (t ) is the time-dependent reduced density matrix of
the system S . One may also define correlation functions at
fixed time, i.e.,

G(t, x, y) ≡ Tr
[
ρS (t ) σ (1)

x σ (1)
y

]
, (60)
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and extract a corresponding correlation length, analogously to
Eq. (13).

One may generally distinguish between two types of sud-
den quench [5]: a soft quench is related to a tiny change of
the parameter κ (decreasing with L), so that the system stays
close to a quantum transition and thus excites only critical
low-energy modes. In contrast, a hard quench is not limited by
the above condition and typically involves exchanges of an ex-
tensive amount of energy, in such a way that also high-energy
excitations are involved. In the following we only discuss soft
quenches, and put forward the appropriate scaling behaviors
in a dynamic FSS framework.

We generalize the equilibrium scaling description of the
weak-coupling regime, outlined in Sec. IV, to the out-of-
equilibrium case in which κ varies from zero to a nonzero
value, that is so small that the evolution can be considered
a soft quench. In general, dynamic behaviors exhibiting a
nontrivial time dependence require the introduction of another
scaling variable associated with the time variable t , defined as
[5,52]

� = t �I (L), �I (L) ∼ L−z, (61)

where �I is the finite-size gap at criticality of the isolated
system S , and z is the dynamical exponent, which is equal
to 1 for any d-dimensional Ising system. In the dynamic FSS
limit L → ∞ and g → gI , the equilibrium scaling variables
defined before (they depend on the nature of E) and the time
variable � defined in Eq. (61) should all be kept constant.

For instance, if E is at criticality, then the decoherence
function Q obeys the dynamic FSS scaling law [5,20,52]

Q(t, r, re, κ, L) ≈ Q(�,W,We, K ), (62)

where the scaling fields W , We, and K are defined in Eqs. (31).
This scaling ansatz generalizes Eq. (34) to the dynamic case,
by simply adding an additional dependence on the time
scaling variable �. Analogous relations hold for other observ-
ables, such as the ratio Rξ ≡ ξ/L at time t . Since the average
energy flow between S and E , defined in Eq. (58), is expected
to scale as the energy gap at the transition point, i.e.,

Eex ∼ �I (L) ∼ L−z, (63)

in the FSS limit, it should satisfy the scaling relation

Eex(t, r, re, κ, L)

�I (L)
≈ E (�,W,We, K ). (64)

The average work Wb defined in Eq. (57) should scale analo-
gously.

The same scaling arguments apply when E is ordered or
disordered. It is enough to supplement the corresponding
equilibrium scaling relations with an additional dependence
on the timescaling variable �.

The above FSS predictions have been checked numerically.
We consider stacked Ising chains with PBC and compute
the ground state (54) by means of fourth-order Runge-Kutta
algorithms. The energy exchange Eex defined in Eq. (58) and
the decoherence factor Q defined in Eq. (59) are plotted versus
� in Fig. 12, close to the critical point g = ge = 1 (critical en-
vironment). The scaling behavior of the data clearly supports
the dynamic FSS predictions, Eqs. (62) and (64). We note that
the asymptotic FSS is observed for relatively small sizes of

FIG. 12. Plot of the ratio Eex/�I (L)—the energy exchange is
defined in Eq. (58)—and of the decoherence factor Q, defined in
Eq. (59), versus �. �I (L) ∼ L−z is the gap of the Ising chain (2) at
g = gI . For each L, we fix g, ge, and κ , so that the equilibrium scal-
ing variables defined in Eq. (31) take the values W = 1, We = 0.5,
and K = 10 (therefore, as L increases, g, ge → 1 and κ → 0). The
collapse of the results for different sizes on a single curve supports
the dynamic FSS relations Eqs. (62) and (64).

the system, already with 20 qubits. Analogous results can be
obtained for disordered or ordered environments.

