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Renewal equations for single-particle diffusion through a semipermeable interface

Paul C. Bressloff
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 31 October 2022; accepted 23 December 2022; published 11 January 2023)

Diffusion through semipermeable interfaces has a wide range of applications, ranging from molecular trans-
port through biological membranes to reverse osmosis for water purification using artificial membranes. At the
single-particle level, one-dimensional diffusion through a barrier with constant permeability κ0 can be modeled in
terms of so-called snapping out Brownian motion (BM). The latter sews together successive rounds of partially
reflected BMs that are restricted to either the left or right of the barrier. Each round is killed (absorbed) at
the barrier when its Brownian local time exceeds an exponential random variable parameterized by κ0. A new
round is then immediately started in either direction with equal probability. It has recently been shown that the
probability density for snapping out BM satisfies a renewal equation that relates the full density to the probability
densities of partially reflected BM on either side of the barrier. Moreover, generalized versions of the renewal
equation can be constructed that incorporate non-Markovian, encounter-based models of absorption. In this
paper we extend the renewal theory of snapping out BM to single-particle diffusion in bounded domains and
higher spatial dimensions. In each case we show how the solution of the renewal equation satisfies the classical
diffusion equation with a permeable boundary condition at the interface. That is, the probability flux across the
interface is continuous and proportional to the difference in densities on either side of the interface. We also
consider an example of an asymmetric interface in which the directional switching after each absorption event is
biased. Finally, we show how to incorporate an encounter-based model of absorption for single-particle diffusion
through a spherically symmetric interface. We find that, even when the same non-Markovian model of absorption
applies on either side of the interface, the resulting permeability is an asymmetric time-dependent function with
memory. Moreover, the permeability functions tend to be heavy tailed.
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I. INTRODUCTION

Diffusion through semipermeable barriers or membranes
has a wide range of applications in the physical, chemical,
and life sciences. One of the best-known examples in biol-
ogy is a lipid bilayer that regulates the flow of proteins and
ions between different subcellular compartments and the ex-
change of molecules with the extracellular environment [1–4].
Semipermeable barriers also occur at the multicellular level,
as exemplified by electrical or chemical gap junctions. These
are small nonselective channels that permit the diffusion of
molecules and ions between neighboring cells and are found
in most animal organs and tissues [5–8]. Permeable barriers
are even found at the ecological level where, for example, an-
imal dispersal is affected by the presence of roads and fences
within a heterogeneous landscape [9–11]. Many composite
and porous materials in physical and chemical systems are
modeled in terms of multiple layers separated by semiper-
meable interfaces. Examples include multilayer electrodes
and semiconductors [12,13], thermal conduction in composite
media [14,15], waste disposal and gas permeation in soils
[16,17], diffusion magnetic resonance imaging [18–20], and
drug delivery [21,22].

At the macroscopic level, multiparticle diffusion across a
semipermeable membrane is modeled by taking the Fickian
flux across the membrane to be continuous and to be pro-

portional to the difference in. concentrations on either side of
the barrier; the constant of proportionality is identified as the
permeability. For example, suppose that M denotes a closed
bounded domain M ⊂ Rd with a smooth concave boundary
∂M separating the two open domains M and its complement
Mc, see Fig. 1. The boundary acts as a semipermeable in-
terface with ∂M+ (∂M−) denoting the side approached from
outside (inside) M, see Fig. 1. Let u(x, t ) be the concentration
of particles at x at time t . Then u(x, t ) is the weak solution of
the diffusion equation with a permeable or leather boundary
condition on ∂M,

∂u(x, t )

∂t
= D∇2u(x, t ), x ∈ M ∪ Mc, (1.1a)

J (y±, t ) = κ0[u(y−, t ) − u(y+, t )], y± ∈ ∂M±, (1.1b)

where J (x, t ) = −D∇u(x, t ) · n is the particle flux, n is the
unit normal directed from M, D is the diffusivity, and κ0 is the
(constant) permeability. Equation (1.1) are a special case of
the well-known Kedem-Katchalsky (KK) equations [23–25]
that also allow for discontinuities in the diffusivity and
chemical potential across the interface. The macroscopic KK
equations can be derived by considering a thin membrane
and using statistical thermodynamics. More simply, Eqs. (1.1)
arise from treating the interface as a thin layer of slow dif-
fusion D = O(h), where h is the width of the layer, and
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FIG. 1. Diffusion through a closed semipermeable membrane in
Rd .

taking the limit h → 0 [26]. Although the KK equations were
originally developed within the context of the transport of
nonelectrolytes through biological membranes, they are now
used to describe all types of membranes, both biological and
artificial. (See the recent collection of articles in Ref. [4].)
One application of artificial membranes is reverse osmosis for
water purification and for extracting energy from variations in
salinity [27,28].

