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The dissipation function for a system is defined as the natural logarithm of the ratio between probabilities of
a trajectory and its time-reversed trajectory, and its probability distribution follows a well-known relation called
the fluctuation theorem. Using the generic Langevin equations, we derive the expressions of the dissipation
function for passive and active systems. For passive systems, the dissipation function depends only on the initial
and the final values of the dynamical variables of the system, not on the trajectory of the system. Furthermore, it
does not depend explicitly on the reactive or dissipative coupling coefficients of the generic Langevin equations.
In addition, we study a one-dimensional case numerically to verify the fluctuation theorem with the form of
the dissipation function we obtained. For active systems, we define the work done by active forces along a
trajectory. If the probability distribution of the dynamical variables is symmetric under time reversal, in both
cases, the average rate of change of the dissipation function with trajectory duration is nothing but the average
entropy production rate of the system and reservoir.
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I. INTRODUCTION

Irreversibility of a system can be quantified by using the
dissipation function which is defined as the natural logarithm
of the ratio of the probability density of a trajectory to that
of its time-reversed trajectory. The probability distribution
function of the dissipation function exhibits an interesting
symmetry relation known as the fluctuation theorem [1–3].
The fluctuation theorem has been substantially explored using
theory [4–12] and experiment [13–19]. For stochastic pro-
cesses, it has been investigated mainly for the single-particle
or single-variable case [5,6,20]. Moreover, little attention
has been paid to the systems described by the Langevin
equations with multiplicative noise, except for a few stud-
ies [12,20].

This paper discusses the fluctuation relations for a wide
class of systems described by the generic Langevin equa-
tions [21,22]. Assuming that the slow variables of a system
vary much slower than its microscopic degrees of freedom,
one can consider that the system is always in local thermo-
dynamic equilibrium at temperature T . The dynamics of such
systems is well-explained by the generic Langevin equations.
We consider the active as well as passive systems. We use the
path integral approach to calculate the probability density of a
trajectory of the system with α-discretization [20,23,24].

Our main results are as follows. We first show that
the generic Langevin equations describe a passive system,
irrespective of the value of α. We then derive the expres-
sion of the dissipation function for passive systems relaxing
toward thermodynamic equilibrium. Interestingly, the dissipa-
tion function is independent of the trajectory followed by the
system; it only depends on the initial and the final values of
the dynamical variables of the system. Moreover, it is not an
explicit function of the coefficients appearing in the generic

Langevin equation. Using Brownian dynamics simulation,
we also verify the fluctuation theorem for a one-dimensional
(1D) single-particle problem with state-dependent diffusion.
Finally, we construct an expression of the dissipation func-
tion for the active systems, and we define the work done by
the active forces. For both active and passive systems, the
average rate of change of the dissipation function with the
time duration is the same as the rate of change of the entropy
of the system and reservoir, assuming that the probability
distribution of the dynamical variables is invariant under time
reversal.

In Sec. II, we will discuss passive systems, and in Sec. III,
we will explore active systems.

II. PASSIVE SYSTEMS

This section is arranged as follows. In the next Sec. II A, we
summarize the generic Langevin equations. We then calculate
the ratio of the probabilities of a trajectory and its time-
reversed trajectory (see Sec. II B). In Sec. II C, fluctuation
relations and the dissipation function for the passive systems
are presented. In Sec. II D, we talk about the quenched sys-
tems, along with an example of a system of a single colloidal
particle.

A. Generic Langevin equations

Here we consider a passive system relaxing toward equi-
librium. Its macroscopic dynamics is described by a set of n
number of slow variables A ≡ {A1, A2, ....An}. Let Ai → siAi

under time reversal, where si = 1 and si = −1 if Ai is even
and odd under time reversal, respectively; e.g., si = 1 for
position and si = −1 for momentum. The generic Langevin
equations for the system at temperature T can be written in
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the following form [21,22]:

dAi

dt
= −�i j

∂H
∂Aj

+ kBT
∂�i j

∂Aj
+ ηi(t ), (1)

where H is the coarse-grained or effective Hamiltonian of the
system and the coefficients �i j satisfy the following property:

�i j = sis j� ji. (2)

In Eq. (1), the terms with sis j = −1 are the Poisson bracket
or reactive terms, whereas the terms with sis j = 1 are the
dissipative terms [25]. The last term ηi(t ) represents the rapid
fluctuations due to the dynamics of the microscopic degrees of
freedom of the system. We assume that ηi(t ) is white Gaussian
noise, and its autocorrelation function is given by

〈ηi(t )η j (t
′)〉 = 2kBT �s

i jδ(t − t ′), (3)

where �s
i j ≡ (�i j + � ji )/2 is the symmetric part of �i j . From

Eq. (2), �s
i j shows the following symmetry property:

�s
i j = sis j�

s
i j . (4)

Further, it is assumed to be invertible. Here in Eq. (1), we
use Einstein notation, which will be carried through the rest
of the paper, unless otherwise stated. Writing ηi(t ) as the
linear combination of time series of the white Gaussian noise
ξ j (t ) having no correlation with each other, i.e., 〈ξi(t )ξ j (t )〉 =
δi jδ(t − t ′):

ηi(t ) = Ni jξ j (t ), (5)

where, from Eq. (3), Ni j is given by the solution of the equa-
tions:

NikNjk = 2kBT �s
i j . (6)

Since Nik must be real, �s
i j must have positive eigenval-

ues [26]. As �s
i j is considered to be invertible, Nik is invertible

as well. It should be noted that Njk is not uniquely defined
by the above equation. However, Njk is just a dummy matrix
which does not appear anywhere in the final results. Substitut-
ing (5) into Eq. (1):

dAi

dt
= −�i j

∂H
∂Aj

+ kBT
∂�i j

∂Aj
+ Ni jξ j (t ). (7)

The above stochastic equations have no ambiguity when Ni j

does not depend explicitly on A. However, Ni j is the function
of A for many systems; in such cases, the above equations are
not well-defined unless their discrete scheme is specified.
We here use α-discretization method to discretize the above
equations [20,23,24], which leads to a drift of αNl j∂Ni j/∂Al

to the value of Ai due to the noise term [24,27]. On the
cont-rary, the noise terms in the generic Langevin equa-
tions represent the thermal fluctuations and do not contribute
to the average dynamics of the slow variables. One can elim-
inate the noise-induced drift by adding a correction term
−αNl j∂Ni j/∂Al to Eq. (7). Therefore, the generic Langevin
equations can be completely described as follows:

dAi

dt
= −�i j

∂H
∂Aj

+ kBT
∂�i j

∂Aj
− αNl j

∂Ni j

∂Al
+ Ni jξ j (8)

≡ Fi + Ni jξ j, (9)

with their discrete form

dAi(l ) = εFi
(
Āf

l

)+ √
εNi j

(
Āf

l

)
ξ l

j , (10)

where ε is the time step, dAi(l ) ≡ Ai(εl ) − Ai[ε(l − 1)], Āf
l ≡

αA(εl ) + (1 − α)A[ε(l − 1)],

Fi ≡ −�i j
∂H
∂Aj

+ kBT
∂�i j

∂Aj
− αNl j

∂Ni j

∂Al
, (11)

and

ξ l
j ≡ 1√

ε

∫ lε

(l−1)ε
ξ j (t )dt, (12)

are the series of random numbers having normal distribution
with standard deviation 1 and mean 0. The parameter α can
take any “absolute constant” between 0 and 1; α = 0 and
α = 1/2 cases are referred to as Itô and Stratonovich methods,
respectively. As we have another parameter α in the problem
now, one of the questions we ask here is, do different values
of α correspond to different systems? If yes, do all the values
of α belong to passive systems?

