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Probability inequalities for direct and inverse dynamical outputs in driven fluctuating systems

Diego Frezzato *

Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy

(Received 17 June 2022; revised 20 October 2022; accepted 21 December 2022; published 13 January 2023)

When a fluctuating system is subjected to a time-dependent drive or nonconservative forces, the direct-inverse
symmetry of the dynamics can be broken so inducing an average bias. Here we start from the fluctuation
theorem, a cornerstone of stochastic thermodynamics, for inspecting the unbalancing between direct and inverse
dynamical outputs, here called “events,” in a bidirectional forward-backward setup. The occurrence of an event
might correspond to the realization of a quantitative output, or to the realization of a sequence of acts that
compose a complex “narrative.” The focus is on mutual bounds between the probabilities of occurrence of
direct and inverse events in the forward and backward mode. The inspection is made for systems in contact
with a thermal bath, and by assuming Markov dynamics on the uncontrolled degrees of freedom. The approach
comprises both the case of systems under a time-dependent drive and time-independent external forces. The
general formulation is then used to derive (or re-derive) specialized results valid for finite-time processes, and
for systems taken into steady conditions (either periodic steady states or steady states) starting from equilibrium.
Among the results, we find already known forms of “generalized” thermodynamic uncertainty relations, and
derive useful constraints concerning the work distribution function for systems in steady conditions.
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I. INTRODUCTION

The stochastic formulation of nonequilibrium thermody-
namics is undoubtedly one of the most striking advancements
in the physical statistics of the last decades [1]. The ambit is
that of systems taken out of equilibrium and for which, on
average, a directed dynamical behavior is allowed thanks to
the induced breakdown of the direct-inverse symmetry. Some-
thing useful, or at least most interesting, comes out in contrast
to the otherwise unbiased equilibrium scenario. The strength
of the achievements lies in the fact that most of them are
universal relations, equalities and inequalities, that are valid
under general conditions and do not involve detailed features
of the specific system.

Milestones in stochastic thermodynamics are the Jarzynski
equality [2,3] and the Crooks fluctuation theorem (FT) [4,5],
both of which came at the time when the manipulation of
single biomolecules was beginning to be feasible, paired with
the computer simulations counterpart. Although the initial
practical impact was mainly on the charting of free energy
landscapes from finite-time nonequilibrium transformations
starting from thermal equilibrium, those early theorems own
a much wider manifold of potentialities [6].

The FT, in particular, connects the probability of observing
direct trajectories with the probability of the inverse ones
under an external action, and sets a relationship between
dissipation and breakdown of the reversibility. The main as-
sumption consists in the Markov nature of the fluctuations.
The FT concerns “bidirectional” processes, where the term
“bidirectionality” takes on different meanings in the various
forms of the theorem [7]. In the early Crooks version, the FT
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was obtained for the most natural kind of bidirectionality: The
system is subjected to forward and backward transformations
in which a parameter is changed in a certain time-dependent
way (forward protocol) or in the opposite way (backward
protocol). Later, the FT was reformulated [7–9] also for other
conceptualizations of bidirectionality and, with a proper iden-
tification of the amounts of work and heat exchanged by
system and exterior [9,10], also including external noncon-
servative forces that break the microreversibility.

From the FT, a wealth of corollaries and logical conse-
quences can be derived. Among other achievements, it is
worth mentioning the thermodynamic quantification of the
length of time’s arrow [11] and the assessment of its di-
rection [6,12], England’s viewpoint on self-replication [13]
and driven self-assembly [14], and the recent derivation of
so-called generalized thermodynamic uncertainty relations
(TURs) concerning the interplay between relative precision on
a dynamical output and required average energy cost [15–22].

Here we exploit the FT for inspecting the mutual bounds
between the probability of occurrence of an event E in what
we identify as the forward process (F), and the probability of
occurrence of the inverse event Ẽ in the conjugate backward
process (B). As will be explained in greater detail in Sec. III A,
an event is a dynamical output that corresponds, in general
terms, either to the realization of a quantitative output or to a
“narrative” made of one or more clauses to be fulfilled. Such
a narrative may be so complicated as to prevent its translation
into an intelligible mathematical expression; rather, it could
resemble more of a logical structure (like a piece of com-
puter program with if-then-else conditions) to be checked in
the course of the “execution” of the specific trajectory. By
supposing to be able to observe the system in detail during
its evolution, we would indeed be able to detect whether
the event, in a given observation time window, actually took
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FIG. 1. Abstract representation of an event’s “extraction” from a
snippet of trajectory in the space of the system’s degrees of freedom.
The realization of event E corresponds to the fulfillment of a set of
clauses. The fulfillment can be checked on the fly and so, ultimately,
one can answer the question “Did E occur?” In terms of expectation,
one focuses on the probability of occurrence of the event.

place or not. Before making the observation, it is therefore
legitimate to express the probability that such an event will
be observed. The idea is depicted in Fig. 1. While the FT is
an equality involving the probabilities for direct and inverse
trajectories, inequalities (i.e., the bounds we are interested
in) come out from the “bundling” of all the trajectories that
pertain to the realization of events E and Ẽ .

The system is described here at the level of continuous
degrees of freedom (the reduction to the discrete state space
can be done straightforwardly). We will consider both nonau-
tonomous systems subjected to a time-dependent energy
modulation, and autonomous systems subjected to constant
nonconservative forces. Within these two scenarios, we treat
the cases of finite-time processes starting from equilibrium,
of systems kept in periodic steady states under the action
of a periodic external drive, and of systems in steady states
under external constant forces. In each case, the time window
of interest is identified with the duration t f of the finite-time
process, or with the period τ of the external driving, or with a
certain observation time tobs under steady-state conditions.

It is to be noted that in our setup there are two kinds of
directionality. One pertains to the direction of the process (F
or B), which is determined by what we call “forward” and
“backward” direction. The other directionality concerns the
development of the sequence of elemental acts that compose
the event of interest: “direct” (for E) and “inverse” (for Ẽ)
are nothing but subjective labels that we use to identify and
distinguish the two opposite ways. For instance, if the event
were simply the realization of a certain trajectory in the space
of the system’s degrees of freedom, the inverse event would
be the same trajectory traveled in the opposite way.

Starting from the FT, we derive a family of inequalities in
which the probabilities of occurrence of the direct and inverse
events, or even of a general number of events under the clause
of their mutually exclusive occurrence, are constrained one

with the other by the average amount of energy dissipation.
The inequality in Eq. (12) will be the central relation: The
left-hand side is a quantity built with the event’s probabilities,
while the right-hand side quantifies the average amount of
dissipation. In each case, this inequality becomes a constraint
for delimiting the range of variation of the events’ probabili-
ties given the average dissipation. It is important to highlight
that this viewpoint is different from the one typically adopted,
namely, exploiting the observation of the system to estimate or
bound the dissipation; here the perspective is reversed. Then,
using Eq. (12) as a “stepping stone,” the proper choice of the
dynamical output of interest allows us to derive specialized
results such as those presented in Sec. V. In passing, one
of the generalized TURs mentioned above will be re-derived
here as a corollary of the more general results. In a specific
application, we will also reverse the viewpoint by considering
the likelihood that a process was F or B if it is known that a
certain event did take place. Upper and lower bounds on such
a likelihood will be derived.

The paper is organized as follows. In Sec. II we present the
physical setup: The nature of the fluctuations, types of exter-
nal drive, definition of the forward and backward processes, a
brief summary of the fluctuation theorem, and the description
of the cases of interest in this work. Insights are provided in
Appendixes A and B. In Sec. III we introduce the concept
of event, set the terminology, and define the main quantities
that are built on the basis of the probabilities of the occur-
rence of the events. The main achievements are presented
in Sec. IV (mathematical proofs are given in Appendix C and
in technical footnotes). In that section, the general inequality
in Eq. (12) is derived and then specified for the cases of
interest. Section V contains some applications that enable
us to explore different aspects of the statistical unbalancing
induced by an external drive. Illustrative examples are pro-
vided in Sec. VI. Section VII is devoted to final remarks and
perspectives. Throughout the text, β = (kBT )−1 with kB the
Boltzmann constant and T the absolute temperature.

II. PHYSICAL SETUP

A. Fluctuations and external drive

Let us consider a driven fluctuating system where the
fluctuation theorem applies. From now on, it is best to refer
to the typical situation of a nanoscopic system in a fluid
phase acting as a thermal bath at a fixed temperature. The
dynamics is intended to be a continuous-time Markov process
on continuous degrees of freedom x [23]. The dynamics can
be overdamped (diffusive dynamics on pure conformational
degrees of freedom) or underdamped (i.e., also the momenta
are included among the stochastic variables).

Two types of processes will be considered. In one situa-
tion, the system is subjected to a time-dependent drive that
affects the energetics; hence the dynamics is a nonautonomous
process. In the other scenario, the system is subjected to
an external nonconservative force that directly acts on the
degrees of freedom, x, and induces a drift without altering
the bare energetics of the system. We will only consider the
case of time-independent forces. Other scenarios, like the
simultaneous presence of time-dependent energy modulation
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and external forces, or the case of time-modulated external
forces, are peculiar situations not considered here for the sake
of simplicity. Let us now introduce the F and B processes in
general terms; the specific cases of interest will be presented
in Sec. II C.

In the situation of time-dependent energy modulation, the
external driving agent could be a device which allows the
controlled change of a structural parameter of the system
(as in the mechanical manipulations of biomolecules), or it
could be an external time-dependent field interacting with
some property of the system (like an oscillating electric field
interacting with an electric dipole of the molecular system of
interest). Let λ(t ) be the controlled parameter. In the forward
process, the initial system’s microstate at time zero, x(0), is
meant to be picked from a distribution ρ0(x) supposed to
be “prepared” by previous actions on the system, and the
controlled parameter is changed from λ0 to λ1 according to
a chosen protocol λF (t ) with 0 � t � t f . In the backward
process, we assume that the system’s microstate is initially
picked from a distribution ρ1(x), like before, supposed to be
prepared by previous actions, and the controlled parameter
is changed from λ1 to λ0 according to the inverted protocol
λB(t ) = λF (t f − t ).