Advances in single-particle tracking and imaging methods
are beginning to provide details of single particle trajecto-
ries that cannot be captured by macroscopic models. This
has motivated a number of stochastic models at the single-
particle level. One approach is to consider random walks
on lattices in which semipermeable barriers are represented
by local defects [29–32]. An alternative approach is to use
stochastic differential equations (SDEs). These generate sam-
ple paths of a Brownian particle that are distributed according
to a probability density satisfying a corresponding FP equa-
tion. However, incorporating the microscopic analog of the
permeable boundary condition (1.1b) is nontrivial. If ∂M
were a totally reflecting (Neumann) or partially reflecting
(Robin) boundary, then Brownian motion (BM) confined to
M would need to be supplemented by an additional impulsive
force each time the particle contacted the boundary (prior to
possible absorption). Mathematically speaking, this can be
implemented by introducing a Brownian functional known as
the boundary local time [33–38]. The latter determines the
amount of time that a Brownian particle spends in the neigh-
borhood of points on the boundary. A rigorous probabilistic
formulation of one-dimensional (1D) BM in the presence of
a semipermeable barrier is much more recent. It is based
on so-called snapping out BM, which was first introduced
by Lejay [39], see also Refs. [26,40,41]. Snapping out BM
sews together successive rounds of partially reflected BM that
are restricted to either x < 0 or x > 0 with a semipermeable
barrier at x = 0. Suppose that the particle starts in the domain
x > 0. It realizes positively reflected BM until its local time
exceeds an exponential random variable with parameter κ0.
It then immediately resumes either negatively or positively
reflected BM with equal probability, and so on. Snapping

out BM is itself a generalization of so-called skew BM [42],
which has a wide range of applications, particularly in math-
ematical finance [43–46]. (Note that SDEs in the form of
underdamped Langevin equations have been used to develop
efficient computational schemes for finding solutions to the
FP equation in the presence of one or more semipermeable in-
terfaces [47,48]. This is distinct from snapping out BM, which
is an exact single-particle realization of diffusion through an
interface in the overdamped limit.)

We recently reformulated snapping out BM in terms of
a renewal equation that related the full probability density
to the probability densities of the partially reflected BMs on
either side of the barrier [49]. (The original analysis of Lejay
[39] used the theory of semigroups and resolvent operators
to derive a corresponding backward equation.) The renewal
equation was solved using Laplace transforms and Green’s
function methods, resulting in an explicit expression for the
probability density of snapping out BM. We then used the
renewal approach to develop a more general probabilistic
model of one-dimensional single-particle diffusion through
a semipermeable barrier. This included modifications of the
diffusion process away from the barrier such as stochastic
resetting [50] and encounter-based models of membrane ab-
sorption [51–54] that kill each round of partially reflected
BM. In the latter case, the corresponding boundary condition
at the interface involved a time-dependent permeability with
memory.

In this paper we extend the renewal theory of snapping
out BM to single-particle diffusion in bounded domains and
higher spatial dimensions. We first consider the example of
a bounded interval partitioned by a semipermeable mem-
brane, and with a reflecting boundary at each end. We then
turn to a higher-dimensional version of snapping out BM
which corresponds to the configuration shown in Fig. 1. In
both cases we show how the solution of the renewal equa-
tion satisfies a FP equation of the form (1.1). Establishing
such an equivalence is nontrivial, since one needs to take
into account modifications in the partially reflecting boundary
conditions when the particle starts exactly on the boundary.
(This is related to the notion of the so-called inverse local
time [33]). Although one could proceed by directly solving the
corresponding FP equation (1.1), the renewal approach has at
least two potential advantages. First, since snapping out BM
generates sample paths of single-particle diffusion through
semipermeable interfaces, it can be used to develop numerical
schemes for generating solutions to the corresponding FP, see
also Refs. [47,48]. Second, the renewal equation provides a
framework for developing more general probabilistic models
along the lines considered in Ref. [49].