Based on the behavior under time reversal, dividing Fi into
the following three parts F s

i , F a
i , and FN

i :

F s
i (A) = −�s

i j

∂H
∂Aj

+ kBT
∂�s

i j

∂Aj
, (13)

Fa
i (A) = −�a

i j

∂H
∂Aj

+ kBT
∂�a

i j

∂Aj
, (14)

FN
i = −αNk j

∂Ni j

∂Ak
, (15)

where �a
i j ≡ (�i j − � ji )/2 is the antisymmetric part of �i j .

From Eq. (2), �a
i j exhibits the following symmetry property

(not in Einstein notation):

�a
i j = −sis j�

a
i j . (16)

Since H(s ◦ A) = H(A) and �s
i j (s ◦ A) = �s

i j (A) [21], from
Eqs. (4) and (16), under time reversal,

F s(A) → F s(s ◦ A) = s ◦ F s(A), (17)

F a(A) → F a(s ◦ A) = −s ◦ F a(A), (18)

where ◦ stands for Hadamard product, i.e., s ◦ A ≡
{s1A1, s2A2, ....snAn}. For given �s

i j , F s
i (A) and F a

i (A) do not
depend on Ni j . In general, FN

i does not follow any of the above
time reversal symmetries.

B. The ratio between the probability densities of a trajectory
and its time-reversed trajectory

Let p0(A) be the probability distribution function of A at
t = 0. In ε → 0 limit, the probability density of a trajectory
of the system (A0, A1, A2, .....AN ) [here Al ≡ A(lε)] between
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t = 0 and t = τ ≡ Nε is given by [12] (see Appendix A)

P 	 p0(A0)
N∏

l=1

(
(2kBT )−1/2

(2πε)n/2
exp

{
− 1

4εkBT

[
dAi(l ) − εF s

i

(
Āf

l

)− εF a
i

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF s

j

(
Āf

l

)− εF a
j

(
Āf

l

)]

−α

[(
dAi(l ) − εF s

i

(
Āf

l

)− εF a
i

(
Āf

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Āf

l

+ ε

[
∂F s

i

∂Ai
+ ∂F a

i

∂Ai

]
Āf

l

]}
det
(
�s
(
Āf

l

))−1/2

×exp

⎧⎨
⎩α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Āf

l

⎫⎬
⎭
⎞
⎠. (19)

The ε3/2- and higher-order terms have been neglected here.
It is apparent from the above expression that, for given �s

i j ,
P is independent of Ni j . So no statistical property of the
system has a dependence upon the choice of Nik . Therefore,
as mentioned earlier, Nik is merely a dummy matrix. The
probability density P depends on α; thus, the different values

of α correspond to different systems. Later in this subsection,
we will see that Eq. (8) provides the dynamics of a passive sys-
tem for any α. The time-reversed trajectory of the trajectory
(A0, A1, A2, .....AN ) would be (s ◦ AN , s ◦ AN−1, .....s ◦ A1),
so its probability density can be calculated by replacing Ai

by s ◦ AN−i in the above equation; that is, (see Appendix B)

Pr 	
N∏

l=1

(
(2kBT )−1/2

(2πε)n/2
exp

{
− 1

4εkBT

[−dAi(l ) − εF s
i

(
Ār

l

)+ εF a
i

(
Ār

l

)]
(�s−1)i j

(
Ār

l

)[−dAj (l ) − εF s
j

(
Ār

l

)+ εF a
j

(
Ār

l

)]

−α

[(− dAi(l ) − εF s
i

(
Ār

l

)+ εF a
i

(
Ār

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Ār

l

+ ε

[
∂F s

i

∂Ai
− ∂F a

i

∂Ai

]
Ār

l

]}
det
(
�s
(
Ār

l

))−1/2

×exp

⎧⎨
⎩α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Ār

l

⎫⎬
⎭
⎞
⎠p0(s ◦ AN ). (20)

In ε → 0 limit, the ratio P/Pr takes the following form (see
Appendix C4):

P

Pr
= p0(A(0))

p0(s ◦ A(τ ))
exp

[
− 1

kBT
(H(A(τ )) − H(A(0)))

]
.

(21)
In the stationary state, p0(A) = exp(−H(A)/kBT )/Z (see
Appendix H), the above equation then yields

P = Pr . (22)

It implies that any system whose dynamics is given by Eq. (8)
has the time reversal symmetry in its stationary state, regard-
less of the value of α. Hence, Eq. (8) describes a passive
system for any value of α between 0 and 1.

C. Fluctuation relations and the dissipation function
for the passive systems

One can readily show that [12] the dissipation function Rτ

for the trajectory (A0, A1, A2, .....AN ) defined as

Rτ = ln

(
P

Pr

)
(23)

satisfies the relation
P (Rτ = X )

P (Rτ = −X )
= exp(X ), (24)

where P is the probability distribution of Rτ . The above
relation is known as the fluctuation theorem [2,5]. From

Eq. (21),

Rτ = ln
p0(A(0))

p0(s ◦ A(τ ))
− 1

kBT
[H(A(τ )) − H(A(0))]. (25)

Intriguingly, Rτ does not depend explicitly on �i j . Moreover,
it depends only the initial and final values of A, not on the
trajectory followed by A. Note that the ratio P/Pr in Eq. (21)
also has the same functional properties.

One can also define the dissipation function for the system
as follows [1]:

R′
τ = ln

p(A(0), A(τ ); τ )

p(s ◦ A(τ ), s ◦ A(0); τ )
, (26)

where p(A(0), A(τ ); τ ) is the net probability that the system
goes from A(0) to A(τ ) in time τ :

p(A(0), A(τ ); τ ) =
∑

P, (27)

where the summation is performed over all the trajectories
between A(0) and A(τ ). Since the ratio P/Pr is independent
of the trajectory between A(0) and A(τ ), R′

τ = Rτ .
The integrated form of the relation (24) is

〈exp(−Rτ )〉 = 1, (28)

where angular bracket stands for the ensemble average. Using
this relation, one can show that [5,28]

〈Rτ 〉 � 0. (29)
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In equilibrium, P = Pr , thus 〈Rτ 〉 = Rτ = 0. So 〈Rτ 〉 be-
haves like the change in the entropy of system and it can be
used to evaluate that how far the system is from equilibrium.
Since the solution of the Fokker-Planck equation correspond-
ing to Eq. (8) does not depend on α, 〈Rτ 〉 is constant in α (see
Appendix I).