If the system is instead subjected to an external noncon-
servative time-independent force, the forward and backward
processes are differentiated one from each other only if
the initial distributions ρ0(x) (for F) and ρ1(x) (for B) are
different.

In the course of a process, the system is in a nonequilib-
rium state, meaning that the actual distribution differs from
the “underlying” thermal-equilibrium distribution. The actual
distributions will be indicated with ρF (x, t ) and ρB(x, t ) for
the forward and backward processes, respectively. Also, en-
ergy in the forms of work and heat is exchanged between the
system, the external driving agent (in the form of work), and
the environment (in the form of heat) [10]. Throughout, we
adopt the system’s viewpoint, meaning that the work done
by the system and the heat released by the system both have
a negative sign. With reference to the F and B processes,
the amounts of work are indicated with wF (γ ) and wB(γ ),
while the amounts of heat are qF (γ ) and qB(γ ). As detailed
in Appendix A, work and heat are expressed in different ways
depending on the specific type of process being considered.
The averages obtained from the ensemble of trajectories will
be indicated with 〈wF 〉, 〈wB〉, 〈qF 〉, and 〈qB〉.

B. Fluctuation theorem

Let γ be a trajectory in the space of the uncontrolled
degrees of freedom, x, and let γ̃ be the trajectory conjugate
of γ , that is, the γ traveled backward. There is a one-to-
one mapping between γ and γ̃ : If a state x belongs to γ ,
the conjugate state of γ̃ is x̃, where x̃ stands for the microstate
x with all the momenta inverted (if these are included among
the relevant degrees of freedom). With these positions, the
well-known fluctuation theorem relates the probability PF (γ )
of observing γ in the forward process with the probability
PB(γ̃ ) of observing γ̃ in the backward process [24]:

PF (γ )e−�F (γ ) = PB(γ̃ ), (1)

where �F (γ ) is the trajectory-dependent function

�F (γ ) = −βqF (γ ) − ln
ρ1(x̃(t f ))

ρ0(x(0))
(2)

with x(0) and x(t f ) the initial and final microstates of γ . [Of
course, one can swap F with B and γ with γ̃ . By assuming
that ρ0 and ρ1 are invariant under the replacement of x with
x̃, the analog of Eq. (2) for the backward process is �B(γ̃ ) =
−�F (γ ); hence Eq. (1) is obtained again.] Equation (1) holds
for both time-dependent energy modulation and autonomous
evolution under an external force, on condition that the heat
qF (γ ) is evaluated accordingly [see Eqs. (A2) and (A4)]. The
function �F (γ ) quantifies the breakdown of reversibility at
the level of the pair of conjugate trajectories. Such unbalanc-
ing results both from the specific initial distributions ρ0 and
ρ1, and from the energy dissipation along the trajectories.

In our elaboration, a key role will be played by the average
value 〈�F 〉, where the average is obtained from the ensem-
ble of trajectories γ . For the cases of interest described in
Sec. II C, ρ0 and ρ1 are well defined and 〈�F 〉 takes simple
expressions used later on in Sec. IV. On physical grounds, in
each case 〈�F 〉 corresponds to the average energy dissipation
(in kBT units).

C. Cases of interest

Within the two types of processes illustrated in Sec. II A,
let us focus on three main cases that are of interest here
(see Fig. 2). For these cases, the corresponding expression of
〈�F 〉 will be given; derivations and insights are provided in
Appendix B.

1. Finite-time processes starting
from equilibrium

One case [Fig. 2(a)] corresponds to finite-time processes
of duration t f starting from equilibrium. The external driving
may either be a time-dependent energy modulation or one
due to a time-independent external force. In the latter case,
the labels F and B are superfluous because both ρ0 and ρ1

correspond to the equilibrium distribution determined by the
bare energy of the system.

In the case of energy modulation, 〈�F 〉 turns out to be
given by β[〈wF 〉 − �A], where �A is the variation of the
Helmholtz free energy of the system [25] when passing from
thermal equilibrium with λ0 to thermal equilibrium with λ1.
The difference 〈wF 〉 − �A corresponds to the average energy
dissipated in the active part of the driven process. Equiva-
lently, 〈�F 〉 can be expressed as �Stot/kB where �Stot is the
average variation of the entropy of system plus environment
also including the free relaxation phase after the active part of
the driven process. Under a time-independent force, 〈�F 〉 is
equal to β〈w〉, where 〈w〉 is the average work performed dur-
ing the process. Equivalently, it can be expressed as �Sext/kB

where �Sext is the average variation of the environment’s
entropy.

2. Periodic steady state under cyclical energy modulation

The second relevant case [Fig. 2(b)] is that of a system per-
manently subjected to a periodic energy modulation of period
τ . Starting from equilibrium conditions, the system reaches a
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FIG. 2. The three main cases of interest here. (a) Finite-time
forward (F) and backward (B) processes of duration t f starting from
equilibrium. The system can be subjected either to a time-dependent
energy modulation or to a time-independent external force. In the
latter case, the two equilibrium states are identical and labels F
and B are superfluous. (b) The system, initially at equilibrium, is
subjected to a time-symmetric periodic drive which eventually leads
to a periodic steady state, which is the same in both the F and B
directions. The observation time window is taken to be of duration
equal to the period τ . (c) The system, initially at equilibrium, is
subjected to an external time-independent force which eventually
leads to a steady state. The observation time window is taken to be
of some duration tobs.

periodic steady state [26,27] in which the distribution of the
microstates becomes invariant under the temporal shift of τ .
The observation time window will be taken to be of duration
τ (see comments below) [28].

Note that, in general, two different periodic steady states
are reached in the F and B directions. The two states are
instead equivalent if, as intuitively expected, the external drive
has a time-symmetric profile (possibly following a proper
temporal shift), i.e., if

λF (t∗ − t ) ≡ λF (t ) (3)

for a certain t∗ [29]. If the forward evolution owns such a kind
of symmetry, the same holds for the backward evolution. In
what follows, the wording “periodic steady state” will implic-
itly stand for this kind of situation: The same periodic steady
state that is reached in both directions F and B, starting from
equilibrium, under the action of a time-symmetric cyclical
drive. In such case, labels F and B are immaterial.

The average 〈�F 〉 turns out to be equal to β〈wτ 〉, where
〈wτ 〉 is the average work done within a time window of
duration equal to the period τ (regardless of the collocation
of this time window on the timeline). Equivalently, 〈�F 〉 can
be expressed as �Sext,cycle/kB, where �Sext,cycle is the average
entropy variation of the environment in a cycle.

3. Steady state under time-independent forces

The third case [Fig. 2(c)] concerns the steady-state
conditions eventually reached, starting once again from equi-
librium, under the persistent action of an external force. The
observation time window can have a generic duration tobs.
Also in this case, labels F and B are immaterial.

In this situation, 〈�F 〉 is equal to β〈wtobs〉 where 〈wtobs〉 is
the average work done in the time window of duration tobs. In
terms of average entropy production rate at the steady state,
σ ss, we can also express 〈�F 〉 as σ sstobs/kB.

III. EVENTS (DYNAMICAL OUTPUTS)

A. Definition of events

An event corresponds to a dynamical output in the broad
sense of the term. This kind of output could be quantitative
and measurable, or could correspond to a “narrative” consist-
ing of an ensemble of clauses. At this point it proves useful to
provide some examples.

An example of quantitative output is the amount of work
done during the monitoring; the realization of the event could
correspond to performing exactly that amount of work. More
generally, a quantitative output of such a kind can be related
to the net variation of an incremental property of the system
that gradually changes along the trajectory by accumulation
of infinitesimal variations. Another kind of quantitative out-
put could be the realization of a preset value for a given
microstate-dependent property of the system (e.g., the end-to-
end distance of a fluctuating polymer molecule); if such value
is attained, the event has actually occurred. Concerning the
“narratives,” suppose that the dynamics of the fluctuating sys-
tem takes place in a multidimensional configurational space
that features four different energy wells, all interconnected
with each other and enumerated as 1, 2, 3, and 4. Given an
observation time window, the event E could be as follows:
“In the first half of the observation time window, the system
passes from well 2 to well 3, and well 1 is never visited.”
This is an example of narrative description which also in-
cludes information about the timing (clauses about the timing,
however, are not mandatory). In the underdamped regime, the
event might also contain clauses involving the momenta; for
instance, in passing from well 2 to well 3, we might require
that each of the momenta does not surpass a given threshold
in modulus.

If we imagine looking at a single trajectory we would be
able to establish, unambiguously, if in the given time window
the event occurs or not. Concerning the “narratives”, it might
be the case that the event can take place several times. It is
implicitly meant that the event occurs at least once, unless the
clause “only once” is explicitly included in the specification
of the event.

Alongside E , we define the inverse event Ẽ . For the “nar-
ratives”, Ẽ corresponds to the event that takes place with the
elemental acts in reverse order. In the above example, Ẽ would
be specified by the following: “In the second half of the ob-
servation time window, the system passes from well 3 to well
2, and well 1 is never visited.” Concerning the quantitative
outputs, Ẽ has to be identified case by case. For instance, if E
corresponds to obtaining a net cumulative response (like the
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amount of performed work), then in Ẽ the sign of the response
is inverted. The general rule is the following: If E is realized
for a trajectory γ , then Ẽ is realized for the conjugate trajec-
tory γ̃ , and this must hold for any pair of conjugate trajecto-
ries. This implicitly defines the type of events we deal with.

In some cases, E and Ẽ may coincide. For instance, suppose
that the event is just the jump from one energy well to another
without specifying the direction. In this case, the event and its
inverse are identical. Let us use the term “symmetric” (and the
subscript “s”) for such a kind of event: Ẽs ≡ Es.

In what follows, events E1, E2, E3, . . . will be called “mutu-
ally exclusive” if only one of them can take place in the given
observation time window.

Finally, we introduce our definition of “complementarity”
between direct and inverse events. We say that E and Ẽ are
complementary if they are mutually exclusive and, in addition,
if one of the two events will be for sure observed in the
observation time window.