The structure of the paper is as follows. In Sec. II we
construct the renewal equations for snapping out BM in an
interval with reflecting external boundaries and a semiperme-
able barrier within the interior. We show that the probability
density satisfies the FP equation with a permeable boundary
condition at the barrier. We then extend the analysis to the case
of an asymmetric interface in which the directional switching
after each absorption event is biased. We also consider a first-
passage-time (FPT) problem for an asymmetric barrier and
a right-hand boundary that is totally absorbing. We show that
the mean FPT (MFPT) is independent of the permeability κ0 if
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FIG. 2. Brownian motion in the interval [−L′, L] with a semiper-
meable membrane at x = 0 and reflecting boundary conditions at
x = −L′, L.

the particle starts to the right of the barrier, but there is a jump
in the MFPT and its first derivative with respect to the initial
position as the latter crosses the barrier. In Sec. III we consider
the renewal equation for a closed semipermeable membrane
in Rd and show that the probability density satisfies an FP
equation of the form (1.1). We then explicitly solve the re-
newal equation for a spherically symmetric interface. Finally,
in Sec. IV we incorporate an encounter-based model of ab-
sorption into the spherically symmetric example. In particular,
we show that non-Markovian models of absorption generate
an asymmetric time-dependent permeability distribution that
tends to be heavy tailed. The emergence of time-dependent
kernels through non-Markovian absorption is analogous to a
recent study of thin membrane boundary conditions based on a
random walk model with nonexponential waiting times within
the membrane [55].

II. SNAPPING OUT BM IN AN INTERVAL

Consider a Brownian particle diffusing in the interval
[−L′, L] with a semipermeable barrier at x = 0 and reflect-
ing boundaries at the ends x = −L′, L, see Fig. 2. Introduce
the disjoint sets [0+, L] and [−L′, 0−] with 0± denoting the
position of the barrier when approaching from either the left-
hand or right-hand sides. Let ρ(x, t |x0) denote the probability
density of the particle position under the initial condition
X0 = x0 �= 0± and set

ρ(x, t ) =
∫ L

−L′
ρ(x, t |x0)g(x0)dx0 (2.1)

for any continuous function g such that
∫ L
−L′ g(x0)dx0 = 1.

The classical way to determine ρ(x, t ) would be to solve the
corresponding FP equation,

∂ρ

∂t
= D

∂2ρ

∂x2
, x ∈ (−L′, 0−) ∪ (0+, L),

(2.2a)

D
∂ρ(x, t )

∂x

∣∣∣∣
x=0±

= κ0[ρ(0+, t ) − ρ(0−, t )], (2.2b)

D
∂ρ(x, t )

∂x

∣∣∣∣
x=−L′,L

= 0. (2.2c)

In this section we follow a different approach by constructing
a renewal equation that relates ρ(x, t ) to the probability den-
sities of partially reflected BM in the two intervals [−L′, 0]
and [0, L], respectively. This generalizes the construction
presented in Ref. [49] for snapping out BM in R. Using a com-
bination of Green’s function methods and Laplace transforms,

we establish that the solution of the renewal equation satisfies
Eqs. (2.2). Hence, analytically solving the FP equation re-
duces to the problem of calculating the Green’s functions for
partially reflected BM in an interval.

A. Green’s function for partially reflected BM

Consider BM in the interval [0, L] with x = 0 partially
reflecting and x = L totally reflecting. Let Xt ∈ [0, L] denote
the position of the Brownian particle at time t and introduce
the Brownian local time [33]

�t = lim
ε→0

D

ε

∫ t

0
H (ε − Xτ )dτ, (2.3)

where H is the Heaviside function. Note that �t , which has
units of length due to the additional factor of D, determines
the amount of time that the Brownian particle spends in the
neighborhood of x = 0 over the interval [0, t]. It can be shown
that �t exists and is a nondecreasing, continuous function of t .
The partially reflecting boundary condition at x = 0 can be
implemented by introducing the stopping time [56]

T̂ = inf{t > 0 : �t > �̂}, P [�̂ > �] ≡ �(�) = e−κ0�/D,

(2.4)
which is the FPT for terminating the BM. That is the stochas-
tic process is killed when the local time exceeds a random
exponentially distributed threshold. The probability density
for particle position prior to absorption at x = 0 [33–38],

p(x, t |x0)dx = P [x � Xt < x + dx, t < T |X0 = x0], (2.5)

satisfies the FP equation with a Robin boundary condition at
x = 0:

∂ p(x, t |x0)

∂t
= D

∂2 p(x, t |x0)

∂x2
, 0 < x < L, (2.6a)

D∂x p(0, t |x0) = κ0 p(0, t |x0), −D∂x p(L, t |x0) = 0, (2.6b)

and p(x, 0|x0) = δ(x − x0). It is convenient to Laplace trans-
form with respect to t , which gives

D
∂2 p̃(x, s|x0)

∂x2
− sp̃(x, ts|x0) = −δ(x − x0), (2.7a)

D∂x p̃(0, s|x0) = κ0 p̃(0, s|x0), (2.7b)

−D∂x p̃(L, s|x0) = 0, (2.7c)

with 0 < x, x0 < L. We can identify p̃(x, s|x0) as a Green’s
function of the modified Helmholtz equation on [0, L]. The
general solution for 0 < x < x0, after imposing the Robin
boundary condition at x = 0, is proportional to the density

p̃<(x, s) = 1

2

[
e
√

s/Dx +
√

sD − κ0√
sD + κ0

e−√
s/Dx

]