Generalizing the expression of the dissipation function
given in Eq. (25) for the trajectories starting at arbitrary
time t :

Rτ (t ) = ln
pt (A(t ))

pt (s ◦ A(t + τ ))

− 1

kBT
[H(A(t + τ )) − H(A(t ))]. (30)

The instantaneous irreversibility can be evaluated by calculat-
ing Rτ (t ) in τ → 0 limit, that is,

Rτ (t ) 	 ṡ(t )τ + ln
pt (A(t + τ ))

pt (s ◦ A(t + τ ))
, (31)

where

ṡ(t ) = − d

dt ′

(
ln pt (A(t ′)) + 1

kBT
H(A(t ′))

)∣∣∣∣
t ′=t

. (32)

As discussed in Appendix E, kB〈ṡ(t )〉 is nothing but the rate
of change of total entropy of the system and the reservoir
[see Eq. (E6)]. According to Eq. (31), the irreversible be-
havior of the system results from entropy production and
from the asymmetric behavior of pt (A) under time reversal. If
pt (s ◦ A) 
= pt (A), the system is instantaneously irreversible
since

R0(t ) = ln
pt (A(t ))

pt (s ◦ A(t ))

= 0. (33)

Since H(s ◦ A) = H(A), the equilibrium probability distri-
bution peq(A) ≡ exp(−H(A)/kBT )/Z always follows the
symmetry property peq(s ◦ A) = peq(A); it is a fundamental
property of peq(A). The nonzero value of 〈R0(t )〉 for an
out-of-equilibrium system signifies that the system violates
this symmetry. Note that 〈R0(t )〉 � 0. An example of such
systems is as follows: consider a colloidal particle moving
with a nonzero average velocity v0 and having the prob-
ability distribution p0(v) = C exp(−(v − v0)2/2), at t = 0.
Under time reversal v → −v, so s = {−1,−1,−1}. Hence,
p0(s ◦ v) 
= p0(v).

For the pt (s ◦ A) = pt (A) case, R0(t ) = 0, so from
Eq. (31),

ṡ(t ) = lim
τ→0

Rτ (t )

τ
. (34)

Thus, the average rate of change of Rτ (t ) with τ is the same as
the rate of the total entropy production of the system and the
reservoir; from Eq. (29), the second law of thermodynamics is
evident, 〈ṡ(t )〉 > 0. In the next subsection, we discuss a broad
class of passive systems with pt (s ◦ A) = pt (A).

The form of the dissipation function used by Seifert
et al. [5] is briefly discussed in Appendix F.

D. The dissipation function for quenched systems

Here we consider that the system is initially in a ther-
modynamic equilibrium state and the state variables of the

system β ≡ {β1, β2, ..., βn} are abruptly changed at t = 0.
Then the system will start evolving toward the equilibrium
state corresponding to the modified values of β. Writing the
coarse-grained Hamiltonian of the system as the function of
β: H ≡ H(A; β). Let β = βI at t = 0 then

p0(A) = 1

Z (βI )
exp

[
−H(A; βI )

kBT

]
. (35)

From Eq. (25), for a quench from β = βI to β = βF at t =
0, the dissipation function for the system takes the following
form:

Rτ = 1

kBT
[H(A(0); βF) − H(A(0); βI )

− (H(A(τ ); βF) − H(A(τ ); βI ))]. (36)

We will now discuss an example of quenched systems.

1. Colloidal particle in a harmonic potential well

Consider a colloidal particle trapped in a harmonic po-
tential U = kr2/2, where k is the stiffness of the potential.
Imagine that initially the particle is in thermodynamic equilib-
rium with k = k0 and the value of k is instantaneously changed
from k0 to k1 at t = 0 [15]. Ignoring the kinetic energy, the
coarse-grained Hamiltonian for this system would be simply
H = U . Then, from Eq. (36), the dissipation function for a
trajectory between r = r0 and r = rτ in time τ is given by

Rτ = 1

2
(k0 − k1)

(
r2
τ − r2

0

)
. (37)

The above expression was derived by Carberry et al. [15,29]
for spatially uniform diffusion constant. As we have consid-
ered the dependence of �i j on A in the derivation of Rτ , the
above expression of the dissipation function is more general;
it is valid for the systems having state dependent diffusion
as well. To verify our prediction, we numerically solve the
Langevin equation for a colloidal particle with the diffusion
coefficient varying with position. For simplicity, we consider
the 1D case. From Eq. (8), the overdamped Langevin equa-
tion for the colloidal particle reads

dx

dt
= − 1

kBT
D(x)kx + (1 − α)

dD(x)

dx
+
√

2D(x)η(t ), (38)

with its discreate form [see Eq. (10)]

x(t + dt ) = x(t ) − 1

kBT
D(x̄f )kx̄f + (1 − α)

[
dD(x)

dx

]
x̄f

+
√

2D(x̄f )dtηt , (39)

where x̄f = αx(t + dt ) + (1 − α)x(t ) and D(x) is the state-
dependent diffusion. The above equation is a self-consistent
equation of x(t + dt ) for given x(t ). There are many exam-
ples of the systems having state-dependent diffusion; e.g.,
a colloidal particle near a wall [23]. We here consider a
hypothetical system having Gaussian profile of the diffusion
coefficient:

D(x) = D0 exp

(
− x2

L2

)
. (40)

To obtain the trajectory of the particle, at each time
step, we solve the Eq. (39) for x(t + dt ) with fixed point
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FIG. 1. ln[P (X )/P (−X )] vs X for a 1D colloidal particle in
a potential well U = kx2/2 with the diffusion coefficient D(x) =
D0 exp(−x2/L2), where P is the probability distribution function for
the dissipation function given by Eq. (37). The value of k is suddenly
changed from k = k0 to k = k1 at t = 0. Here L/

√
k1/kBT = 1,

k1/k0 = 4, the time duration of the trajectory τ = 3kBT/D0k1, and
8 00 000 trajectories are used for the statistics.

iteration method with the accuracy of 10−4. In Fig. 1, we show
ln[P (X )/P (−X )] vs X : clearly, the dissipation function given
by Eq. (37) obeys the fluctuation relation, for all the values
of α.

III. THE DISSIPATION FUNCTION FOR ACTIVE SYSTEMS

In this section, we consider the active systems [30] whose
dynamics is governed by the equations of motion having the
following form:

dAi

dt
= Fi + Xi + Ni jξ j (t ), (41)

where the addition term Xi represents the active driving
forces. Due to the presence of the active forces, the active
systems are always away from equilibrium. However, they
can achieve a nonequilibrium steady state. Writing Xi as the
sum of two terms X s

i and X a
i such that X s(s ◦ A) = s ◦ X s(A)

and X a(s ◦ A) = −s ◦ X a(A) [see Eqs. (G3) and (G4) in Ap-
pendix G]. It should be noted that Ni j serves as a dummy
matrix here as well because the form of P will be the same as
that in Eq. (19), except that F s

i and F a
i will have additional

active components X s
i and X a

i , respectively. Following the
approach used in Sec. II B, we obtain the following expression
of the dissipation function:

Rτ (t ) = ln
pt (A(t ))

pt (s ◦ A(t + τ ))
− 1

kBT
[H(A(t + τ ))

−H(A(t ))] + 1

kBT

∫ t+τ

t
w(t ′)dt ′, (42)

where

w(t ) = ∂H(A(t ))

∂Ai
X a

i (A(t )) − kBT
∂X a

i (A(t ))

∂Ai

+ (�s−1)i j (A(t ))X s
j (A(t ))

[
dAi

dt
− Ya

i (A(t ))