In conclusion, the out-of-equilibrium behavior of the sub-
system S satisfies scaling laws that are extensions of the
equilibrium FSS relations, with the crucial addition of the
scaling variable � = t �I ∼ t L−z, where �I is the gap of
the critical Ising system. Similar dynamic scaling relations
hold for other slow out-of-equilibrium protocols, in which
the Hamiltonian parameters are slowly varied moving the
subsystem S across the quantum critical point point. An-
other interesting case is the so-called Kibble-Zurek dynamics
[53–55], for which peculiar out-of-equilibrium scaling behav-
iors emerge both in the infinite-volume and in the FSS limit
[5,56,57].

We finally remark that the dynamic scaling behaviors put
forward in this section apply to soft quenches, when the
Hamiltonian parameter variations are sufficiently small to
maintain S within its critical regime, thus affecting only the
critical modes and involving relatively small energy inter-
changes, i.e., E ∼ �I (L) = O(L−z ) in the FSS limit or E ∼
ξ−z in the thermodynamic limit. They do not apply to hard
quenches, when the variation of κ induces interchanges of ex-
tensive amounts of energy, thus significantly affecting also the
higher-energy noncritical modes. In the case of hard quenches
one may investigate the nature of the asymptotic large-time
states, whether, and how, they effectively thermalize in the
large-volume limit; see, e.g., Refs. [58,59] and references
therein. However, we do not pursue this issue in this paper.

VII. CONCLUSIONS

We have discussed the quantum behavior of an open many-
body system S interacting with a surrounding many-body
environment E , assuming that the global system is a pure state
|�S⊕E (t )〉 that evolves unitarily. As a paradigmatic model,
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we consider two coupled one-dimensional Ising chains with
Hamiltonian (1), see Fig. 1, but the theoretical predictions
apply to general d-dimensional Ising systems. One of the
chains plays the role of the open system S under observation,
while the other one plays the role of environment E . The
two chains interact by means of the Hamiltonian term HSE

defined in Eq. (4), that couples the longitudinal spin variables
of both subsystems. We analyze the decoherence rate and
the quantum critical behavior of the subsystem S , assuming
that the global system is in its ground state. We also discuss
the out-of-equilibrium behavior after a sudden quench of the
interaction between S and E , assuming that the global system
is isolated and evolves unitarily. In particular, we study how
these equilibrium and out-of-equilibrium behaviors depend on
the quantum phases of E , when S and E are weakly coupled.
A detailed RG analysis shows that three qualitatively different
behaviors are observed depending on E , whether it is disor-
dered (therefore characterized by short-ranged correlations),
critical (correlations are algebraically decaying), or ordered
(long-range correlations). The different phases of E give rise
to different FSS behaviors with respect to the coupling param-
eter κ between S and E .

To quantify the effects of the interaction with the envi-
ronment on the coherence properties of S , we consider the
susceptibility χQ of the decoherence factor Q, defined in
Eq. (10). The susceptibility χQ provides a measure of the
sensitivity of the coherence properties of S to the coupling
with E for small value of κ . It shows a power-law divergence
in the size L of the system, for any state of E . However,
the power-law depends on the phase: χQ ∼ Lyr when E is
disordered, χQ ∼ L2yκ with yκ = yh − yφ when E is critical,
χQ ∼ L2yh when E is ordered, where yr and yh are the RG
dimensions of the leading even and odd relevant perturbations
at the (d + 1)-dimensional Ising fixed point, and yφ is the
RG dimension of the order-parameter field. Note that, since
yr < 2yκ < 2yh in any dimension, the decoherence rate of
S becomes larger and larger, moving from a disordered to
an ordered environment E . For example, for one-dimensional
systems we have yr = 1, 2yκ = 7/2 and 2yh = 15/4. Numer-
ical results for coupled Ising chains, obtained by means of
exact-diagonalization and DMRG computations, nicely sup-
port the scaling behaviors put forward in this paper.

The larger power-law divergence of the decoherence sus-
ceptibility χQ when the subsystem E is ordered may be
phenomenologically explained by the fact that the coupling
between S and the ordered E is effectively much more
correlated than their coupling when E is disordered. Al-
ternatively, one may qualitatively understand this behavior
recalling that the sensitivity of a many-body system to small
variations greatly depends on the quantum phase. Ordered
phases (without external symmetry breaking terms) are much
more sensitive to changes of model parameters or couplings
with external sources, see, e.g., Refs. [5,44,52,60,61], and
therefore an ordered E induces much larger changes also to
the coupled critical system S .