B. Probabilistic expectations

Given a certain event of interest, and given the observation
time window, one can express in advance the probabilistic ex-
pectation about the occurrence of such an event. For instance,
in a finite-time process we would deal with the probabilities
PF (E ) and PF (Ẽ ) of observing, respectively, the events E
and Ẽ when performing the forward process, and with PB(E )
and PB(Ẽ ) the probabilities of observing, respectively, the
events E and Ẽ when performing the backward process [30].
Note that PF (E ) + PF (Ẽ ) � 1 and PB(E ) + PB(Ẽ ) � 1, unless
E and Ẽ are complementary events. Let us recall that, for
systems initially at equilibrium and subjected to an external
time-independent force, labels F and B are superfluous.

In the case of monitoring at steady state or periodic steady
state, the probabilities will be indicated with Pss(E ) and
Pss(Ẽ ).

It is necessary to make a few important remarks about the
periodic steady-state conditions. It is crucial to stress that if
the event E (and hence also Ẽ) has an average finite duration,
then Pss(E ) and Pss(Ẽ ) generally depend on where the time
window of duration τ is collocated on the timeline. This is
because, to state that an event has actually occurred, the event
must initiate and terminate within that time window. Keeping
the duration τ of monitoring fixed, the occurrence of an event
has its own synchronization with respect to the temporal evo-
lution of the nonequilibrium distribution on the x variables;
hence the event’s statistics might be different within different
time windows. Such a dependence on the collocation of the
time window is instead absent for events E and Ẽ that occur
instantaneously, like the crossing of some separatrix surface in
the x space. In fact, the statistics of instantaneous events must
be identical when an entire period is spawned, regardless of
the collocation of the starting time of monitoring. The same
also holds for any time-averaged x-dependent property, or for
an integrated average quantity (like 〈wτ 〉) which derives from
the continuous accumulation of infinitesimal contributions.

C. The key quantities

Here we introduce the key quantities that will be upper
bounded in Sec. IV. These quantities, which are built on the

basis of the probabilities of occurrence of the events, are
expressed below by CFB for the finite-time forward-backward
processes, and by Css for systems under steady conditions
(either in a periodic steady state as specified in Sec. II C, or in
a steady state under a time-independent force). The subscripts
a, b, c, and d will be added to address specific instances.

1. Finite-time forward-backward processes
starting from equilibrium

Let us consider processes starting from thermal-
equilibrium conditions. The key quantities given below
are expressed with reference to forward-backward processes
with time-dependent energy modulation. In this case, labels
F and B are meaningful. However, the same quantities
are meant to be valid also for systems subjected only to
time-independent forces, just removing labels F and B.

If the focus is on a single event E and on its inverse Ẽ , the
key quantity is

CFB
a = PF (E ) ln

PF (E )

PB(Ẽ )
+ (1 − PF (E )) ln

(
1 − PF (E )

1 − PB(Ẽ )

)
. (4)

We can also consider a set of events E1, E2, . . . , EN and the
corresponding set Ẽ1, Ẽ2, . . . , ẼN . Generally, different events
could occur in the same time window. Here we restrict our-
selves to mutually exclusive occurrences. In this case, the key
quantity is

CFB
b =

N∑
i=1

PF (only Ei ) ln
PF (only Ei )

PB(only Ẽi )

+
(

1 −
∑

i

PF (only Ei )

)
ln

(
1 − ∑

i PF (only Ei )

1 − ∑
i PB(only Ẽi )

)
,

(5)

where the clauses “only” enforce the mutual exclusion.
A special case is that of a complete set of events, meaning

that, for each event, the set also contains the inverse event. Let
us enumerate the events with the integer n from −N to N , so
that En and E−n ≡ Ẽn are pairs of conjugate events. The case
n = 0 is associated with the following: “Either none of the
events takes place or two or more different events occur in the
given time window.” In this situation, the key quantity is

CFB
c =

N∑
n=−N

PF (only En) ln
PF (only En)

PB(only E−n)
, (6)

where PF (only E0) = 1 − ∑
n �=0 PF (only En), and

PB(only E0) = 1 − ∑
n �=0 PB(only En). In particular, for only

two events E and Ẽ (case N = 1), Eq. (6) becomes

CFB
d = PF (only E ) ln

PF (only E )

PB(only Ẽ )

+ PF (only Ẽ ) ln
PF (only Ẽ )

PB(only E )

+ (1 − PF (only E ) − PF (only Ẽ ))

× ln

(
1 − PF (only E ) − PF (only Ẽ )

1 − PB(only E ) − PB(only Ẽ )

)
. (7)
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2. Steady conditions starting from equilibrium

Let us consider the case of the periodic steady states de-
fined in Sec. II C, or of steady states reached starting from
equilibrium under time-independent forces. Both situations
are collectively referred to as “steady conditions.”

The key quantities are now expressed in terms of the prob-
abilities of observing the events in a time window of duration
τ for the case of a periodic drive, or of generic duration tobs in
the case of external forces. Here, labels F and B are dropped
since they are immaterial. Explicitly, Eqs. (4) and (5) are
replaced, respectively, by

Css
a = Pss(E ) ln

Pss(E )

Pss(Ẽ )
+ (1 − Pss(E )) ln

(
1 − Pss(E )

1 − Pss(Ẽ )

)
(8)

and

Css
b =

N∑
i=1

Pss(only Ei ) ln
Pss(only Ei )

Pss(only Ẽi )

+
(

1 −
∑

i

Pss(only Ei )

)
ln

(
1 − ∑

i Pss(only Ei )

1 − ∑
i Pss(only Ẽi )

)
,

(9)

while Eqs. (6) and (7) become

Css
c =

N∑
n=−N

Pss(only En) ln
Pss(only En)

Pss(only E−n)
(10)

and

Css
d = (Pss(only E ) − Pss(only Ẽ )) ln

Pss(only E )

Pss(only Ẽ )
. (11)

An important remark concerns the probabilities that enter
Eqs. (8)–(11) when we specifically refer to a periodic steady
state. Let us bear in mind that the collocation of the time
window of duration τ on the timeline might be relevant for
events having an average finite duration. Thus, one should
think of a specific pair of time windows under periodic steady-
state conditions, one for the forward and one for the backward
direction, within which the evolution of the nonequilibrium
distributions ρF (x, t ) and ρB(x, t ) looks the same. All prob-
abilities in Eqs. (8)–(11) as well as in all the subsequent
equations, in principle, refer to these specific time windows.
On the other hand, we are free to get rid of such a complication
by intending all probabilities as a priori expectations, i.e., by
imagining that we monitor the system over “a time-window
of duration τ” without any further specification. If the event
is instead related to a cumulative response deriving from the
addition of infinitesimal contributions, the probabilities of
occurrence are exactly the same irrespective of the collocation
of the time window. With this in place, in what follows we
simply term the various Pss as probabilities of an event’s
occurrence in a time-window of duration τ at the periodic
steady state.

IV. MAIN RESULTS

A. General result

Based on the above premises, the following inequality is
derived in Appendix C:

C � 〈�F 〉, (12)

where the quantity C on the left-hand side may be any of the
key quantities CFB and Css defined in Sec. III C, and where
〈�F 〉 on the right-hand side takes on the corresponding ex-
pression. In each case, the specific forms of Eq. (12) will be
given later in Secs. IV B–IV D.

For the finite-time forward-backward processes under a
time-dependent drive, by swapping labels F and B and/or the
attributes “direct” and “inverse” related to the events, one gen-
erates further inequalities which possibly bring independent
constraints (this has to be inspected case by case). To see this,
let us consider the forward-backward setup of Sec. III C 1. The
simultaneous swap of F with B and of E with Ẽ generates
the companion inequality of Eq. (12) in which the C on the
left-hand side corresponds to the CBF

a formulated with PB(Ẽ )
in place of PF (E ), and vice versa; on the right-hand side,
〈�B〉, to be reformulated by adapting Eq. (2) for the backward
direction, appears in place of 〈�F 〉. With this double swap we
get, ultimately, a pair of inequalities, namely, Eq. (12) and the
companion one. These inequalities set mutual bounds between
PF (E ) and PB(Ẽ ). This will be resumed later in Sec. V A. By
swapping only F with B, or only E with Ẽ , one generates an
analogous and separate pair of inequalities that only involve
the probabilities PF (Ẽ ) and PB(E ). Totally, all permutations
produce two similar and separate pairs of inequalities whose
solution (mutual bounds) is of the same kind, just giving the
right names to the quantities involved. Finally, if the event is
symmetric as defined in Sec. III A, only two inequalities are
generated, namely, Eq. (12) and the companion one with F
and B swapped and where only Es enters.

Let us focus now on the conditions for the saturation of
Eq. (12). By following the derivation in Appendix C, it can
be seen that the equality holds only if �F (γ ) [see Eq. (2)]
has the same value along any trajectory for which the event
of interest takes place, and also the same value along any
trajectory for which the event does not take place. Only in this
ideal situation, in fact, is the equality preserved in the steps
where Jensen’s inequality is applied. In this limit situation,
one would get the tightest relationship between the probabil-
ities of the direct and inverse events. Finding the physical
conditions under which the spread of the �F (γ ) values is
minimized under both clauses (the event occurs and the event
does not occur) is, however, a formidable task that would have
to be faced case by case for the specific system and the specific
dynamical output being considered in each instance.

B. Finite-time processes starting from equilibrium
under time-dependent energy modulation

Let us consider Eq. (B4), which is valid for finite-time pro-
cesses starting from equilibrium. The general Eq. (12) takes
the form

CFB � β〈wdiss,F 〉, (13)
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where we have introduced the average dissipated work in the
forward direction,

〈wdiss,F 〉 = 〈wF 〉 − �A, (14)

and where CFB can be any of CFB
a , CFB

b , CFB
c , and CFB

d . In the
case of cyclic processes, �A = 0 and so 〈wdiss,F 〉 ≡ 〈wF 〉.

Further inequalities are generated by swapping labels F and
B in both members of Eq. (13). In this case, on the right-hand
side we would have 〈wdiss,B〉, which corresponds to 〈wB〉 +
�A if the variation �A still refers to the forward process.

C. Finite-time processes starting from equilibrium
under time-independent forces

In this case, labels F and B are immaterial. In addition,
�A = 0 because the system’s energetics remains unaltered.
Thus, Eq. (13) is replaced by

C � β〈w〉, (15)

where C can be any of the CFB
a , CFB

b , CFB
c , and CFB

d given in
Sec. III C 1, but written without labels F and B.