]
(43)

and

Ya
i = X a

i + ∂H
∂Ak

�a
ki − kBT

∂�a
ki

∂Ak
. (44)

The integration in Eq. (43) is performed using midpoint rule.
In contrast to passive systems, Rτ (t ) here depends on �i j ,
though not on α. Moreover, Rτ (t ) is trajectory-dependent,
so 〈Rτ (t )〉 is a function of α because the probability density
P of a trajectory depends on α [as in passive systems, see
Eq. (19)]. The ensemble average of w(t ) is given by (with
an assumption, see Appendix G)

〈w(t )〉 =
〈(

dAi

dt
− ∂H

∂Ak
�a

ki + kBT
∂�a

ki

∂Ak

)
(�s−1)i jX s

j

〉

−
〈(

dAi

dt
− Ya

i

)
(�s−1)i jX a

j

〉
, (45)

where the first term is the average rate of work done by active
force (�s−1)i jX s

j and the second term is by the active force

(�s−1)i jX a
j . So w(t ) can be interpreted as the rate of work

done by active forces along the trajectory at time t . For pt (s ◦
A) = pt (A), the rate of change of dissipation function with τ

[see Eqs. (34) and (42)] is given by

ṡ(t ) = 1

kBT
w(t ) − d

dt ′

(
ln pt (A(t ′)) + 1

kBT
H(A(t ′))

)∣∣∣∣
t ′=t

,

(46)

and its average reads (see Appendix G)

〈ṡ(t )〉 = 1

kBT

〈(
Ji(A, t )

pt (A)
− Ya

i (A)

)
(�s−1)i j (A)

×
(

Jj (A, t )

pt (A)
− Ya

j (A)

)〉
, (47)

where Ji(A, t ) is the probability current for A [23]:

Ji(A, t ) =
(

−�s
i j (A)

∂H(A)

∂Aj
+ Ya

i (A) + X s
j (A)

)
pt (A)

− kBT �s
i j (A)

∂ pt (A)

dAj
. (48)

Using Eq. (6), it is easy to show that 〈ṡ(t )〉 > 0, as expected
from the integrated fluctuation theorem (28). Again, kB〈ṡ(t )〉
is nothing but the rate of the total entropy production of the
system and the reservoir (see Appendix E).

As discussed for the passive systems in Sec. II C, for
pt (s ◦ A) 
= pt (A) case, time reversal asymmetry in pt (A) also
contributes to irreversibility. This contribution can also be ob-
served in the stationary states of many active systems. Active
systems with polar alignment [31–34] are examples of this
type of system; as the velocities of the particles are globally
aligned, the velocity distribution is not an even function for
these systems. The passive systems, being in equilibrium in
their stationary states, cannot demonstrate this irreversibility.

A few special cases for the active systems are as follows:
(a) If initially the system is in equilibrium (that is, Xi = 0)
and the active term Xi is switched on at t = 0, then p0(A) =
exp(−H(A)/kBT )/Z . In this case, Rτ is just the net work
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done by the active forces during the trajectory [see Eq. (42)]:

Rτ = 1

kBT

∫ τ

0
w(t ′)dt ′. (49)

(b) In the stationary state (i.e., in t → ∞ limit), the time
averaged work done by the active forces,

wav = lim
τ→∞

1

τ

∫ t+τ

t
dt ′w(t ′), (50)

is independent of t . So, in τ → ∞ limit, in Eq. (42), the last
term is proportional to τ and we can ignore the first two terms.
Then,

Rτ 	 1

kBT

∫ t+τ

t
w(t ′)dt ′ (51)

	 1

kBT
wavτ. (52)

From Eq. (24), the probability distribution Pw(wav) of wav

satisfies the relation

X = lim
τ→∞ kBT

1

τ
ln

Pw(wav = X )

Pw(wav = −X )
. (53)

This is called the steady-state fluctuation theorem [28].

IV. CONCLUSION

Starting with the generic Langevin equations, using path
integral approach, we first calculated the ratio of the proba-
bility densities of a trajectory and its time-reversed trajectory
for passive systems using α-discretization: it is independent
of the value of α. Irrespective of the value of α, the stationary
solutions of generic Langevin equations have time reversal
symmetry, so the generic Langevin equations with any value
of α describes a passive system. Next we calculated the dissi-
pation function for the passive systems which is found to be
independent of the trajectory of the system, it depends only
on the intial and the final values of the dynamical variables
of the system. Furthermore, it is not an explicit function
of coefficients of the generic Langevin equations. We also
verify the fluctuation theorem for a 1D particle trapped in
a potential well whose stiffness is suddenly changed, with
the state-dependent diffusion. Finally, we obtained the ex-
pression of the dissipation function for active systems and
defined the work done by the active forces. For both pas-
sive and active systems, the average of the rate of change
of dissipation function with the duration of the trajectory
is just the entropy production rate of the system and the
reservoir.

APPENDIX A: THE PROBABILITY DENSITY OF A TRAJECTORY FOR PASSIVE SYSTEMS

The generic Langevin equations for passive systems in discrete form [see Eq. (10)]:

dAi(l ) = εFi
(
Āf

l

)+ √
εNi j

(
Āf

l

)
ξ l

j , (A1)

where dAi(l ) ≡ Ai(εl ) − Ai(ε(l − 1)), Āf
l ≡ αA(εl ) + (1 − α)A(ε(l − 1)), and

Fi ≡ −�i j
∂H
∂Aj

+ kBT
∂�i j

∂Aj
− αNl j

∂Ni j

∂Al
. (A2)

Solving the above equations for ξ l
i , we obtain

ξ l
i = 1√

ε
(N−1)i j

(
Āf

l

)(
dAj (l ) − εF j

(
Āf

l

))
. (A3)

Since ξ l
i are the uncorrelated series of random numbers having normal distribution with zero mean and variance one, the

probability density function of a trajectory of the system (A0, A1, A2, .....AN ) [here Al ≡ A(lε)] between t = 0 and t = τ ≡ Nε

is given by [12]

P = p0(A0)|J |
N∏

l=1

1

(2π )n/2
exp

[
− 1

2ε

[
dAi(l ) − εFi

(
Āf

l

)]
(N−1)ki

(
Āf

l

)
(N−1)k j

(
Āf

l

)[
dAj (l ) − εF j

(
Āf

l

)]]
, (A4)

where p0(A) is the probability distribution of A at t = 0 and J is the Jacobean determinant for the transformation of the
variables of the probability density function from the ξ l

i to Aj (εm). From Eq. (A3), the Nn × Nn Jacobean matrix for the
variable transformation is given by

J il
jm = ∂ξ l

i

∂Aj (εm)

= 1

ε1/2

[[[
∂ (N−1)ik

∂Aj

]
Āf

l

dAk (l ) − ε

[
∂ (N−1)ik

∂Aj
Fk + ∂Fk

∂Aj
(N−1)ik

]
Āf

l

]
(αδlm + (1 − α)δ(l−1)m) + (N−1)i j

(
Āf

l

)
(δlm − δ(l−1)m)

]

= 1

ε1/2

[[[
∂ (N−1)ik

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))− ε

[
∂Fk

∂Aj
(N−1)ik

]
Āf

l

]
(αδlm + (1 − α)δ(l−1)m) + (N−1)i j

(
Āf

l

)
(δlm − δ(l−1)m)

]
.