We have also discussed how the equilibrium scaling behav-
iors can be extended to out-of-equilibrium dynamic processes,
for instance, to protocols entailing a sudden quench of the
coupling between S and E ; see Sec. VI. In particular, for
a soft quench we conjecture out-equilibrium FSS laws that

extend those valid at equilibrium. They are obtained by simply
adding an additional dependence on the time scaling variable
� = t�I (L) (where �I ∼ L−z is the gap at the critical point
of a quantum Ising system) to the equilibrium FSS relations.

In our analysis we focused on the behavior of S and E ,
always assuming that the subsystem S under observation is
close to criticality. It would be interesting to investigate the
same issues when the subsystem S is the first-order transition
region, i.e., for g < gI . In this regime, FSS behaviors emerge
as well, although they turn out to significantly depend on
the nature of the boundary conditions; see, e.g., Refs. [5,42–
44,52,60–62].

We stress that the scenario emerging from the study of
two coupled Ising chains is expected to be quite general.
Therefore, it should be straightforward to extend the analysis
presented in this paper to systems S and E of different nature,
different dimensionality, etc., including also the case in which
E is much larger than the system S under observation. In
particular, we expect the behavior of S , including the coher-
ence properties, phase diagram, and critical behavior, to be
strongly dependent on the quantum phase of the environment
E . However, we note that our general scaling framework at the
multicritical point, when both S and E develop critical modes
(see Sec. IV B), was essentially assuming a competition of
critical modes characterized by equal dynamic exponents z,
in particular z = 1 for both subsystem criticalities. We believe
that the competition of critical modes associated with different
dynamic exponents may lead to further interesting features,
worth being investigated.

The predicted FSS behaviors put forward in this paper have
been clearly observed in numerical simulations of stacked
Ising chains for a relatively small number of coupled spins.
For example, the scaling behavior of the decoherence factor
has been observed in systems with a few tens of qubits. This
suggests the possibility of devising realistic experiments with
quantum simulators to address the phenomena discussed here,
by means of various platforms; see, e.g., Refs. [63–69].

The effects of the interactions with an environment (bath)
on quantum many-body systems have been addressed, ex-
ploiting different approaches, in, e.g., Refs. [5,70–80]. One
approach is based on the so-called Lindblad master equa-
tion [81,82], which allows for some types of dissipative
interactions without the necessity of keeping track of the
full environment dynamics, within some approximations; see,
e.g., Ref. [5] and references therein. As shown for various sys-
tems and modelizations of the dissipative interactions within
the Lindblad framework, the interaction with the environ-
ment makes the quantum critical behavior of a closed system
generally unstable [5,75,79,80], similar to a finite tempera-
ture. Indeed, in this framework the dissipative interactions
are relevant perturbations, which move the open system away
from the quantum critical behavior of the isolated system. An
alternative mechanism leading to dissipation is provided by
the coupling of a many-body system with an infinite set of
harmonic oscillators; see, e.g., Refs. [70–74]. Also this type of
dissipative interaction is a relevant perturbation of the critical
behavior of isolated systems and may lead to other types of
criticality driven by dissipation. We note that our modeling,
in which the global system is isolated and evolves unitarily,
is physically different from the one used in the Lindblad
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framework or when an infinite set of oscillators is coupled
with the system. For comparison, we mention that a power-
law divergence of the decoherence susceptibility χQ is also
expected in open systems driven by a Lindbladian master
equation effectively describing the interaction with local ex-
ternal baths, where the interaction with the environment is
controlled by a parameter u associated with the decay rate of
the dissipative mechanism; see, e.g., Refs. [5,79,80]. Indeed,
using the FSS framework outlined in Refs. [5,80], one may
infer that the decoherence susceptibility χQ with respect to
the parameter u of an open system close to criticality gener-
ally diverges as χQ ∼ L2z where z is the dynamic exponent
controlling the suppression of the gap, thus χQ ∼ L2 for a
quantum Ising model.