=
√

sD cosh(
√

s/Dx) + κ0 sinh(
√

s/Dx)√
sD + κ0

. (2.8)

Similarly, the solution for x0 < x < L, which satisfies the
reflecting boundary condition at x = L, is of the form

p̃>(x, s) = cosh[
√

s/D(L − x)]. (2.9)
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Imposing continuity of p̃(x, s|x0) across x0 and matching the
discontinuity in the first derivative yields the solution

p̃(x, s|x0) =
⎧⎨⎩Ap̃<(x, s) p̃>(x0, s), 0 � x � x0

Ap̃>(x, s) p̃<(x0, s), x0 � x � L
, (2.10)

with

A = A(κ0, s) ≡ (
√

sD + κ0)/
√

sD√
sD sinh(

√
sDL) + κ0 cosh(

√
s/DL)

.

(2.11)
In particular, note that

p̃(x, s|0) = cosh[
√

s/D(L − x)]√
sD sinh(

√
s/DL) + κ0 cosh(

√
s/DL)

, (2.12)

and

D∂x p̃(0, s|0) = κ0 p̃(0, s|0) − 1. (2.13)

The modification of the Robin boundary condition when the
particle starts at the barrier plays a significant role in estab-
lishing the equivalence of snapping out BM.

The Green’s function p̃(x, s|0) can be related to the so-
called inverse local time [33]. The latter is defined according
to

E[e−sT |X0 = x0] =
∫ ∞

0
f (x0, t )e−st dt, (2.14)

where f (x0, t ) is the FPT density. In terms of the survival
probability

Q(x0, t ) =
∫ ∞

0
p(x, t |x0)dx, (2.15)

we have

f (x0, t ) = −dQ(x0, t )

dt
= −

∫ ∞

0

∂ p(x, t |x0)

∂t
dx

= −D
∫ ∞

0

∂2 p(x, t |x0)

∂x2
dx = D

∂ p(x, t |x0)

∂x

∣∣∣∣
x=0

= κ0 p(0, t |x0). (2.16)

Hence,

E[e−sT |X0 = x0] = κ0 p̃(0, s|x0) = κ0 p̃(x0, s|0). (2.17)

We have used the well-known symmetry property of the
Green’s function for a self-adjoint operator.

B. Renewal equation for snapping out BM

We construct snapping out BM in [−L′, L] as follows [39].
Without loss of generality, assume that the particle starts at
X0 = x0 � 0. It realizes positively reflected BM until its local
time �t at x = 0+ is greater than an independent exponential
random variable �̂ of parameter κ0. Let T0 denote the corre-
sponding stopping time. The process immediately restarts as
a new reflected BM with probability 1/2 in either [0+, L] or
[−L′, 0−] and a reset local time. Again the reflected BM is
stopped when the reset local time exceeds a new exponential
random variable, etc. Let p(x, t |x0) and q(x, t |x0) denote the

probability densities of partially reflected BM in the intervals
[0+, L] and [0+, L′], respectively, and set

p(x, t ) =
∫ L

0
p(x, t |x0)g(x0)dx0, x ∈ [0+, L], (2.18)

q(x, t ) =
∫ 0

−L′
q(−x, t |x0)g(x0)dx0, x ∈ [−L′, 0−]. (2.19)

In particular, the Laplace transform q̃(x, s|x0) is given by
Eq. (2.10) under the mapping L → L′. Since snapping out BM
satisfies the strong Markov property [57], as previously shown
by Lejay [39], there exists a last renewal equation analogous
to the one introduced in Ref. [49]:

ρ(x, t ) = p(x, t ) + κ0

2

∫ t

0
p(x, τ |0)

× [ρ(0+, t − τ ) + ρ(0−, t − τ )]dτ (2.20a)

for x ∈ [0+, L] and

ρ(x, t ) = q(x, t ) + κ0

2

∫ t

0
q(−x, τ |0)

× [ρ(0+, t − τ ) + ρ(0−, t − τ )]dτ (2.20b)

for x ∈ [−L′, 0−]. The first term on the right-hand side of
Eq. (2.20a) represents all sample trajectories that have never
been absorbed by the barrier at x = 0+ up to time t . The
integral in Eq. (2.20a) sums over all trajectories that were
last absorbed (stopped) at time t − τ in either the positively
or negatively reflected BM state and then switched with
probability 1/2 to the positive side in order to reach x at
time t . Since the particle is not absorbed over the inter-
val (t − τ, t], the probability of reaching x is p(x, τ |0). The
terms in Eq. (2.20b) have the corresponding interpretations
in [−L′, 0−]. Finally, the probability that the last stopping
event occurred in the interval (t − τ, t − τ + dτ ) irrespective
of previous events is κ0dτ .