(A5)

014111-6



PROPERTIES OF THE DISSIPATION FUNCTIONS FOR … PHYSICAL REVIEW E 107, 014111 (2023)

The above matrix is a block triangular matrix of n × n submatrices with fixed (l, m), so its determinant will be the multiplication
of all the diagonal submatrices (i.e., with l = m):

J =
N∏

l=1

1

εn/2
det(M(l )), (A6)

where

Mi j (l ) = (N−1)i j
(
Āf

l

)+ α

[
∂ (N−1)ik

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))− εα

[
∂Fk

∂Aj
(N−1)ik

]
Āf

l

= (N−1)ip
(
Āf

l

)[
δp j + α

[
Npq

∂ (N−1)qk

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))− αε

[
∂Fp

∂Aj

]
Āf

l

]
. (A7)

Using the power series expression of ln(det(I + δB)) for any matrix B in δ → 0 limit (such that ||δB|| < 1), that is,

ln(det(I + δB)) = [
Tr[B]δ − 1

2 Tr[B · B]δ2 + O(δ3)
]
, (A8)

the determinant of M(l ) can be written as

det(M(l )) = det
(
N−1

(
Āf

l

))
exp

[
α

[[
Njq

∂ (N−1)qk

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))− ε

[
∂F j

∂Aj

]
Āf

l

]

− 1

2
α2

[
Npq

∂ (N−1)qk

∂Aj
Njr

∂ (N−1)ri

∂Ap

]
Āf

l

dAk (l )dAi(l ) + O(ε3/2)

]
,

= det
(
N−1

(
Āf

l

))
exp

[
−α

[[
(N−1)qk

∂Njq

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))+ ε

[
∂F j

∂Aj

]
Āf

l

]
− 1

2
α2ε

[
∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+O(ε3/2)

]
.

(A9)

Note that dAk (l ) has a ε1/2-term, so dAi(l )dAk (l ) is of the order of ε. Relations (D1) and (D6) (see Appendix D) have been used
to get the last term of the above equation. Equation (A7) then reads

J =
N∏

l=1

1

εn/2
det
(
N−1

(
Āf

l

))
exp

[
−α

[[
(N−1)qk

∂Njq

∂Aj

]
Āf

l

(
dAk (l ) − εFk

(
Āf

l

))+ ε

[
∂F j

∂Aj

]
Āf

l

]

− 1

2
α2ε

[
∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+ O(ε3/2)

]
. (A10)

Substituting the above expression of J into Eq.(A4):

P = p0(A0)
N∏

l=1

⎧⎨
⎩ 1

(2πε)n/2

∣∣det
(
N−1

(
Āf

l

))∣∣ exp

[
− 1

2ε

[
dAi(l ) − εFi

(
Āf

l

)]
(N−1)ki

(
Āf

l

)
(N−1)k j

(
Āf

l

)[
dAj (l ) − εF j

(
Āf

l

)]]

× exp

[
−α

[(
dAi(l ) − εFi

(
Āf

l

))[
(N−1) ji

∂Nk j

∂Ak

]
Āf

l

+ ε

[
∂Fi

∂Ai

]
Āf

l

]
−1

2
α2ε

[
∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+ O(ε3/2)

]}
. (A11)

From Eq. (2), (N−1)ki(N−1)k j = (�s−1)i j/2kBT , so

P = p0(A0)
N∏

l=1

{
(2kBT )−1/2

(2πε)n/2
det
(
�s
(
Āf

l

))−1/2
exp

[
− 1

4εkBT

[
dAi(l ) − εFi

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF j

(
Āf

l

)]]

× exp

[
−α

[(
dAi(l ) − εFi

(
Āf

l

))[
(N−1) ji

∂Nk j

∂Ak

]
Āf

l

+ ε

[
∂Fi

∂Ai

]
Āf

l

]
−1

2
α2ε

[
∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+ O(ε3/2)

]}
. (A12)

Now let us break Fi into two terms,

F0
i = −�i j

∂H
∂Aj

+ kBT
∂�i j

∂Aj
(A13)

and

FN
i = −αNl j

∂Ni j

∂Al
. (A14)
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Replacing Fi by F0
i + FN

i in Eq. (A12):

P = p0(A0)
N∏

l=1

{
(2kBT )−1/2

(2πε)n/2
det
(
�s(Āf

l

))−1/2
exp

[
− 1

4εkBT

[
dAi(l ) − εF0

i

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF0

j

(
Āf

l

)]]

× exp

[
−α

[(
dAi(l ) − εF0

i

(
Āf

l

))[
(N−1) ji

∂Nk j

∂Ak

]
Āf

l

+ ε

[
∂F0

i

∂Ai

]
Āf

l

]]

× exp

[
1

2kBT
FN

i

(
Āf

l

)
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF0

j

(
Āf

l

)]− ε

4kBT

[
FN

i (�s−1)i jFN
j

]
Āf

l

]

× exp

[
αε

[
FN

i (N−1) ji
∂Nk j

∂Ak
− ∂FN

i

∂Ai

]
Āf

l

− 1

2
α2ε

[
∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+ O(ε3/2)

]}
. (A15)

Using Eq. (6) (that is, NikNjk = 2kBT �s
i j), one can write

(N−1) ji
∂Nk j

∂Ak
= δim(N−1) jm

∂Nk j

∂Ak

= (�s−1)ip�
s

pm(N−1) jm
∂Nk j

∂Ak

= 1

2kBT
(�s−1)ipNpj

∂Nk j

∂Ak

= 1

2kBT
(�s−1)ip

(
∂ (Nk jNpj )

∂Ak
− Nk j

∂Npj

∂Ak

)

= (�s−1)ip
∂�s

pk

∂Ak
+ 1

2kBT α
(�s−1)ipFN

p . (A16)

With the above expression, Eq. (A15) reduces to

P = p0(A0)
N∏

l=1

{
(2kBT )−1/2

(2πε)n/2
det
(
�s
(
Āf

l

))−1/2
exp

[
− 1

4εkBT

[
dAi(l ) − εF0

i

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF0

j

(
Āf

l

)]

−α

[(
dAi(l ) − εF0

i

(
Āf

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Āf

l

+ ε

[
∂F0

i

∂Ai

]
Āf

l

]]

× exp

[
ε

4kBT

[
FN

i (�s−1)i j

(
FN

j + 4αkBT
∂�s

jk

∂Ak

)
− 4αkBT

∂FN
i

∂Ai
− 2kBT α2 ∂Npm

∂Aj

∂Njm

∂Ap

]
Āf

l

+ O(ε3/2)

]}
. (A17)

Using the relation NikNjk = 2kBT �s
i j , further simplifying the last term of the above equation yields

P = p0(A0)
N∏

l=1

⎧⎨
⎩ (2kBT )−1/2

(2πε)n/2
det
(
�s
(
Āf

l

))−1/2
exp

[
− 1

4εkBT

[
dAi(l ) − εF0

i

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF0

j

(
Āf

l

)]

−α

[(
dAi(l ) − εF0

i

(
Āf

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Āf

l

+ ε

[
∂F0

i

∂Ai

]
Āf

l

]]

× exp

⎡
⎣α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Āf

l

+ O(ε3/2)