We finally remark that the results obtained in weakly
coupled d-dimensional quantum Ising systems also apply
to the corresponding classical systems, i.e., to coupled D-
dimensional classical Ising systems with D = d + 1. For
instance, we may consider two coupled D-dimensional lattice
Ising systems S and E , defined by the partition function

Z =
∑

sx

exp(−Hcl/T ),

Hcl = HS (J ) + HE (Je) + HSE (κ ), (65)

where

HS (J ) = −J
∑
〈xy〉

sx sy, HE (Je) = −Je

∑
〈xy〉

wx wy,

HSE (κ ) = −κ
∑

x

sx wx. (66)

Here sx = ±1 and wx = ±1 are classical spin variables as-
sociated with the sites x of a D-dimensional cubic lattice,
〈xy〉 indicates nearest-neighbor sites. Using the quantum-
to-classical mapping [4,5], the quantum critical behavior of
d-dimensional stacked quantum systems coincides with that
of D-dimensional stacked classical systems with D = d + 1.
Then, using RG arguments analogous to those reported for the
stacked quantum Ising systems (1) in Sec. IV and VI (in the
dynamic case, one should also specify a particular dynamics,
for instance, the purely relaxational dynamics [83]), one can
straightforwardly derive similar FSS relations for the subsys-
tem S in the background of the environment E , when S is close
to criticality and the coupling κ is sufficiently small. These
scaling behaviors crucially depend on the effective phase of
the environment E controlled by its parameter Je. Although
the scaling behavior is expected to be analogous, classical and
quantum systems are expected to show significant quantita-
tive differences. For instance, for κ → ∞ the classical model
turns out to be equivalent to a single classical Ising model (in
the limit κ → ∞ only configurations satisfying sx = wx on
all sites are allowed), with an ordered and a disordered phase
separated by a standard Ising transition. In the quantum case,
for large κ the system can also be modelled by a single Ising
chain; see Appendix B. However, the width of the paramag-
netic phase shrinks as κ increases, so that the two chains are
always ordered in the limit κ → ∞.

APPENDIX A: LANDAU-GINZBURG-WILSON
MEAN-FIELD ANALYSIS

In this Appendix we discuss the model using the standard
Landau-Ginzburg-Wilson approach. We consider a classical
model in D = d + 1 dimensions with two scalar fields φ1 and
φ2, with interaction potential

V =
∫

dDx [V2(φ1, φ2) + V4(φ1, φ2)], (A1)

where

V2(φ1, φ2) = r1

2
φ2

1 + r2

2
φ2

2 + κ φ1φ2, (A2)

and V4(φ1, φ2) is the quartic potential. Cubic terms do not
enter because of the symmetry under simultaneous changes of
the sign of the two fields, φ1,2 → −φ1,2. Close to the critical
point, the parameters r1 and r2 correspond to ge − gI and
g − gI , respectively.

In the mean-field approach, the kinetic term is neglected
and the transition lines are determined from the analysis of
the quadratic terms. To clarify the behavior, we first perform
a unitary transformation of the fields that diagonalizes the
quadratic part. If ψ1 and ψ2 are the new fields, then we obtain

V2 = 1

4
(r1 + r2 + δ)ψ2

1 + 1

4
(r1 + r2 − δ)ψ2

2 ,

δ =
√

(r1 − r2)2 + 4κ2. (A3)

Therefore, phase transitions occur for

r1 + r2 = ±δ ⇒ r1r2 = κ2. (A4)

This relation implies that, if one of the two systems is at
criticality, for instance r1 = 0, in the (r2, κ ) plane, then there
is a single transition point at r2 = κ = 0. Otherwise, we ob-
serve transition lines along which r1 and r2 have the same
sign. In our quantum model, this implies that transitions lie
in the region g > gI , ge > gI , for κ �= 0. The mean-field
argument also allows transition with g < gI , ge < gI . How-
ever, in this case, the two systems are already ordered, and
thus the addition of the coupling between the two systems
would simply increase the order, without giving rise to critical
transitions.