D. Steady conditions

Let us use the asterisk (∗) as a subscript for indicat-
ing that the observation takes place under steady conditions
starting from equilibrium, comprising both periodic steady
states with time-symmetric drive and steady states under time-
independent forces. Depending on the specific context, the
duration t∗ of the time window is identified with τ or tobs.
Similarly, w∗ can be wτ or wtobs .

With this in place, from Eqs. (B6) and (B7) it follows that

Css � β〈w∗〉, (16)

where Css can be any of the forms Css
a , Css

b , Css
c , and Css

d .

V. SPECIFIC APPLICATIONS

The general results presented in Sec. IV are here elaborated
for some specific applications. For the sake of simplicity, in
what follows, all relations concerning the finite-time forward-
backward processes starting from equilibrium are presented
and discussed only for the case of systems subjected to a time-
dependent drive, which is, by the way, the most articulated
situation. It is implicit that such relations can be specified for
the case of time-independent forces, just (i) removing labels
F and B, (ii) ignoring the considerations that concern the
swap of F with B, and (iii) considering that both 〈wdiss,F 〉 and
〈wdiss,B〉 have to be replaced by the average work 〈w〉.

A. Forward-backward probability bounds

Equation (13), together with Eq. (4), sets mutual bounds
between the probabilities of occurrence of the events in the
forward and backward processes. By making a double swap
of F with B and of E with Ẽ , a second inequality is obtained
(see discussion in Sec. IV A). Explicitly, the two inequalities

FIG. 3. Mutual bound between PF (E ) and PB(Ẽ ) for forward-
backward processes starting from equilibrium under a time-
dependent energy modulation. (a) Mutual bounds for some values of
the average dissipated works (in kBT units) β〈wdiss,F 〉 and β〈wdiss,B〉.
For each instance, the allowed region corresponds to the area be-
tween the delimiting upper and lower curves. (b) An example of
how the delimiting curves change upon exchanging the values of
β〈wdiss,F 〉 and β〈wdiss,B〉 with each other.

read

PF (E ) ln
PF (E )

PB(Ẽ )
+ (1 − PF (E )) ln

(
1 − PF (E )

1 − PB(Ẽ )

)
� β〈wdiss,F 〉,

PB(Ẽ ) ln
PB(Ẽ )

PF (E )

+ (
1 − PB(Ẽ )

)
ln

(
1 − PB(Ẽ )

1 − PF (E )

)
� β〈wdiss,B〉. (17)

A similar and separate pair of inequalities is produced by
the swap of F with B or by the swap of E with Ẽ . What
changes is that, on the left-hand sides, PF (E ) is replaced by
PF (Ẽ ), and PB(Ẽ ) is replaced by PB(E ). Let us proceed by
considering only Eq. (17), since the outcomes for the second
pair of inequalities are exactly the same, just renaming the
quantities.

The inequalities in Eq. (17) define an allowed region within
which the values of PF (E ) and PB(Ẽ ) are admissible: Given
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PF (E ), the range of possible values of PB(Ẽ ) is delimited
and vice versa. The confines of the allowed region depend
on 〈wdiss,F 〉 and 〈wdiss,B〉, as shown in Fig. 3(a). Figure 3(b)
shows how the delimiting curves change when the values
of the average works are exchanged. As the average works
gradually tend to zero, the allowed region collapses into the
straight line of slope 1. In this case, which corresponds to
observing the system at thermal equilibrium, the two events
are in fact equiprobable. As the average works increase, the
allowed region becomes wider and tends to cover the whole
plane. Correspondingly, the mutual constraint between PF (E )
and PB(Ẽ ) becomes weaker and weaker. In light of this, the
forbidden region is more important than the allowed region,
and Eq. (17) can be seen as no-go conditions: Given 〈wdiss,F 〉
and 〈wdiss,B〉, a pair of values PF (E ) and PB(Ẽ ) that falls in the
forbidden region is definitely not admissible.

An explicit mutual bound between PF (E ) and PB(Ẽ ) can be
obtained from Eq. (17) by resorting to a known inequality, due
to Bretagnolle and Huber [31], between the “total variation” of
two distributions and their Kullback-Leibler divergence [32].
The application of such inequality yields

∣∣PF (E ) − PB(Ẽ )
∣∣ �

√
1 − e−β min{〈wdiss,F 〉,〈wdiss,B〉}. (18)

If only one between 〈wdiss,F 〉 and 〈wdiss,B〉 is known, by using
that value in Eq. (18), in place of the minimum between the
two, a less stringent but still valid inequality is obtained.

In the case of systems subjected to time-independent
forces, the above outcomes can be easily reformulated by
following the prescriptions given in the opening paragraph of
this section. In particular, Eq. (18) becomes |P(E ) − P(Ẽ )| �√

1 − e−β〈w〉 with 〈w〉 being the average work done in the
given time window starting from equilibrium.

B. Probability bounds under steady conditions

Under steady conditions, Eqs. (17) are reduced to the single
constraint

Pss(E ) ln
Pss(E )

Pss(Ẽ )
+ (1 − Pss(E )) ln

(
1 − Pss(E )

1 − Pss(Ẽ )

)
� β〈w∗〉 (19)

and the analog of Eq. (18) is

|Pss(E ) − Pss(Ẽ )| �
√

1 − e−β 〈w∗〉, (20)

where the average work and the probabilities refer to a time
window of duration τ for periodic steady states, or tobs for
steady states.

Figure 4 displays the inequality in Eq. (19) for some values
of β〈w∗〉. The admissible values of Pss(E ) and Pss(Ẽ ) fall
within an allowed region which becomes wider as β〈w∗〉
increases. As is expected, for β〈w∗〉 = 0 such region shrinks
into the straight line of slope 1 since the two events must have
the same probability of occurrence. On the contrary, as β〈w∗〉
increases, the allowed region tends to cover the whole plane.
This means that, even knowing the probability of occurrence
of one event, the probability for the inverse event is practically
unconstrained. We see it suffices for 〈w∗〉 to be of the order of
a few kBT units to be in this situation.

FIG. 4. Mutual bound between Pss(E ) and Pss(Ẽ ) under steady
conditions starting from equilibrium. It can be either the case of a
periodic steady state reached under a time-symmetric drive of period
τ , or of a steady state under a time-independent force. The allowed
regions are shown for some values of the average work (in kBT units)
β〈w∗〉 in the observation time window of duration τ or tobs.

C. Complementary events under steady conditions

Suppose that the event E concerns the sign of a certain
quantitative output that derives from the continuous accumu-
lation of small contributions in the observation time window
(we come back to this kind of output in Sec. V E). This
cumulative output could be a scalar quantity that can take on
positive or negative values, a net response of the gain-loss
kind, some developed plus-minus polarity, the net displace-
ment along a certain coordinate, the net amount of performed
work, and so on. In any given time window, a certain out-
put of this kind is produced; hence its sign can certainly be
determined. Thus, events E and Ẽ are complementary and
Pss(E ) + Pss(Ẽ ) = 1. To stress the fact that the events are
related to the sign of the output, let us write E+ in place
of E , and E− in place of Ẽ . Without resorting to any extra
information about the preference for E− or E+, the two events
have to be a priori treated equally. In what follows, E± stands
either for E− or E+.

With these positions, Eq. (19) takes an interesting form:

f (Pss(E±)) � β〈w∗〉, (21)

where we have introduced the function

f (x) = (2x − 1) ln

(
x

1 − x

)
(22)

of argument x ∈ (0, 1). This function has non-negative values,
is symmetric with respect to x = 1/2, vanishes at such point,
and has limits limx→0+ f (x) = +∞ and limx→1− f (x) = +∞.
Given y > 0, the equation f (x) = y has two solutions which
are symmetrically placed with respect to 1/2 and collapse
on 1/2 for y = 0. Let g↓(y) � 1/2 and g↑(y) � 1/2 be these
solutions, which can be obtained numerically for any value of
y. From Eq. (21) we get

g↓(β 〈w∗〉) � Pss(E±) � g↑(β 〈w∗〉). (23)

The bounds in Eq. (23) have to be taken as general a priori
bounds in the absence of further information.
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FIG. 5. Bounds on the probabilities of complementary events E+
and E− under steady conditions (periodic steady state or steady state)
starting from equilibrium. The two branches, which are symmetric
with respect to the value 0.5, are the upper and lower bounds versus
the average work (in kBT units) β〈w∗〉 done in the time window of
duration τ for periodic steady states or tobs for steady states.

Figure 5 gives the graphical representation of the bounds
expressed by Eq. (23). It is worth noting that Eq. (23) turns
out to be more stringent than the inequality obtainable from
Eq. (20), namely, [1 − √

1 − e−β 〈w∗〉]/2 � Pss(E±) � [1 +√
1 − e−β 〈w∗〉]/2.

D. Counting statistics on net number of events

Let us consider an observation time window, and let n be
the net number of events defined as

n := number of events E − number of events Ẽ (24)

with n = 0,±1,±2, . . .. The “occurrence of exactly n net
events” represents, in itself, a well-defined event. Thus, the
general results can be applied to this case too. In particular,
the ensemble of all integers n from −∞ to ∞ comprising the
zero corresponds to a set of these events whose totality covers
all possibilities.

With these positions, for finite-time processes starting from
equilibrium, Eq. (13) with Eq. (6) yields

∞∑
n=−∞

PF (n) ln
PF (n)

PB(−n)
� β〈wdiss,F 〉. (25)

A companion inequality is obtained by swapping labels F
and B.

Under steady conditions starting from equilibrium—
periodic steady states or steady states—Eq. (25) readily
reduces to

∞∑
n=−∞

Pss(n) ln
Pss(n)

Pss(−n)
� β〈w∗〉. (26)

E. Statistics on additive properties

We can go ahead a step further by identifying the oc-
currence of event E with the increment of some continuous
scalar variable χ by an amount δχ , and the occurrence of
the inverse event Ẽ with the decrease by an amount −δχ .