⎤
⎦
⎫⎬
⎭. (A18)

We further split F0
i into the two terms,

F s
i (A) = −�s

i j

∂H
∂Aj

+ kBT
∂�s

i j

∂Aj
(A19)

and

Fa
i (A) = −�a

i j

∂H
∂Aj

+ kBT
∂�a

i j

∂Aj
, (A20)
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such that, under time reversal [see Eqs. (17) and (18)],

F s(A) → F s(s ◦ A) = s ◦ F s(A), (A21)

F a(A) → F a(s ◦ A) = −s ◦ F a(A). (A22)

Equation (A17) then becomes

P = p0(A0)
N∏

l=1

⎧⎨
⎩ (2kBT )−1/2

(2πε)n/2
exp

[
− 1

4εkBT

[
dAi(l ) − εF s

i

(
Āf

l

)− εF a
i

(
Āf

l

)]
(�s−1)i j

(
Āf

l

)[
dAj (l ) − εF s

j

(
Āf

l

)− εF a
j

(
Āf

l

)]

−α

[(
dAi(l ) − εF s

i

(
Āf

l

)− εF a
i

(
Āf

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Āf

l

+ ε

[
∂F s

i

∂Ai
+ ∂F a

i

∂Ai

]
Āf

l

]]
det
(
�s
(
Āf

l

))−1/2

× exp

⎡
⎣α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Āf

l

+ O(ε3/2)

⎤
⎦
⎫⎬
⎭. (A23)

Clearly, for given �s
i j , P is independent of the choice of Ni j .

APPENDIX B: THE PROBABILITY DENSITY FOR THE TIME-REVERSED TRAJECTORY

As the time-reversed trajectory of the trajectory (A0, A1, A2, .....AN ) is (s ◦ AN , s ◦ AN−1, .....s ◦ A1), under time reversal,
Al → s ◦ AN−l and therefore,

dAi(l ) = Ai(εl ) − Ai(ε(l − 1))

→ si(Ai(ε(N − l )) − Ai(ε(N − l + 1))

→ −sidAi(N − l + 1), (B1)

(Einstein’s convention is not used here) and

Āf
l = αAl + (1 − α)Al−1

→ (αs ◦ AN−l + (1 − α)s ◦ AN−l+1) → s ◦ Ār
N−l+1, (B2)

where Ār
l ≡ (1 − α)A(l ) + αA(l − 1). With the above transformations, using the relation �s

i j = sis j�
s
i j and Eqs. (A21), (A22),

and (A23), we obtain the following expression of the probability density of the time-reversed trajectory:

Pr =
N∏

l=1

⎧⎨
⎩ (2kBT )−1/2

(2πε)n/2 exp

[
− 1

4εkBT

[−dAi(l
′) − εF s

i

(
Ār

l ′
)+ εF a

i

(
Ār

l ′
)]

(�s−1)i j
(
Ār

l ′
)[−dAj (l

′) − εF s
j

(
Ār

l ′
)+ εF a

j

(
Ār

l ′
)]

−α

[(−dAi(l
′) − εF s

i

(
Ār

l ′
)+ εF a

i

(
Ār

l ′
))[

(�s−1)i j

∂�s
jk

∂Ak

]
Ār

l′
+ ε

[
∂F s

i

∂Ai
− ∂F a

i

∂Ai

]
Ār

l′

]]
det
(
�s
(
Ār

l ′
))−1/2

× exp

⎡
⎣α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Ār

l′

+ O(ε3/2)

⎤
⎦
⎫⎬
⎭p0(s ◦ AN ), (B3)

where l ′ = N − l + 1. In the above equation, the index l ′ runs from N to 1 so we can replace
∏N

l=1 by
∏1

l ′=N ≡ ∏N
l ′=1. Hence,

Pr =
N∏

l=1

⎧⎨
⎩ (2kBT )−1/2

(2πε)n/2 exp

[
− 1

4εkBT

[−dAi(l ) − εF s
i

(
Ār

l

)+ εF a
i

(
Ār

l

)]
(�s−1)i j

(
Ār

l

)[−dAj (l ) − εF s
j

(
Ār

l

)+ εF a
j

(
Ār

l

)]

−α

[(−dAi(l ) − εF s
i

(
Ār

l

)+ εF a
i

(
Ār

l

))[
(�s−1)i j

∂�s
jk

∂Ak

]
Ār

l

+ ε

[
∂F s

i

∂Ai
− ∂F a

i

∂Ai

]
Ār

l

]]
det
(
�s
(
Ār

l

))−1/2

× exp

⎡
⎣α2εkBT

[
∂2�s

i j

∂Ai∂Aj
− ∂�s

ik

∂Ak
(�s−1)i j

∂�s
j p

∂Ap

]
Ār

l

+ O(ε3/2)

⎤
⎦
⎫⎬
⎭p0(s ◦ AN ). (B4)
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APPENDIX C: CALCULATION OF THE RATIO BETWEEN THE PROBABILITY DENSITIES OF A TRAJECTORY
AND ITS TIME-REVERSED TRAJECTORY

Using relations (D2) and (D3), expanding Ni j (Ā
f
l ) and Ni j (Ā

r
l ) around A = Āl ≡ (Al + Al−1)/2:

Ni j
(
Āf

l

) = Ni j (Āl ) + 2α − 1

2

[
∂Ni j

∂Ak

]
Āl

dAk (l ) + 1

2

(
2α − 1

2

)2[
∂2Ni j

∂Ak∂Am

]
Āl

dAk (l )dAm(l ) + O(ε3/2), (C1)

Ni j (Ā
r
l ) = Ni j (Āl ) − 2α − 1

2

[
∂Ni j

∂Ak

]
Āl

dAk (l ) + 1

2

(
2α − 1

2

)2[
∂2Ni j

∂Ak∂Am

]
Āl

dAk (l )dAm(l ) + O(ε3/2). (C2)

Then, using the relation NikNjk = 2kBT �s
i j and Eq. (A8), we obtain

det
(
�s
(
Āf

l

))−1/2

det
(
�s
(
Ār

l

))−1/2 =
∣∣det

(
N−1

(
Āf

l

))∣∣∣∣det
(
N−1

(
Ār

l

))∣∣
= exp

[
−(2α − 1)

[
(N−1) jm

∂Nm j

∂Ak

]
Āl

dAk (l ) + O(ε3/2)

]

= exp

[
−2α − 1

2

[
(�s−1) jm

∂ (�s)m j

∂Ak

]
Āl

dAk (l ) + O(ε3/2)

]
. (C3)

In ε → 0 limit, dividing Eq. (A23) by Eq. (B4) first, and using the above equation and the relations given in Appendix D, we get

P

Pr
= p0(A0)

p0(s ◦ AN )
exp

[
− 1

kBT

N∑
l=1

(H(Al ) − H(Al−1)) + O(ε3/2)

]

= p0(A(0))

p0(s ◦ A(τ ))
exp

[
− 1

kBT
(H(A(τ )) − H(A(0)))

]
, (C4)

where A(0) ≡ A0 and A(τ ) ≡ AN .