Clearly ρ(x, t ) satisfies the diffusion equation in the bulk,
so we will focus on the boundary conditions at the semiper-
meable barrier. It is convenient to Laplace transform the
renewal Eqs. (2.20) with respect to time t by setting ρ̃(x, s) =∫ ∞

0 e−stρ(x, t )dt , etc. This gives

ρ̃(x, s) = p̃(x, s) + κ0

2
p̃(x, s|0)
ρ (s), x ∈ [0+, L], (2.21a)

ρ̃(x, s) = q̃(x, s) + κ0

2
q̃(−x, s|0)
ρ (s), x ∈ [−L′, 0−],

(2.21b)

where


ρ (s) = ρ̃(0+, s) + ρ̃(0−, s). (2.22)

Setting x = 0+ and x = 0− in Eqs. (2.21a) and (2.21b), re-
spectively, summing the results and rearranging shows that


ρ (s) = 
p(s)

1 − κ0[ p̃(0, s|0) + q̃(0, s|0)]/2
, (2.23)

where 
p(s) = p̃(0+, s) + q̃(0−, s).
Next, differentiating Eqs. (2.21a) and (2.21b) with respect

to x and setting x = 0± gives

∂xρ̃(0+, s) = ∂x p̃(0+, s) + κ0

2
∂x p̃(0, s|0)
ρ (s), (2.24a)

∂xρ̃(0−, s) = ∂xq̃(0−, s) − κ0

2
∂xq̃(0, s|0)
ρ (s). (2.24b)

014110-4



RENEWAL EQUATIONS FOR SINGLE-PARTICLE … PHYSICAL REVIEW E 107, 014110 (2023)

Imposing the Robin boundary condition (2.7b) implies that

D∂x p̃(0+, s) = κ0 p̃(0+, s), D∂xq̃(0−, s) = −κ0q̃(0−, s).

On the other hand, Eq. (2.13) yields

D∂x p̃(0, s|0) = κ0 p̃(0, s|0) − 1,

D∂xq̃(0, s|0) = κ0q̃(0, s|0) − 1.

Substituting into Eqs. (2.24a) and (2.24b), we have

D∂xρ̃(0+, s) = κ0 p̃(0+, s) + κ0

2
[κ0 p̃(0, s|0) − 1]
ρ (s),

(2.25a)

D∂xρ̃(0−, s) = −κ0q̃(0−, s) − κ0

2
[κ0q̃(0, s|0) − 1]
ρ (s).

(2.25b)

Subtracting Eqs. (2.25a) and (2.25b) and using Eq. (2.23)
implies that

D[∂xρ̃(0+, s) − ∂xρ̃(0−, s)]

= κ0
p(s) + κ0{κ0[ p̃(0, s|0) + q̃(0, s|0)]/2 − 1}
ρ (s)

= 0. (2.26)

Similarly, adding equations (2.25a) and (2.25b),

2D∂xρ̃(0±, s) = κ0[ p̃(0+, s) − q̃(0−, s)]

+ κ2
0

2
[ p̃(0, s|0) − q̃(0, s|0)]
p(s)

= κ0[̃ρ(0+, s) − ρ̃(0−, s)]. (2.27)

Equations (2.26) and (2.27) establish that the density
ρ̃(x, s) satisfies the Laplace transform of the semipermeable
membrane boundary value problem (BVP) (2.2) under the
initial condition ρ(x, 0) = g(x) and κ0 → κ0/2. Hence, the
snapping out BM Xt on G is the single-particle realization
of the stochastic process whose probability density evolves
according to the diffusion equation with a semipermeable
membrane at x = 0. In the symmetric case L′ = L with g(x0)
an even function of x0, we find that ρ̃(x, s) is an even function
of x so that the flux through the membrane is zero. In other
words, it effectively acts as a totally reflecting barrier even
though κ0 > 0. It can also be checked that the solution of
Eq. (2.21) reduces to

ρ̃(x, s) = 1

4
√

sD

[
e−√

s/D|x−x0| + e−√
s/D(x+x0 )] (2.28)

for x > 0. Finally, note that we recover the results of Ref. [49]
in the limits L, L′ → ∞.