To understand the nature of the transitions, we should an-
alyze the quartic potential. We do this analysis for the simple
case, in which the model is also symmetric under the exchange
of the two Ising fields (in the quantum model it corresponds
to ge = g). In the presence of this additional symmetry, the
quartic potential is given by

V4 = a1
(
φ4

1 + φ4
2

) + a2
(
φ2

1 + φ2
2

)
φ1φ2 + a3φ

2
1φ

2
2 . (A5)

In terms of the fields ψi it becomes

V4 = 1

4
(2a1 + a3 + a2sκ )ψ4

1 + 1

4
(2a1 + a3 − a2sκ )ψ4

2

+ 1

2
(6a1 − a3)ψ2

1 ψ2
2 , (A6)

where sκ = κ/|κ|. The two Z2 symmetries of the original
model imply that the system is invariant under independent
changes of the sign of ψ1 and ψ2, which explains why there
are no odd powers of ψi in the quartic potential. Thus, in
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the symmetric case, the generic model corresponds to two
Ising systems with an energy-energy coupling. For systems in
D = 3 dimensions there is the possibility of a symmetry en-
largement at the multicritical point—the Z2 ⊗ Z2 invariance
enlarges to O(2) [36–39]. In D = 2 dimension the energy-
energy interaction is marginal at the O(2) fixed point and
thus a more complex behavior can be obtained. As we have
discussed in the text, the latter possibility can be realized
by adding a coupling between the transverse spins, such as
in Eq. (7). There is a decoupled multicritical point, which
corresponds to a3 = 6a1 in Eq. (A6), where the effective
model is simply the sum of two noninteracting Ising systems.
Thus, at fixed κ �= 0, the transition is obtained by tuning
g = ge at a critical point gc(κ ). The quantity g − gc(κ ) is a
thermal Ising scaling field. Nothing would change for g �= ge.
Terms like ψ1ψ

3
2 and ψ3

1 ψ2 would now be present. How-
ever, for κ �= 0, only one field is critical. The noncritical
field should be integrated out and it would give rise to even
contributions in the critical field. Thus, we predict all devia-
tions from the critical point to represent Ising thermal scaling
fields.

APPENDIX B: LARGE-κ AND LARGE-ge TRANSITIONS

In this Appendix, we discuss the behavior of the system for
large values of κ and for large values of ge.

Let us first consider the limit κ → ∞ at fixed g and ge.
If the system is in the global ground state, then the coupling
term HSE forces the S and E spins on the same site to be
aligned. Therefore, we can simply consider the problem in the
reduced Hilbert space obtained by only considering the states
| + +〉1 and | − −〉1 on each site. Here | + +〉1 and | − −〉1

are the single-site eigenvectors of σ (1) and τ (1): σ (1)| + +〉1 =
+| + +〉1, τ (1)| + +〉1 = +| + +〉1, and σ (1)| − −〉1 = −| −
−〉1, τ (1)| − −〉1 = −| − −〉1. The computation of the ground
state of the total Hamiltonian in this reduced space is triv-
ial. The ground state is independent of ge and g and doubly
degenerate: a basis is provided by the two fully ordered
configurations.

In this derivation we have assumed that g and ge are fixed
as κ increases, i.e., we are in the limit g, ge � κ . However,
it is equally possible that κ is large, but still smaller than
g, i.e., the couplings satisfy ge � κ � g. In this case, the
relevant states will be eigenstates of σ (3)

x on each site. The
coupling Hamiltonian κ does not play any role—the two
systems decouple—and one has an effectively disordered sub-
system S . Thus, for κ and g large, depending on their relative
size, S can be either ordered or disordered. We thus expect
a transition when κ and g are both large, but of the same
order.