APPENDIX D: VARIOUS RELATIONS NEEDED FOR THE CALCULATION IN SEC. II B

Recalling Eq. (10) of the main text,

dAi(l ) = εFi
(
Āf

l

)+ √
εNi j

(
Āf

l

)
ξ l

j . (D1)

Note that the lowest order term in dAi(l ) is a ε1/2-term. Let us consider a function G(A); expanding G(Āf
l ) and G(Ār

l ) around
A = Āl ≡ (Al + Al−1)/2:

G
(
Āf

l

)= G

(
Āl + 2α − 1

2
dAl

)
= G(Āl ) + 2α − 1

2

[
∂G

∂Ak

]
Āl

dAk (l ) + 1

2

(
2α − 1

2

)2[
∂2G

∂Ak∂Am

]
Āl

dAk (l )dAm(l ) +O(ε3/2) (D2)

and

G
(
Ār

l

) = G

(
Āl − 2α − 1

2
dAl

)

= G(Āl ) − 2α − 1

2

[
∂G

∂Ak

]
Āl

dAk (l ) + 1

2

(
2α − 1

2

)2[
∂2G

∂Ak∂Am

]
Āl

dAk (l )dAm(l ) + O(ε3/2), (D3)

where dAl = Al − Al−1. Then

dAi(l )dAj (l )G
(
Āf

l

) = dAi(l )dAj (l )G(Āl ) + 2α − 1

2

[
∂G

∂Ak

]
Āl

dAi(l )dAj (l )dAk (l )

+ 1

2

(
2α − 1

2

)2[
∂2G

∂Ak∂Am

]
Āl

dAi(l )dAj (l )dAk (l )dAm(l ) + O(ε5/2). (D4)

From Eq. (D1),

dAi(l )dAj (l )dAk (l ) = ξ l
pξ

l
qξ

l
r NipNjqNkrε

3/2 + (
ξ l

pξ
l
qNipNjqFk + ξ l

pξ
l
r NipNkrF j + ξ l

qξ
l
r NjqNkrFi

)
ε2 + O(ε5/2). (D5)
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Our final expressions will be written in integral form, and since ξ j (t ) is the time derivative of a Wiener process, we can write

ξ l
pξ

l
q ≡ δpq, (D6)

ξ l
pξ

l
qξ

l
r ≡ δpqξ

l
r + δprξ

l
q + δrqξ

l
p, (D7)

ξ l
pξ

l
qξ

l
r ξ

l
o ≡ δpqδro + δprδqo + δqrδpo. (D8)

Using the above relations, Eq. (D1) and Eq. (6) (NikNjk = 2kBT �s
i j), Eq. (D5) can be written as

dAi(l )dAj (l )dAk (l ) = 2kBT
(
�s

i jdAk (l ) + �s
jkdAi(l ) + �s

kidA j (l )
)
ε + O(ε5/2). (D9)

Similarly,

dAi(l )dAj (l )dAk (l )dAm(l ) = ξ l
pξ

l
qξ

l
r ξ

l
oNipNjqNkrNmoε

2 + O(ε5/2)

= (2kBT )2
(
�s

i j�
s
km + �s

ik�
s
jm + +�s

im�s
jk

)
ε2 + O(ε5/2). (D10)

Substituting Eqs. (D9) and (D10) into Eq. (D4), we obtain

dAi(l )dAj (l )G
(
Āf

l

) = dAi(l )dAj (l )G(Āl ) + (2α − 1)kBT

[
∂G

∂Ak

]
Āl

(
�s

i j (Āl )dAk (l ) + �s
jk (Āl )dAi(l ) + �s

ki(Āl )dAj (l )
)
ε

+ 1

2
[(2α − 1)kBT ]2

[
∂2G

∂Ak∂Am

(
�s

i j�
s
km + �s

ik�
s
jm + +�s

im�s
jk

)]
Āl

ε2 + O(ε5/2). (D11)

Similarly, from Eq. (D3), we readily obtain

dAi(l )dAj (l )G
(
Ār

l

) = dAi(l )dAj (l )G(Āl ) − (2α − 1)kBT

[
∂G

∂Ak

]
Āl

(
�s

i jdAk (l ) + �s
jkdAi(l ) + �s

kidA j (l )
)
ε

+ 1

2
[(2α − 1)kBT ]2

[
∂2G

∂Ak∂Am

]
Āl

(
�s

i j�
s
km + �s

ik�
s
jm + +�s

im�s
jk

)
ε2 + O(ε5/2). (D12)

Likewise, we can easily derive the following relations:

dAi(l )G
(
Āf

l

) = dAi(l )G(Āl ) + (2α − 1)kBT ε

[
�s

i j

∂G

∂Aj

]
Āl

+ O(ε3/2), (D13)

dAi(l )G
(
Ār

l

) = dAi(l )G(Āl ) − (2α − 1)kBT ε

[
�s

i j

∂G

∂Aj

]
Āl

+ O(ε3/2), (D14)

G
(
Āf

l

) = G(Āl ) + O(ε1/2), (D15)

G
(
Ār

l

) = G(Āl ) + O(ε1/2), (D16)[
∂G

∂Ai

]
Āl

dAi(l ) = G(Al ) − G(Al−1) + O(ε3/2). (D17)

APPENDIX E: THE RELATION BETWEEN ENTROPY
PRODUCTION RATE AND ṡ

The free energy of the system at time t would be

F (t ) =
∫

H(A)pt (A)dA − T

[
−kB

∫
pt (A) ln pt (A)dA

]
= 〈[H(A) + kBT ln pt (A)]〉, (E1)

where 〈〉 stands for the ensemble average and pt (A) is the
probability distribution of A at time t . Let us define the free
energy of a single trajectory of the system at time t as

f (t ) = H(A(t )) + kBT ln pt (A(t )). (E2)

Then it is straightforward to show that

dF (t )

dt
=
〈

df (t )

dt

〉
. (E3)

1. For passive systems

From Eq. (32), we readily get〈
df (t )

dt

〉
= −kBT 〈ṡ(t )〉, (E4)

so from Eq. (E3)

dF (t )

dt
= −kBT 〈ṡ(t )〉. (E5)

Assuming that the system is always in metastable thermal
equilibrium with the reservoir, the rate of change total entropy
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of system and reservoir would be

dS(t )

dt
= − 1

T

dF (t )

dt
= kB〈ṡ(t )〉. (E6)

2. For active systems

For active systems, from Eq. (46), one can trivially prove
that 〈

df (t )

dt

〉
= −kBT 〈ṡ(t )〉 + 〈w(t )〉, (E7)

where 〈w(t )〉 is average rate of the work perfomed by active
forces. Hence, from Eq. (E3),

dF (t )

dt
= −kBT 〈ṡ(t )〉 + 〈w(t )〉. (E8)

Therefore, the rate of total entropy production of the system
and the reservoir is

dS(t )

dt
= − 1

T

dF (t )

dt
+ 1

T
〈w(t )〉

= kB〈ṡ(t )〉. (E9)

APPENDIX F: THE DISSIPATION FUNCTION DEFINED
BY SEIFERT et al. [5]

Seifert et al. [5] used the following form of the dissipation
function:

Sτ = ln

[
P

P′
r

]
, (F1)

where P is the probability density of a trajectory between
t = 0 and t = τ which is given by Eq. (A12), and P′

r is
the probability density of the time-reversed trajectory, con-
sidering that the time-reserved trajectory starts at t = τ , not
at t = 0. Thus, the epxression of Sτ is readily obtained by
replacing p0(s ◦ AN ) with pt (s ◦ AN ) in the expression of Rτ

[see Eq. (25)], that is

Sτ = ln
p0(A(0))

pτ (s ◦ A(τ ))
− 1

kBT
[H(A(τ )) − H(A(0))]. (F2)

This dissipation function follows the fluctuation relation (24)
in steady states only, not in general. However, as discussed
by Ref. [5], it does always follow the integrated fluctuation
relation (28) and therefore 〈Sτ 〉 � 0.