C. Snapping out BM with imperfect contacts

A classical generalization of the permeable boundary con-
dition (2.2b) is to include a directional asymmetry in the
permeability, which can be interpreted as a step discontinuity
in a chemical potential [23–25,48]:

−D∂xu(0+, t ) = −D∂xu(0−, t ) = κ0[u(x+, t ) − σu(x−, t )]
(2.29)

for 0 � σ � 1. This tends to enhance the concentration to the
left of the barrier. (If σ > 1, then we would have a barrier with
permeability κ0σ and bias 1/σ to the right. Here we show

how to incorporate the directional asymmetry into snapping
out BM. The basic idea is to consider a bias in the switching
between the positive and negative directions of reflected BM
following each round of killing. More specifically, consider
the transitions

0± ακ0→ 0+, 0± βκ0→ 0−, α + β = 1. (2.30)

The renewal equation (2.21) becomes

ρ̃(x, s) = p̃(x, s) + ακ0 p̃(x, s|0)
ρ (s) (2.31a)

for x ∈ [0+, L] and

ρ̃(x, s) = q̃(x, s) + βκ0q̃(−x, s|0)
ρ (s) (2.31b)

for x ∈ [−L′, 0−]
Setting x = 0± in Eqs. (2.31), summing the results and

rearranging yields the explicit solution


ρ (s) = p̃(0+, s) + q̃(0−, s)

1 − κ0[α p̃(0, s|0) + βq̃(0, s|0)]
. (2.32)

Using a similar argument to the unbiased case, we obtain the
pair of equations

∂xρ̃(0+, s) = κ0 p̃(0+, s) + ακ0[κ0 p̃(0, s|0) − 1]
ρ (s),

(2.33a)

∂xρ̃(0−, s) = −κ0q̃(0−, s) − βκ0[κ0q̃(0, s|0) − 1]
ρ (s).

(2.33b)

Subtracting this pair of equations and using (2.32) with α +
β = 1 establishes that the flux is continuous across the mem-
brane. On the other hand, multiplying Eq. (2.33a) by β and
Eq. (2.33b) by α and adding the results yields

2D∂xρ̃(0±, s) = κ0[β p̃(0+, s) − α p̃(0−, s)]

+ αβκ2
0 [ p̃(0, s|0) − q̃(0, s|0)]
ρ (s)

= κ0[βρ̃(0+, s) − αρ̃(0−, s)]. (2.34)

Hence, snapping out BM with the switching scheme (2.30)
and α < β is equivalent to single-particle diffusion through a
directed semipermeable barrier with an effective permeability
κ0β/2 and bias σ = α/β on the left-hand side. Similarly,
when α > β, we have a directed semipermeable barrier with
an effective permeability κ0α/2 and bias σ = β/α on the
right-hand side.

D. First-passage-time problem

As a simple application of the renewal Eq. (2.33), consider
the FPT problem obtained by replacing the reflecting bound-
ary at x = L in Fig. 2 by a totally absorbing boundary. The
only modification to our previous analysis is that the Laplace
transformed probability density in the domain [0, L] is now
given by Eq. (2.10) with

p̃<(x, s) =
√

sD cosh(
√

s/Dx) + κ0 sinh(
√

s/Dx)√
sD + κ0

, (2.35a)

p̃>(x, s) = sinh[
√

s/D(L − x)], (2.35b)

A = (
√

sD + κ0)/
√

sD√
sD cosh(

√
sDL) + κ0 sinh(

√
s/DL)

. (2.35c)
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Let TL denote the FPT to be absorbed at x = L,

TL = inf{t > 0, Xt = L}, (2.36)

Take f (x0, t ) to be the FPT density when X0 = x0. We
identify f (x0, t ) with the flux through x = L, f (x0, t ) =
−D∂xρ(L, t |x0). It follows that the MFPT is

E[TL] ≡
∫ ∞

0
t f (x0, t )dt = − dJ̃ (x0, s)

ds

∣∣∣∣∣
s=0

= D
d

ds
∂xρ̃(L, s|x0)

∣∣∣∣
s=0

. (2.37)

First, suppose that x0 < 0. From Eqs. (2.33a) and (2.32),
we have

∂xρ̃(L, s|x0) = ακ0∂x p̃(L, s|0)q̃(0, s| − x0)

1 − κ0[α p̃(0, s|0) + (1 − α)q̃(0, s|0)]
,

where

p̃(x, s|0) = sinh[
√

s/D(L − x)]√
sD cosh(

√
s/DL) + κ0 sinh(

√
s/DL)

, (2.38)

and

q̃(x, s|0) = cosh[
√

s/D(L′ − x)]√
sD sinh(

√
s/DL′) + κ0 cosh(

√
s/DL′)

.

(2.39)
We find that for κ0 > 0

E[TL] = (L + L′)2

2D
− (L′ + x0)2

2D
+ LL′(1 − 2α)

αD
+ L′

ακ0
.