If χ is initially set to zero and n net events have occurred,
then χ = nδχ . Now let us take δχ smaller and smaller. By
making a discretization of the χ domain from −∞ to +∞
into intervals of width δχ and central points located at χn =
nδχ with n = 0,±1,±2, . . ., we can write ρ(χn)δχ ≡ P(n),
where ρ(χ ) is the distribution on χ . From Eq. (25) it follows
that

D(ρF (χ )||ρB(−χ )) � β〈wdiss,F 〉, (27)

where D(ρF (χ )||ρB(−χ )) is the Kullback-Leibler divergence∫ +∞
−∞ dχ ρF (χ ) ln[ρF (χ )/ρB(−χ )]. Equation (27) is valid for

any additive property that increases or decreases along the
trajectory followed by the system in the course of the process.
Note that Eq. (27) could have been derived directly from
Eq. (1) [33]. A companion inequality is obtained from Eq. (27)
by swapping labels F and B.

Under steady conditions, the analog of Eq. (27) is

D(ρss(χ∗)||ρss(−χ∗)) � β〈w∗〉, (28)

where χ∗ is the net variation of the property in the observation
time window.

F. TUR-like inequalities

The relations Eqs. (27) and (28) can be used as starting
points for deriving generalized TURs. This can be realized
by employing some recently discovered bounds [34,35] for
the class of f -divergences, to which the Kullback-Leibler
divergence belongs.

Let us first consider the general case of finite-time forward
and backward processes starting from equilibrium. Let us
introduce the quantities r+ and r− defined as

r± = 1

2
+ a+ ± 1

2
√

a2+ + 2a− + 1
(29)

with

a± = σ 2
χ,B ∓ σ 2

χ,F

(〈χF〉 + 〈χB〉)2 , (30)

where 〈χF〉 and 〈χB〉 are the average values of χ in the forward
and backward processes, and σ 2

χ,F and σ 2
χ,B are the variances

of the distributions. Theorem 2 of Ref. [34] sets a lower bound
on the Kullback-Leibler divergence D(ρF (χ )||ρB(−χ )) in
terms of the above quantities. By considering Eq. (27), this
leads to

r+ ln
r+
r−

+ (1 − r+) ln

(
1 − r+
1 − r−

)
� β〈wdiss,F 〉. (31)

Note that this relation can be rewritten as �A � 〈wF 〉 − (· · · ),
where the quantity (· · · ) is non-negative. This improves the
bound �A � 〈wF 〉 (Clausius inequality in the stochastic con-
text), but requires the additional knowledge of 〈χF〉, 〈χB〉,
σ 2

χ,F, and σ 2
χ,B for the inspected property χ . By swapping

labels F and B, we get an independent companion inequal-
ity with different quantities on the left-hand side and with
〈wdiss,B〉 on the right-hand side:

r− ln
r−
r+

+ (1 − r−) ln

(
1 − r−
1 − r+

)
� β〈wdiss,B〉. (32)
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Under steady conditions, a simplified result is obtained by
setting a+ = 0 and a− = σ 2

χ∗/(2〈χ∗〉2), where the average is
meant to be taken over any time window of duration equal
to the period τ (for periodic steady states) or tobs (for steady
states). In this case, r± = 2−1 ± (2

√
σ 2

χ∗/〈χ∗〉2 + 1)−1 and,
taking into account that now r+ + r− = 1, from Eq. (28) it
follows that (1 − 2r−) ln[(1 − r−)/r−] � β〈w∗〉. Explicitly,
this yields

1√
σ 2

χ∗/〈χ∗〉2 + 1
ln

⎛
⎜⎝

√
σ 2

χ∗/〈χ∗〉2 + 1 + 1√
σ 2

χ∗/〈χ∗〉2 + 1 − 1

⎞
⎟⎠ � β〈w∗〉.

(33)

Relations (31)–(33) correspond to already known TUR-
like inequalities (generalized TURs) [16,18] which have been
obtained from different angles without resorting to large-
deviation-theory arguments. For instance, they do emerge as
special results in the broader context of isometric uncertainty
relations [20], and derive from general properties of the Eu-
clidean geometry of the observables space [21]. The present
derivation is essentially equivalent to the one of Hasegawa
and co-workers [16], who extended a previous result [15]
by taking inspiration from an early work on the statistical
distribution of the entropy production in systems obeying the
Evans-Searles fluctuation theorem [36].

Note that χ can be any additive property. In particular,
Eqs. (31) and (32) can be written for χ corresponding to
the total works done in the forward and backward processes,
and Eq. (33) for the work in a time window under steady
conditions. Let us also note that the same type of inequalities
can be derived directly from Eqs. (25) and (26); hence they
also hold for the ratio of variance over squared average of
the discrete variable n which, let us bear in mind, is the net
number of events.

It is now worth commenting on the comparison between
generalized TURs and “genuine” TURs. The latter, known
simply as TURs, were at first formulated under steady-state
conditions [37–40] and then extended to include the external
drive [41–43]. The TURs have a big impact on the analy-
sis of the performance of molecular motors and machines,
especially in biochemical contexts [44–48]. The generalized
TURs are known to be less stringent than the TURs. While
the generalized TURs can be derived from the basic FT alone,
the derivation of the TURs is collocated within the framework
of the large-deviations theory [49] (unless one restricts to the
linear response regime [50]) and exploits specific features of
the Markov dynamics. It seems that the enforcement of the FT
alone does not allow one to reach the efficacy of the genuine
TURs. In addition, the inevitable loss of information due to
“contraction steps” (as is the case, in our derivation, with
the reduction to the statistics of selected events) weakens the
bounds. On the other hand, the generalized TURs are applica-
ble under broader conditions where the TURs can be violated.
In addition, one can easily cope with the time-dependent drive
since it is included in the derivation from the beginning.

G. Inequalities on work probabilities under steady conditions

As a cumulative property, let us consider the total work
performed in a time window of duration τ at the periodic

steady state, or tobs at the steady state. Equation (28) becomes∫ ∞

−∞
dw∗ ρss(w∗) ln

ρss(w∗)

ρss(−w∗)
� 〈w∗〉. (34)

This inequality sets a constraint on the work distribution func-
tion ρss(w∗). In particular, from Eq. (33), by setting χ∗ ≡
w∗, it follows that η ln[(1 + η)/(1 − η)] � β〈w∗〉 with η =
(〈w∗〉/σw∗ )/

√
1 + (〈w∗〉/σw∗ )2. This inequality sets a lower

bound on the standard deviation σw∗ at a given average value
〈w∗〉. The profile of this lower bound features an initial
growth which can be approximated by σw∗ ∼ √

2〈w∗〉/β, then
reaches the maximum βσw∗ = 1.3 at 〈w∗〉 = 2, and finally
decreases monotonically. Remarkably, the same kind of result
was obtained in Ref. [36] for the variance of the entropy
production versus the average value in the different context
of the Evans-Searles fluctuation theorem.

An interesting inequality can be obtained from Eq. (23) if
event E− corresponds to doing negative work in the given time
window, which means gaining energy. In this case, we know in
advance that Pss(E−) ≡ Pss(w∗ < 0) � 1/2; thus what mat-
ters is only the lower bound:

Pss(w∗ < 0) � g↓(β 〈w∗〉), (35)

which corresponds to the bottom branch in Fig. 4. This bound
is more stringent than the one obtainable from Eq. (20),
namely, Pss(w∗ < 0) � [1 − √

1 − e−β 〈w∗〉]/2.

H. Dissipation and lag

Let us consider forward-backward processes starting from
equilibrium. Let us imagine dividing the space of the un-
controlled degrees of freedom into infinitesimal elements δx,
and labeling these elements by a positive integer index n. As
event En, let us consider the following: “At the time t f , the
system is inside the nth element.” The associate inverse event
Ẽn is thus, “At the time zero, the system is inside the nth el-
ement.” The events En are clearly mutually exclusive because
the system can only be in one element at t f . Similarly, the
events Ẽn are mutually exclusive. We can thus apply Eq. (5)
to the total set of events comprising En and the conjugate Ẽn.
Specifically, in place of PF (only En) we have ρF (x, t f )δx, and
in place of PB(only Ẽn) we have ρeq,1(x)δx, where ρeq,1(x) is
the equilibrium distribution at the beginning of the backward
process. In addition, the second addend on the right-hand side
of Eq. (5) is absent since the elements cover the whole x space
[hence 1 − ∑

n PF (only En) = 0]. The summation on n be-
comes an integral which corresponds to the Kullback-Leibler
divergence [51]:

D
(
ρF (x, t f )||ρeq,1(x)

)
� β〈wdiss,F 〉. (36)

This is a well-known result originally obtained by Vaikun-
tanathan and Jarzynski [52] and later resumed by Seifert in
Ref. [7]. The same relation, along with a more stringent in-
equality involving the time derivatives of the quantities on
both sides, has also been derived within the framework of the
nonstationary Fokker-Planck equation [53]. The derivation of
Eq. (36) given here is similar to the one presented in Sec. 7.2
of Ref. [7].
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I. Bounds on conditional probabilities for driven
forward-backward processes

Let us suppose we know that, starting from equilibrium, the
system was subjected to a driven process, and that a certain
event Es took place but it is not known if the process was
actually conducted in the F or B direction (according to our
identification of F and B). For the sake of simplicity, let us
consider the case of symmetric events as defined in Sec. III A.
In figurative terms, we might imagine “hearing a click” when
Es takes place. Just knowing that Es occurred, can we guess
if the process was F or B? What information do we need to
make the guess?

The answer can be given only in probabilistic terms,
namely, by expressing the conditional probability, or likeli-
hood, P(F |Es) [with P(B|Es) = 1 − P(F |Es)]. Let us tackle
the problem by adopting a reasoning similar to the one used
by Jarzynski in Ref. [6] for inferring the arrow of time. The
approach consists in combining the FT with Bayes’ theorem
of statistical inference.

If the F and B modalities have equal probability a priori,
Bayes’ theorem leads to [54]

P(F |Es) = PF (Es)

PF (Es) + PB(Es)
. (37)

By simply writing a = PF (Es) and b = P(F |Es) [with the
obvious bound b � a/(1 + a) obtainable by replacing PB(Es)
with 1], the combination of Eq. (37) with CFB

a � β〈wdiss,F 〉
yields

a ln

(
b

1 − b

)
+ (1 − a) ln

[
b(1 − a)

b(1 + a) − a

]
� β〈wdiss,F 〉.