APPENDIX G: CALCULATION OF ṡ FOR THE ACTIVE
SYSTEMS

Recalling equations of motion for the active systems

dAi

dt
= Fi + Xi + Ni jξ j (t ), (G1)

where

Fi ≡ −�i j
∂H
∂Aj

+ kBT
∂�i j

∂Aj
− αNl j

∂Ni j

∂Al
, (G2)

and Xi is the active term. Writing X as X = X s + X a, where

X s(A) = 1
2 (X (A) + s ◦ X (s ◦ A)), (G3)

X a(A) = 1
2 (X (A) − s ◦ X (s ◦ A)) (G4)

follow the properties X s(s ◦ A) = s ◦ X s(A) and X a(s ◦
A) = −s ◦ X a(A). The Fokker-Planck equation for the prob-
ability density pt (A) of A reads

∂ pt (A)

∂t
= −∂Ji(A, t )

∂Ai
, (G5)

where

Ji(A, t ) =
(

−�s
i j (A)

∂H(A)

∂Aj
+ Ya

i (A) + X s
j (A)

)
pt (A)

− kBT �s
i j (A)

∂ pt (A)

dAj
(G6)

is the probability current [23] and

Ya
i = X a

i + ∂H
∂Ak

�a
ki − kBT

∂�a
ki

∂Ak
. (G7)

Since X a(s ◦ A) = −s ◦ X a(A), using the relation �a
i j =

−�a
i j sis j [Eq. (16)], it is easy to show that

Ya(s ◦ A) = −s ◦ Ya(A). (G8)

As Eq. (G5) has no term with Ni j , pt (A) would be independent
of the choice of Ni j . Recalling Eq. (46)

ṡ(t ) = w(t ) − d

dt ′

(
ln pt (A(t ′)) + 1

kBT
H(A(t ′))

)∣∣∣∣
t ′=t

,

(G9)
where

w(t ) = ∂H(A(t ))

∂Ai
X a

i (A(t )) − kBT
∂X a

i (A(t ))

∂Ai

+ (�s−1)i j (A(t ))X s
j (A(t ))

[
dAi

dt
− Ya

i (A(t ))

]
.

(G10)

Using Eqs. (G5) and (G6), one can write Eq. (46) in the
following form:

ṡ(t ) = 1

kBT

(
Ji(A, t )

pt (A)
− Ya

i (A)

)
(�s−1)i j (A)

×
(

Jj (A, t )

pt (A)
− Ya

j (A)

)
+ Rs + R0, (G11)

where

Rs = − 1

pt (A)

∂

∂Ai

(
pt (A)Ya

i (A)
)

(G12)

and

R0 =
(

dAi

dt
− Ji(A, t )

pt (A)

)[
1

pt (A)

∂ pt (A)

∂Ai

− 1

kBT

(
(�s−1)i j (A)X s

j (A) − ∂H(A)

∂Aj

)]
. (G13)

The average of Rs reads

〈Rs〉 = −
∫

1

pt (A)

∂

∂Ai

(
pt (A)Ya

i (A)
)
pt (A)dnA

= −
∫

∂

∂Ai

(
pt (A)Ya

i (A)
)
dnA. (G14)
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The above expression can be written as a surface integral with
the integrand Is = −pt (A)Ya(A). If the system is periodic in
Ai (e.g., Ai is an angle), then the surface integral is already
zero. If Ai lies in the infinite interval (−∞,∞), then in Ai →
±∞ limit, pt (A) → 0, given that A are physical variables.
Assuming that ||Is|| converges faster than ||A||1−n, the surface
integral is again zero. For pt (s ◦ A) = pt (A) case, 〈Rs〉 is
always zero as follows: setting A = s ◦ A′ gives dnA = dnA′,
then using Eq. (G8), we get

〈Rs〉 =
∫

∂

∂A′
i

(
pt (A′)Ya

i (A′)
)
dnA′

= −〈Rs〉, (G15)

so 〈Rs〉 = 0. Since the ensemble average of dAi/dt for given A
and t is just Ji(A, t )/pt (A), 〈Ro〉 = 0. Therefore, the ensemble
average of Eq. (G11) is given by

〈ṡ(t )〉 = 1

kBT

〈(
Ji(A, t )

pt (A)
− Ya

i (A)

)
(�s−1)i j (A)

×
(

Jj (A, t )

pt (A)
− Ya

j (A)

)〉
. (G16)

Similarly, 〈w(t )〉 given by Eq. (G10) can be written in the
following form:

〈w(t )〉 =
〈(

dAi

dt
− ∂H

∂Ak
�a

ki + kBT
∂�a

ki

∂Ak

)
(�s−1)i jX s

j

〉

−
〈(

dAi

dt
− Ya

i

)
(�s−1)i jX a

j

〉
. (G17)

Here, if pt (s ◦ A) 
= pt (A), then we must assume that
||pt (A)X a(A)|| converges faster than ||A||1−n.

APPENDIX H: STATIONARY SOLUTION OF THE
FOKKER-PLANCK EQUATION ASSOCIATED

WITH EQ. (8)

The Fokker-Planck equation for the probability distribution
pt (A) of the solution of Eq. (8) is given by

∂ pt (A)

∂t
= −∂Ji(A, t )

∂Ai
; (H1)

the expression of the probability current Ji(A, t ) reads [23]

Ji(A, t ) =
(

−�s
i j (A)

∂H(A)

∂Aj
+ ∂H

∂Ak
�a

ki − kBT
∂�a

ki

∂Ak

)

× pt (A) − kBT �s
i j (A)

∂ pt (A)

dAj
. (H2)

Undoubtedly, the dynamics of pt (A) is independent of the
choice of Ni j and α. Since

∂H
∂Ak

�a
ki − kBT

∂�a
ki

∂Ak

is the Poisson bracket term, the stationary solution of the
above equation is given by [25]

ps(A) = 1

Z exp

[
−H(A)

kBT

]
, (H3)

where Z is the normalizing constant.

APPENDIX I: DEPENDENCE OF 〈Rτ〉 ON α

FOR THE PASSIVE SYSTEMS

For the passive systems, Rτ depends only on the initial
and final states of the system A0 and Aτ , so its average can be
calculated using the formula [35]

〈Rτ 〉 =
∫

Rτ p0(A0)G(A0, Aτ ; τ )dnA0dnAτ , (I1)

where p0(A) is the probability distribution of A at t = 0, and
G(A, A′; τ ) is the probability distribution of state A′ at t =
τ given that the system was in the state A at t = 0; it is the
solution of Eq. (H1) with the initial condition G(A, A′; τ =
0) = δ(A − A′). As the solution of Eq. (H1) is independent of
α, 〈Rτ 〉 would be constant in α.
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