(2.40)
Now suppose that x0 > 0. In this case we have

∂xρ̃(L, s|x0)

= ∂x p̃(L, s|x0) + ακ0∂x p̃(L, s|0) p̃(0, s|x0)

1 − κ0[α p̃(0, s|0) + (1 − α)q̃(0, s|0)]
.

(2.41)

and after some algebra we find that for κ0 > 0,

E[TL] = (L + L′)2

2D
− (L′ + x0)2

2D

+ L′(L − x0)

D

1 − 2α

α
. (2.42)

Equations (2.40) and (2.42) generalize the recent result for
the symmetric case α = 1/2, which was obtained by solving
a backward equation for the MFPT:

E[TL] = (L + L′)2

2D
− (L′ + x0)2

2D
+ 2L′

κ0
H (−x0) (2.43)

for x0 ∈ [−L′, L].
A number of observations can be made. First, if the particle

starts to the right of the barrier, then the MFPT is independent
of the permeability κ0 for all α ∈ [0, 1]. As κ0 increases, there
is a higher probability of crossing the barrier to the left-hand
side, but it is also easier for the particle to cross back to
the right-hand side; these effects cancel out. As highlighted
in Ref. [32], this is a consequence of the fact that diffusion
is unbiased. Second, the MFPT is a continuous function of
x0 across the barrier in the limit κ0 → ∞, whereas its first

FIG. 3. Asymmetric semipermeable barrier at x = 0 with a re-
flecting boundary at x = L′ = −1 and an absorbing boundary at
x = L = 2. Plots of MFPT E[TL] as function of the initial position
x0 for various α and κ0. We also set D = 1.

derivative is discontinuous (unless α = 1/2). Third, there is
an additional contribution to the MFPT for x0 < 0 given by
L′/(ακ0), which represents the mean time to cross the barrier
for the first time. Fourth, the MFPT is a decreasing function
of α for all x0. Example plots of the MFPT as a function of x0

is illustrated in Fig. 3 for various values of α and κ0. Finally,
note that the limit κ0 → 0 is singular since E[TL] does not
exist for x0 < 0 and E[TL] = L2/2D − x2

0/2D for x0 > 0.

III. SNAPPING OUT BM IN Rd

Let us return to the setup of Fig. 1. Single-particle dif-
fusion now takes place on the space G = M ∪ Mc. Here
M = M ∪ ∂M− and Mc = Mc ∪ ∂M+ are disjoint sets so
that y ∈ ∂M corresponds to either y+ ∈ ∂M+ or y− ∈ ∂M−
treated as distinct points. Let ρ(x, t |x0), x, x0 ∈ G, denote the
probability density of the particle with the initial condition
X0 = x0 ∈ M ∪ Mc and set

ρ(x, t ) =
∫
G

ρ(x, t |x0)g(x0)dx0 (3.1)

for any continuous function g on G with
∫
G g(x0)dx0 = 1.

The density ρ satisfies the FP equation

∂ρ(x, t )

∂t
= D∇2ρ(x, t ), x ∈ M ∪ Mc, (3.2a)

J (y±, t ) = κ0[ρ(y−, t ) − ρ(y+, t )], y± ∈ ∂M±, (3.2b)

together with the initial condition ρ(x, 0) = g(x). We wish to
derive the higher-dimensional version of the renewal equa-
tions (2.20) by sewing together partially reflected BMs in the
domains M and Mc, see Fig. 4.
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FIG. 4. Decomposition of a higher-dimensional snapping out BM into two partially reflected BMs corresponding to (a) Xt ∈ Mc and
(b) Xt ∈ M, respectively.

A. Partially reflected BMs in M and Mc

Consider a Brownian particle diffusing in the bounded
domain M, see Fig. 4(a) with ∂M− totally reflecting. Let Xt

denote the position of the particle at time t . In order to write
down a SDE for Xt , we introduce the boundary local time

�−
t = lim

ε→0

D

ε

∫ t

0
H[ε − dist(Xτ , ∂M−)]dτ, (3.3)

with dist(Xτ , ∂M−) denoting the shortest Euclidean distance
of Xτ from the boundary ∂M−. The corresponding SDE then
takes the form

dXt =
√

2DdWt − n(Xt )d�−
t , (3.4)

where Wt is a d-dimensional Brownian motion and n(Xt ) is
the outward unit normal at the point Xt ∈ ∂M. The differen-
tial d�−

t can be expressed in terms of a Dirac delta function:

d�−
t = Ddt

[∫
∂M−

δ(Xt − y)dy
]
. (3.5)

Partially reflected BM in M is then obtained by stopping
the stochastic process Xt when the local time �−

t exceeds a
random exponentially distributed threshold �̂ [38]. That is, the
particle is absorbed somewhere on ∂M− at the stopping time

T − = inf{t > 0 : �−
t > �̂}, P [�̂ > �] = e−κ0�/D. (3.6)

The marginal density for particle position (prior to
absorption),

q(x, t |x0)dx = P [x � Xt < x + dx, t < T −|X0 = x0],

satisfies the diffusion equation with a Robin boundary
condition on ∂M−:

∂q(x, t |x0)

∂t
= D∇2q(x, t |x0) for x, x0 ∈ M, (3.7a)

D∇q(x, t |x0) · n = −κ0q(x, t |x0) for x ∈ ∂M−, (3.7b)

and q(x, 0|x0) = δ(x − x0).