(38)

By exchanging forward with backward, an analogous relation
is obtained:

a

(
1 − b

b

)
ln

(
1 − b

b

)
+

[
b(1 + a) − a

b

]
ln

[
b(1 + a) − a

b(1 − a)

]
� β〈wdiss,B〉. (39)

Taken separately, inequalities (38) and (39) set a nontrivial
mutual bound between b and a. The bound becomes more
stringent if both constraints are considered together. Giving
a value to PF (Es), the conditional probability P(F |Es) is com-
prised between a minimum and a maximum value. What is
required is the knowledge of 〈wdiss,F 〉 and/or 〈wdiss,B〉.

Figure 6 shows the allowed regions obtained by checking
numerically the simultaneous fulfillment of Eqs. (38) and (39)
for some values of β〈wdiss,F 〉 and β〈wdiss,B〉. The lowest dotted
profile corresponds to the trivial bound a/(1 + a). We can
see that, as the average dissipation in the F and B direc-
tions increases, the lower bound approaches the trivial bound,
whereas the upper bound becomes ever less stringent.

It can be proved [55] that, for any 〈wdiss,F 〉 and 〈wdiss,B〉,
the upper branch in Fig. 6 monotonically decreases as PF (Es)
increases, while the lower branch monotonically increases.
This has a relevant implication. Suppose we only know that
PF (Es) � ε for the event of interest. From the monotonic
behavior of the branches, it follows that P(F |Es) is comprised
between the two values that are identified by the intersection
with the vertical line placed at ε. This implies that the same

FIG. 6. Finite-time processes with time-dependent energy mod-
ulation starting from equilibrium. For a symmetric event Es, the
figure shows the upper and lower bounds on the conditional prob-
ability P(F |Es ) versus PF (Es ) for some pairs of average dissipations
β〈wdiss,F 〉 and β〈wdiss,B〉. The lowest dotted profile corresponds to the
indicated trivial bound. As pointed out in the text, the same profiles
are valid if on the abscissa we put a value ε and on the ordinate we
put P(F |Es with P(Es ) � ε).

profiles shown in Fig. 6 are also valid with ε on the abscissa
and the conditional probability P(F |Es with P(Es) � ε) on the
ordinate.

Here we have considered symmetric events for simplicity.
The same approach can be applied, although with a bit more
complex elaboration, to the general case of nonsymmetric
events. Equation (37) is still valid with E or Ẽ in place of Es.
This allows us to express P(F |E ) in terms of PF (E ) and PB(E ),
and P(F |Ẽ ) in terms of PF (Ẽ ) and PB(Ẽ ). Ultimately, one
arrives at a set of four inequalities involving P(F |E ), P(F |Ẽ ),
PF (E ), and PF (Ẽ ).

VI. EXAMPLES

In order to illustrate some of the outcomes, let us consider
a simple overdamped one-dimensional rotor. The stochastic
variable x is the angle expressed in radians. Let V0(x) be
the bare energy, which we take to be of the form βV0(x) =
2[1 − cos(x)], featuring a single energy barrier of 4kBT at π .
Three situations are considered: Case A, in which the system,
initially at equilibrium, is subjected to a finite-time cyclic
process at the end of which the initial system’s energy is
restored; case B, in which the system, starting from equilib-
rium, is taken into a periodic steady state under the action of
an external periodic drive; and case C, in which the system,
initially at equilibrium, is taken into a steady state under the
action of a constant force that induces a net drift.

The dynamics are modeled by means of the Langevin
equation with constant diffusion coefficient D (set equal
to 1 in some units of inverse-of-time) and Gaussian white
noise. Specifically, the evolution rule is x(t + �t ) = x(t ) +
βD F (x, t )�t + √

2D�t s(t ), where �t is the propagation
time step, F (x, t ) the deterministic force (possibly time de-
pendent and to be specified case by case), and s(t ) is a value
randomly drawn from the Gaussian distribution with zero
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FIG. 7. One-dimensional overdamped rotor subjected to cyclic
forward and backward driven processes starting from equilibrium.
The bare energy has a periodic profile (case A; see text for details).
(a) Time modulation of the system’s energy at some fractions of the
process of duration t f . The inset shows the temporal profile of the
controlled parameter. (b) The allowed regions for the probabilities
PF (E ) and PB(Ẽ ) for three values of t f . The symbols indicate the
actual collocation of the outcomes from the simulations. The event
E of interest is the net positive rotation with respect to the initial
location.

mean and unit variance. Computational details are given in
Ref. [56]. In the simulations, the variable x is left uncon-
strained so as to keep track of multiple rotations in the positive
and negative sense.

In case A, the time-dependent energy is modeled
as Vλ(t )(x) = [1 − λ(t )]V0(x) + λ(t )V1(x), with βV1(x) =
−2 sin(x) and λ(t ) = (77/66)(1 − t/t f )6t/t f , where t f is the
duration of the process. The value of the controlled parameter
λ(t ) rises from zero, reaches a maximum equal to 1 at the time
t f /7, and then decreases and vanishes at t f . Hence, the energy
profile starts from V0(x), becomes V1(x) at t f /7, and returns to
V0(x) at the end of the process. The evolution of the energy
profile is displayed in Fig. 7(a), where the inset shows the
profile of λ(t ). The deterministic force is given by F (x, t ) =

−∂Vλ(t )(x)/∂x. In the backward process, the protocol, which is
not time symmetric, has to be inverted. As event E , we simply
consider the net positive rotation with respect to the initial lo-
cation, i.e., the realization of x(t f ) � x(0). The inverse event Ẽ
is thus complementary to E . From a number of repeated simu-
lations of the process in the forward and backward directions,
the average works and the probabilities of occurrence of the
events were determined for three values of t f . The results are
β〈wF 〉 = 0.398 (0.010), β〈wB〉 = 0.405 (0.009), PF (E ) =
0.558 (0.005), and PB(Ẽ ) = 0.406 (0.004) for t f = 0.5;
β〈wF 〉 = 0.681 (0.010), β〈wB〉 = 0.706 (0.008), PF (E ) =
0.556 (0.005), and PB(Ẽ ) = 0.369 (0.006) for t f = 1; and
β〈wF 〉 = 1.060 (0.013), β〈wB〉 = 1.086 (0.011), PF (E ) =
0.530 (0.005), and PB(Ẽ ) = 0.319 (0.003) for t f = 2. The
numbers within brackets, used here and below, represent the
uncertainties expressed as one standard deviation [56]. The
average work does not generally have a monotonic depen-
dence on the duration of a given driven process. In the present
case, for the relative short t f here considered, we see that both
〈wF 〉 and 〈wB〉 increase as t f increases. Given the average
work values, the allowed regions in the plane PB(Ẽ ) versus
PF (E ) are specified by Eq. (17). The results are displayed in
Fig. 7(b). The symbols correspond to the specific outcomes
which, as we see, fall within the corresponding allowed re-
gions. Note that all points fall slightly below the diagonal,
meaning that E in the forward process is only slightly more
probable than Ẽ in the backward process. As the duration t f

increases, the two events become statistically more distinct
but, at the same time, the average dissipation increases and
the bounds become less stringent (the allowed regions become
wider).

In case B, the energy is again expressed as Vλ(t )(x) = [1 −
λ(t )]V0(x) + λ(t )V1(x), where now V1(x) has a sawtooth pro-
file. Specifically, we adopt βV1(x) = 4

∑n
k=1 αk (n) sin[k(x +

1.5)]/k with n = 20 and αk (n) = ( 2n
n−k

)
/
(2n

n

)
. Similarly to

case A, the deterministic force is given by F (x, t ) =
−∂Vλ(t )(x)/∂x. The protocol is here taken to be λ(t ) =
sin2(ωt/2) with ω = 2π/τ being τ the period. The sim-
ulations were done for τ = 1. Since the protocol is time
symmetric, we can use the results applicable under periodic
steady-state conditions. The evolution of the energy profile is
shown in Fig. 8(a) at the beginning of a cycle [i.e., V0(x)], at
1/4 of the cycle, and halfway through the cycle [i.e., V1(x)],
the subsequent half of the cycle being symmetric. The inset
shows the profile of λ(t ) in a cycle. The form of V1(x) has
been tuned in such a way as to promote an average drift in
the positive sense of rotation. Indeed, during the transforma-
tion of V0(x) into V1(x), the system is taken on an energy
slope which induces a clockwise motion towards angles be-
yond the energy barrier of V0(x). The drift appears clearly in
Fig. 8(b), which shows three trajectories starting from points
drawn at random from ρeq,0(x) ∝ exp{−βV0(x)}. Figure 8(c)
shows β〈wτ 〉, cycle by cycle, up to 50 cycles. It appears
that the periodic steady-state conditions are quickly reached
after about four cycles. Figure 8(d) shows the work distri-
bution function ρss(wτ ) obtained by means of a histogram
construction. Let us note the considerable portion which ap-
pears at negative work values. The average work turns out to
be 1.725 (0.022)kBT units and Pss(wτ < 0) = 0.282 (0.004).
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FIG. 8. The same one-dimensional overdamped rotor of Fig. 7, here subjected to a time-symmetric periodic drive (case B; see text for
details). (a) Time modulation of the system’s energy at the beginning, at 1/4 and at 1/2 of the period. The inset shows the temporal profile of
the controlled parameter. The simulations were done for τ = 1. (b) Three trajectories which develop in the course of 200 cycles. (c) Average
work per cycle for the first 50 cycles. (d) Distribution function of the work values in a period under periodic steady-state conditions (the chosen
cycle is the 50th one). (e) Lower bound on Pss(Ẽ ) versus Pss(E ), where event E is the net positive rotation of at least π/2 in a time τ under
periodic steady-state conditions. The solid circle corresponds to the actual outcome from the simulations. (f) Lower bound on the probability
of doing negative work in a time τ , Pss(wτ < 0), versus the average work per cycle in kBT units. The circle is the actual outcome.

As event E of interest, let us consider the positive rotation of
at least π/2 in a time window equal to τ . The outcomes are
Pss(E ) = 0.169 (0.004) and Pss(Ẽ ) = 0.0836 (0.0017). Fig-
ure 8(e) shows only the lower bound on Pss(Ẽ ) versus Pss(E )
because, as a result of the induced drift, the upper bound
can be certainly set to 0.5. The circle, which falls inside
the region, corresponds to the outcome from the simulations.
Finally, Fig. 8(f) is the equivalent of Fig. 5, adapted here
to the specific case of realization of negative work. Since
Pss(wτ < 0) � 0.5, only the lower bound is shown.