For convenience, we will adopt below the following no-
tation for the single-site states. We indicate with | + +〉,
| + −〉, | − +〉, | − −〉 the single-site eigenvectors of σ (3) and
τ (3), respectively. For instance, | + −〉 satisfies σ (3)| + −〉 =
+| + −〉 and τ (3)| + −〉 = −| + −〉. If both κ and g are large,
then the relevant Hilbert space can be obtained by diagonaliz-
ing the single-site Hamiltonian, i.e., by considering

Hss = −gσ (3) − geτ
(3) − κσ (1)τ (1). (B1)

For κ, g � ge ∼ 1 the relevant eigenstates are

ψ0 = A√
1 + A2

| + +〉 + 1√
1 + A2

| − −〉,

ψ1 = A√
1 + A2

| + −〉 + 1√
1 + A2

| − +〉, (B2)

where, neglecting corrections of order ge/g, we have

A = g

κ
+

√
1 + g2

κ2
. (B3)

The gap is

� = E (ψ1) − E (ψ0) = 2g√
g2 + κ2

ge, (B4)

where we have only kept the leading term in ge. The other
two states have energy differences of order g, κ , with re-
spect to the ground state. The previous expression shows
the presence of two different regimes, in agreement with
the previous discussion. If κ/g → ∞, then � goes to zero,
so that the two states become degenerate. Moreover, since
A → 1, the combinations ψ0 ± ψ1 correspond to the aligned
states we have discussed above. If instead g/κ → ∞, then
the system is gapped and the ground state corresponds to a
paramagnetic S .

To discuss the generic case, let us note that, for g, κ � ge,
on each site the relevant Hilbert space consists of the two
states ψ0 and ψ1. If we associate the vector (1,0) to ψ0 and the
vector (0,1) to ψ1, then we can write the local Hamiltonian in
this restricted Hilbert space as

Hloc = −�

2
λ(3) + Em, λ(3) =

(
1 0
0 −1

)
, (B5)

where λ(3) is a Pauli matrix and Em = [E (ψ0) + E (ψ1)]/2.
The hopping part of the full Hamiltonian can be similarly
written as an effective hopping term involving λ(1)

x λ(1)
y on

neighboring sites. Thus, apart from an additive constant, we
end up with an effective Ising chain with Hamiltonian

H = −Jeff

∑
(xy)

λ(1)
x λ(1)

y − �

2

∑
x

λ(3)
x , (B6)

where

Jeff = 1 + 6A2 + A4

(1 + A2)2
. (B7)

Therefore, we predict a transition for

Jeff = �

2
. (B8)

This equation depends only on the ratio κ/g and ge. Therefore,
we predict

κc(g, ge) = α(ge)g for κ, g � ge. (B9)

Numerically, we find α(ge) = 0.931, 1.99, 5.00 for ge =
2, 4, 10. For large values of ge, we have approximately
α(ge) ≈ ge/2(1 − 2/g−4

e ). For ge → 1 we have α(ge) ≈√
2
3 (ge − 1)1/2. As expected, no solution exists for ge < 1.
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We have performed a numerical check of the prediction
by computing κc(g) for ge = 2 and several values of g. Data
for g � 2 are well fitted by κc(g) ≈ ag + b, with a = 0.94(1)
and b = −0.5(1). The estimate of a is in agreement with the
prediction 0.931, obtained above.

The behavior for large values of ge at fixed κ and g
can be discussed analogously. For ge → ∞, as discussed
in Sec. IV A 2, the subsystems E and S are decoupled and
gc(κ ) = 1 for all values of κ . We wish now to compute the
corrections to this result. We proceed as before, diagonalizing
the local single-site Hamiltonian. For ge → ∞ the relevant
eigenvectors are

ψ0 = B1√
1 + B2

1

| + +〉 + 1√
1 + B2

1

| − −〉,

ψ1 = B2√
1 + B2

2

| + −〉 + 1√
1 + B2

2

| − +〉, (B10)

where, to leading order in ge, we have

B1 = 2ge

κ
, B2 = κ

2ge
. (B11)

As before, the states | + +〉, . . ., are eigenstates of σ (3) and
τ (3). In the same limit the gap is

� ≈ 2g − gκ2

g2
e

. (B12)

To complete the calculation, we should compute the coupling
Jeff that parameterizes the hopping term. We find

Jeff = 1 + 4B1B2(
B2

1 + 1
)(

B2
2 + 1

) ≈ 1 + κ2

g2
e

. (B13)

Requiring �/2 = Jeff we obtain

gc(κ ) = 1 + 3

2g2
e

κ2, (B14)

which is valid as long as κ � ge.
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