In case C, the deterministic force acting on the rotor is time
independent and given by F (x) = −dV0(x)/dx + fext, where
fext is an external contribution which induces a drift. By “un-
folding” the angular variable, the dynamics can be visualized
as a motion on the tilted potential V0(x) − fext x. After an
initial transient phase, the system reaches a steady state in the
presence of the external force. The system was monitored over
a time window of duration tobs = 1 at the steady state. The
simulations were performed for fext = 1.75, slightly lower
than the critical value 2 beyond which the tilted potential
has a monotonically decreasing profile. For fext = 1.75, the
average work done in the time tobs = 1 results to be compara-
ble with 〈wτ 〉 for τ = 1 of case B above. Some trajectories
are shown in Fig. 9(a); the inset shows the corresponding
tilted potential. Similarly to case B, the event of interest was
the positive rotation of at least π/2 in a time window of

duration tobs. The outcomes are β〈wtobs〉 = 1.726 (0.020) and
Pss(E ) = 0.3166 (0.0050), Pss(Ẽ ) = 0.0271 (0.0018). The re-
sults are displayed in Fig. 9(b). Again, the circle falls inside
the allowed region. By comparing Fig. 9(b) with Fig. 8(e),
we note that at about the same average dissipation in a
time window of equal duration, the direct action of the ex-
ternal force is more effective in promoting event E against
Ẽ under steady conditions. Clearly, the two different kinds
of steady conditions can be compared by making other
choices. For instance, in Ref. [57], in a setup similar to
the present one (diffusion dynamics on a ring), the two
steady conditions were compared in terms of average dissi-
pation rate at fixed time-averaged current and nonequilibrium
distribution.

As a whole, the above outcomes are certainly not striking
since the bounds are not particularly stringent. Such model
cases only serve to illustrate the fulfillment of some of the
theoretical expectations. As already stressed, the value of the
inequalities lies more in the fact that they allow us to state
what cannot be realized (no-go conditions) for a given physi-
cal setup rather than what can be realized.

VII. REMARKS AND PERSPECTIVES

The breakdown of the statistical equivalence between
direct and inverse dynamical outputs (events) under nonequi-
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FIG. 9. The same one-dimensional overdamped rotor of Figs. 7
and 8, here subjected to a constant external force fext = 1.75 (case
C; see text for details). (a) Three trajectories up to time 200. The
inset shows the potential V0(x) and the tilted potential V0(x) − fextx.
(b) The lower bound on Pss(Ẽ ) versus Pss(E ), where event E is the
net positive rotation of at least π/2 in the observation time tobs =
1 under steady-state conditions. The solid circle corresponds to the
actual outcome from the simulations.

librium conditions is a key feature in any “active” scenario in
which some average directionality is important. This is partic-
ularly relevant for nanoscale systems, where a bias needs to
be guaranteed in the presence of fluctuations.

In this work we started from the fluctuation theorem (FT)
in an attempt to derive a set of inequalities concerning the
probabilities of occurrence of pair-conjugate direct and in-
verse events, E and Ẽ , in a bidirectional setup. The general
result of Eq. (12) was derived by bundling the trajectories
(in the forward and backward directions) under the requisite
of occurrence of the events, and then exploiting the Jensen
inequality. Such a general relation sets the scene to obtain, or
re-obtain, a number of specific results.

The general result was then applied to some relevant
nonequilibrium conditions, namely, to forward-backward
processes, to periodic steady states reached under time-
symmetric protocols, and to steady states under external
constant forces. In all these situations, the processes start
from the system at thermal equilibrium. The specific results
presented here, which are collected in Sec. V, mainly have the

value of no-go conditions since they delimit forbidden regions
within which the outcomes cannot fall.

The bounds here derived are not stringent because, given a
pair of conjugate events E and Ẽ , it is required to operate far
enough from equilibrium in order to have an appreciable dif-
ferentiation between their probabilities of occurrence. This, in
turn, causes the allowed region to rapidly become ever wider
(like in Fig. 3) or, equivalently, the forbidden region reduces
more and more. The results are interesting when we consider
a collection of mutually exclusive events, or when elaborating
the statistics of additive properties. This led us to obtain the
lower bound in Eq. (35) concerning the work distribution
function under steady conditions, and find the already known
generalized thermodynamic uncertainty relations, Eqs. (31)
and (33).

Furthermore, in Sec. V I we reversed the viewpoint turn-
ing to the inference about the forward or backward direction
of a driven process if it is known that an event did take
place. Although this is an ancillary application of the more
general results, the perspective might offer hints for further
studies.

It is worth noting that the average work done in a driven
transformation can be related to average responses of the
system and with intrinsic dynamical properties of the system
itself. For instance, in cyclic transformations starting from
equilibrium, the average work (hence, the average dissipation)
sets a lower bound on the average polarization that can be
realized on periodic degrees of freedom of the system [58,59].
Also, in the limit of sufficiently small perturbations from
equilibrium, the average work is related to the intrinsic modes
and rates of fluctuation [60]. By exploiting these results, it
would be interesting to elaborate inequalities that directly
connect the probability of occurrence of events with average
responses and intrinsic dynamical features of the system at
equilibrium.

Finally, it must be stressed that the focus here was on
systems subjected to an active external drive, which may be
a controlled energy modulation or the application of an exter-
nal force. The outcomes can easily be generalized including
the situation of systems kept under nonequilibrium steady
states by kinetic processes with broken detailed balance.
For instance, this would be the natural setup of autonomous
molecular motors and machines [61,62], in which the stochas-
tic dynamics on continuous degrees of freedom is coupled
with jumps among different energy landscapes. Even in such
cases, the system can be observed for a given time, and
the probabilities of seeing the direct or inverse event can still
be expressed and mutually bounded. The key quantity “on the
right-hand side of the inequalities” would now be the average
dissipated energy (in kBT units) which, at the steady state,
linearly increases with the observation time. For instance, an
interesting variant of case B treated in Sec. VI could be a
“flashing ratchet model” in which the system stochastically
switches between two energy profiles. This kind of model has
been widely studied from the dynamical point of view [61]
and, later, also from the stochastic thermodynamics perspec-
tive [63]. It would be interesting to inspect such a system from
the viewpoint of the unbalancing between direct and inverse
events at the steady state.
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APPENDIX A: ENERGETICS IN THE
NONEQUILIBRIUM PROCESSES

1. Time-dependent energy modulation

The deterministic change of a parameter λ results in a
time-dependent energy Vλ(t )(x), meaning that if the drive were
stopped at some time t and the controlled parameter were held
fixed, the system would freely relax towards the “underlying”
equilibrium distribution ρeq,λ(t )(x) ∝ exp{−βVλ(t )(x)}.

In the forward processes, during which the controlled pa-
rameter is varied from λ0 to λ1 according to a chosen protocol
λF (t ) with 0 � t � t f , the system is taken out of equilibrium,
meaning that the actual distribution differs from the underly-
ing equilibrium distribution. In particular, at the time t f the
system will be in one of the possible microstates with distri-
bution ρF (x, t f ) which depends on the specific protocol, on
the initial distribution ρ0(x), and on the dynamical response
of the system. Similarly, in the backward process, starting
from microstates picked from ρ1(x), the final distribution will
be ρB(x, t f ). Note that, in general, ρF (x, t f ) �= ρ1(x) and that
ρB(x, t f ) �= ρ0(x).

Along single trajectories γ and with reference to the for-
ward process [λ(t ) = λF (t )], the work done between two
generic times t1 and t2 is given by [10]

wF (t1, t2) =
∫ t2

t1

dt
∂Vλ(t )(x)

∂t

∣∣∣∣
x=x(t )

(A1)

while the exchanged heat is

qF (t1, t2) = [Vλ(t2 )(x(t2)) − Vλ(t1 )(x(t1))] − wF (t1, t2). (A2)

Analogous expressions hold for the backward process. If the
whole time window of interest is taken into account, the above
expressions yield wF (γ ) and qF (γ ).

2. Time-independent external forces

If only an external nonconservative force directly acts on
the system, the energetics remains unaltered: As soon as the
external action is stopped, the force disappears and the system
relaxes to ρeq,0(x) ∝ exp{−βV0(x)} with V0(x) being the bare
energy. Let fext (x) be the external force, which is here assumed
to be time independent but possibly dependent on the system’s
microstate x.

In such a scenario, the F and B directions can be col-
lectively differentiated from each other only by the different
initial distributions ρ0(x) (for F) and ρ1(x) (for B). At the
single-trajectory level, indeed, the applied external force is
always fext (x). Along a single trajectory, the work performed
between two instants t1 and t2 is now expressed by

w(t1, t2) =
∫ t2

t1

dt fext (x(t )) · ẋ(t ) (A3)

and the exchanged heat is

q(t1, t2) = [V0(x(t2)) − V0(x(t1))] − w(t1, t2). (A4)

In the whole time window of interest, the above expressions
yield w(γ ) and q(γ ). If ρ0(x) and ρ1(x) were identical, for
instance, equal to the thermal-equilibrium distribution, then
there would be no distinction between F and B (and such
labels would be superfluous). With reference to the general
case, though, we still write 〈wF 〉, 〈wB〉, 〈qF 〉, and 〈qB〉 for the
average quantities.

APPENDIX B: EXPRESSIONS OF 〈�F〉
1. General expression

The average of �F (γ ) over the ensemble of trajectories γ

turns out to be expressible as

〈�F 〉 = −β〈qF 〉 + S[ρF ] − S[ρ0]

kB
+ D(ρF ||ρ1), (B1)

where

S[ρ] = −kB

∫
dx ρ(x) ln ρ(x) (B2)

is the Shannon entropy of a distribution ρ(x), and where

D(ρF ||ρ1) =
∫

dx ρF (x, t f ) ln
ρF (x, t f )

ρ1(x)
(B3)

is the Kullback-Leibler divergence (or relative entropy) [51]
of ρF (x, t f ) with respect to ρ1(x).

To see this, let us indicate the second term on the right-hand
side of Eq. (2) as [· · · ] = − ln ρ1(x̃(t f )) + ln ρ0(x(0)).
Its average over the ensemble of trajectories γ in the F
process is 〈[· · · ]〉 = ∫

dx(0)
∫

dx(t f ) ρF (x(0), x(t f ))[· · · ],
where ρF (x(0), x(t f )) is the joint distribution
with marginals

∫
dx(t f ) ρF (x(0), x(t f )) = ρ0(x(0))

and
∫

dx(0) ρF (x(0), x(t f )) = ρF (x(t f ), t f ). By
inserting the explicit form of [· · · ] it fol-
lows that 〈[· · · ]〉 = ∫

dx(0) ρ0(x(0)) ln ρ0(x(0)) −∫
dx(t f ) ρF (x(t f ), t f ) ln ρ1(x̃(t f )). The first term corresponds

to −S[ρ0]/kB while the second, including the minus sign,
can be decomposed as D(ρF ||ρ1) + S[ρF ]/kB. Equation (B1)
is then obtained by also including the contribution −β〈qF 〉
coming from the first term on the right-hand side of Eq. (2).

Let us now derive the explicit expressions of 〈�F 〉 for the
three cases described in Sec. II C.

2. Finite-time processes starting from equilibrium

Let us consider finite-time processes of duration t f starting
from equilibrium. Under a time-dependent drive, this means
that ρ0(x) ≡ ρeq,0(x) and ρ1(x) ≡ ρeq,1(x), where ρeq,0(x) ∝
exp{−βVλ0 (x)} and ρeq,1(x) ∝ exp{−βVλ1 (x)} are the canon-
ical distributions at thermal equilibrium. Accordingly (see the
derivation in Ref. [64]),

〈�F 〉 = �Stot

kB
≡ β(〈wF 〉 − �A), (B4)

where �Stot is the average variation of the entropy of system
plus environment also including the free relaxation phase after
the driven process, and �A is the variation of the system’s
Helmholtz free energy when the equilibrium distribution
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changes from ρeq,0(x) to ρeq,1(x). The quantity 〈wF 〉 − �A
represents the average dissipated work in the active part of
the process and, when divided by the temperature, gives the
average entropy production in the environment also including
the contribution of the final free relaxation phase. In Eq. (B4),
〈wF 〉 has to be evaluated by averaging the work wF (γ ) ex-
pressed according to Eq. (A1).

Under a time-independent external force, we have instead
that ρ0(x) = ρ1(x) ≡ ρeq,0(x) ∝ exp{−βV0(x)}, where, let us
remember, V0(x) is the unaltered energy. In this case, labels
F and B are superfluous since there is no distinction between
forward and backward directions. Thus, 〈wF 〉 is simply 〈w〉
and Eq. (B4) is replaced by (see Ref. [65])

〈�F 〉 = �Sext

kB
≡ β〈w〉, (B5)

where �Sext is the average variation of the environment’s
entropy up to time t f . In Eq. (B5), 〈w〉 refers to the time
window of duration t f and has to be evaluated by averaging
the work w(γ ) expressed according to Eq. (A3).

3. Periodic steady states with time-symmetric drive

Let us consider a system permanently subjected to a peri-
odic external drive of period τ , and let the external drive be
time symmetric as specified in Sec. II C. In this situation, we
are free to take two time windows of duration τ , one for the
forward and one for the backward direction, such that, under
periodic steady-state conditions, all the distributions ρ0(x),
ρ1(x), ρF (x, τ ), and ρB(x, τ ) coincide. This implies that (see
Ref. [66])

〈�F 〉 = �Sext,cycle

kB
≡ β〈wτ 〉, (B6)

where �Sext,cycle is the average entropy variation of the en-
vironment per cycle, and 〈wτ 〉 is the average work in a time
window of duration equal to the period τ . This average value
is independent of the collocation of the time window on the
timeline.

4. Steady states under time-independent forces

Let us consider steady-state conditions eventually reached,
starting once again from equilibrium, under the persistent
action of an external force. By choosing a time window of
generic duration tobs, we have that ρ0(x), ρ1(x), ρF (x, tobs),
and ρB(x, tobs) are all identical to the steady-state distribution
ρss(x). Let us note that, also in this case, labels F and B
are immaterial. In addition, 〈qtobs〉 = −〈wtobs〉, where tobs as
subscript refers to the duration of the monitoring. With these
positions, from Eq. (B1) it follows that

〈�F 〉 = β〈wtobs〉. (B7)

The average work can also be expressed as

β〈wtobs〉 ≡ σ ss tobs

kB
, (B8)

where σ ss is the average entropy production rate at the steady
state.

APPENDIX C: DERIVATION OF EQ. (12)

Let us first consider the case of a single event E and its in-
verse Ẽ . Let us start from the main fluctuation relation, Eq. (1).
On the left-hand side, let us take the summation over all tra-
jectories γ along which, in the forward process, �F (γ ) = �F

and E occurs. Correspondingly, on the right-hand side the
summation is taken over the conjugate trajectories γ̃ along
which, in the backward process, �B(γ̃ ) = −�F and Ẽ occurs.
Here, �F is some fixed value. These summations yield

ρF (�F , E ) e−�F = ρB(−�F , Ẽ ). (C1)

The joint distributions can be written as ρF (�F , E ) =
PF (E ) ρF (�F |E ) and ρB(−�F , Ẽ ) = PB(Ẽ ) ρB(−�F |Ẽ ),
where “|E” and “|Ẽ” stand for conditions to be fulfilled. Plug-
ging these forms into Eq. (C1) and integrating over �F leads
to PF (E ) 〈e−�F 〉E = PB(Ẽ ), where we have introduced the
conditioned average 〈 f (�F )〉E ≡ ∫

d�F f (�F ) ρF (�F |E )
for a generic function of �F . By exploiting the convexity
of the exponential function, Jensen inequality yields
〈e−�F 〉E � e−〈�F 〉E . Thus, the following inequality is
obtained:

ln
PF (E )

PB(Ẽ )
� 〈�F 〉E . (C2)

The same reasoning can be applied by replacing event E
with its negation “no E ,” and Ẽ with “no Ẽ .” This leads to

ln
PF (no E )

PB(no Ẽ )
� 〈�F 〉no E (C3)

with PF (no E ) = 1 − PF (E ) and PB(no Ẽ ) = 1 − PB(Ẽ ). By
multiplying both members of Eq. (C2) by PF (E ), and both
members of Eq. (C3) by 1 − PF (E ), and then summing the
two expressions, it follows that

PF (E ) ln
PF (E )

PB(Ẽ )
+ (1 − PF (E )) ln

(
1 − PF (E )

1 − PB(Ẽ )

)
� 〈�F 〉,

(C4)

where it has been taken into account that PF (E )〈�F 〉E + (1 −
PF (E ))〈�F 〉no E = 〈�F 〉.

The left-hand side of Eq. (C4) corresponds to the CFB
a

defined in Eq. (4). By referring back to Eq. (B1) for 〈�F 〉,
the specific form of Eq. (12) with C = CFB

a is obtained.
In order to elaborate the case with C = CFB

b , let us
start by considering Eq. (C2) written for “only Ei,”
i.e., ln[PF (only Ei )/PB(only Ẽi )] � 〈�F 〉onlyEi . By multiplying
each member by PF (only Ei ) and then summing on the index i
which labels the events of the set, we get

N∑
i=1

PF (only Ei ) ln
PF (only Ei )

PB(only Ẽi )
�

N∑
i=1

PF (only Ei )〈�F 〉onlyEi .

(C5)

Let us now introduce the event E0 specified by the following:
“Either none of the events takes place, or two or more different
events occur in the given time window.” The inverse event Ẽ0

is correspondingly specified. Note that E0 is the negation of
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“Only E1, or only E2, . . ., or only EN takes place.” Thus,

PF (E0) = 1 −
N∑

i=1

PF (only Ei ),

PB(Ẽ0) = 1 −
N∑

i=1

PB(only Ẽi ). (C6)

From the analog of Eq. (C2) written for E0, it follows that

PF (E0) ln
PF (E0)

PB(Ẽ0)
� PF (E0)〈�F 〉E0 . (C7)

Finally, inequality (12) with C = CFB
b is obtained by sum-

ming member with member Eqs. (C5) and (C7), by inserting

Eqs. (C6), and finally considering that

N∑
i=1

PF (only Ei ) 〈�F 〉onlyEi + PF (E0)〈�F 〉E0 = 〈�F 〉. (C8)

The other forms of Eq. (12), with C equal to CFB
c and CFB

d ,
follow directly as explained in Sec. III C. Since the initial dis-
tributions in the F and B processes are general, the derivation
is also valid when C corresponds to Css

a , Css
b , Css

c , or Css
d . What

changes is 〈�F 〉 on the right-hand side of Eq. (12), which
must be expressed according to the specific kind of steady
conditions.
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dxV0(x)ρ(x, t f ). By inserting βV0(x) = − ln ρeq,0(x) − ln Z0,

and considering that 〈q〉relax ≡ 〈�V 〉relax, one gets β〈q〉relax =
−{(S[ρ] − S[ρ0])/kB + D(ρ||ρ0)}, where, in this situation,
ρ0(x) ≡ ρeq,0(x). By using Eq. (B1) it follows that 〈�F 〉 =
−β〈q〉tot = �Stot/kB. In this case, �Stot ≡ �Sext because �S =
0. More simply, Eq. (B5) follows from Eq. (B4) by setting
�A = 0.

[66] Since in this case ρF ≡ ρ1 and S[ρF ] = S[ρ0], from Eq. (B1)
we get 〈�F 〉 = −β〈qτ 〉 in any time window of duration equal
to the period of the cycle at the periodic steady state (either
in the forward or backward mode). Now let us consider that
〈�V 〉cycle = 〈qτ 〉 + 〈wτ 〉 = 0 since there is no average variation
of the system’s energetics in a cycle, and that �Sext,cycle/kB =
−〈qτ 〉/T . It follows that 〈�F 〉 = �Sext,cycle/kB = β〈wτ 〉.

[67] D. A. Levin and Y. Peres, Markov Chains and Mixing Times, 2nd
ed. (American Mathematical Society, Providence, RI, 2017).
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