An analogous construction holds for partially reflected BM
in Mc, see Fig. 4(b). Given the local time

�+
t = lim

ε→0

D

ε

∫ t

0
H[ε − dist(Xτ , ∂M+)]dτ, (3.8)

and stopping time

T + = inf{t > 0 : �+
t > �̂}, P [�̂ > �] = e−κ0�/D. (3.9)

one finds that the marginal density

p(x, t |x0)dx = P [x � Xt < x + dx, t < T +|X0 = x0]

satisfies the Robin BVP

∂ p(x, t |x0)

∂t
= D∇2 p(x, t |x0) for x, x0 ∈ Mc, (3.10a)

D∇p(x, t |x0) · n = κ0 p(x, t |x0) for x ∈ ∂M+, (3.10b)

and p(x, 0|x0) = δ(x − x0).

B. Modified boundary condition for x0 ∈ ∂M
As in the 1D case, the boundary condition for partially

reflected BM in Mc is modified when the particle actually
starts on the boundary. In order to show this, we first Laplace
transform Eqs. (3.10) with respect to time t :

D∇2 p̃(x, s|x0) − sp̃(x, s|x0) = −δ(x − x0), x, x0 ∈ Mc,

(3.11a)

D∇ p̃(x, s|x0) · n = κ0 p̃(x, s|x0) for x ∈ ∂M+. (3.11b)

Consider a small cylinder C(ε, σ ) of uniform cross section σ

and length 2ε with a point y ∈ ∂M at its center of mass, see
Fig. 5. Let C+(ε, σ ) = C(ε, σ ) ∩ Mc For sufficiently small
σ , we can treat 
0 ≡ C+(ε, σ ) ∩ ∂M+ as a planar interface
with outward normal n(y) such that the axis of C+(ε, σ ) is
aligned along n(y). Given the above construction, we inte-
grate Eq. (3.11a) with respect to all x ∈ C+(ε, σ ) and use the
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FIG. 5. Cylinder construction across the semipermeable mem-
brane. See text for details.

divergence theorem:∫

ε

∇ p̃(y′, s|x0) · n(y′)dy′ −
∫


0

∇ p̃(y′, s|x0) · n(y′)dy′

∼ 1

D

∫
C+

[sp̃(x, s|x0) − δ(x − x0)]dx, (3.12)

where 
ε denotes the flat end of the cylinder within Mc. If
x0 is in the bulk domain Mc, then taking the limits ε, σ → 0
shows that the flux is continuous as it approaches the bound-
ary, since the right-hand side of Eq. (3.12) vanishes. On the
other hand, if x0 = z ∈ ∂M+, then taking the limits ε, σ → 0
gives

lim
ε→0+

D∇ p̃(y + εn(y), s|z) · n(y)

− D∇ p̃(y, s|z) · n(y) = −δ(y − z), (3.13)

where δ is the Dirac delta function for points on ∂M
such that for any continuous function f : M → R we have∫
∂M f (y)δ(y − z)dy = f (z). Finally, noting that the first flux

term on the left-hand side satisfies the boundary condition
(3.11b), we deduce that

D∇ p̃(y, s|z) · n(y) = κ0 p̃(y, s|z) − δ(y − z). (3.14)

Applying a similar argument to partially reflected BM in M
we find that

D∇q̃(y, s|z) · n(y) = −κ0q̃(y, s|z) + δ(y − z). (3.15)

The extra terms on the right-hand side of Eqs. (3.14) and
(3.15) play a crucial role in the subsequent analysis. They will
also be confirmed by directly differentiating example explicit
solutions.

The Green’s function p̃(x0, s|z) with z ∈ ∂M and x0 ∈
Mc can be related to the corresponding inverse local time [33]

E[e−sT +|X0 = x0] =
∫ ∞

0
f (x0, t )e−st dt, (3.16)

where f (x0, t ) is the FPT density for being absorbed on ∂M.
In terms of the survival probability

Q(x0, t ) =
∫
Mc

p(x, t |x0)dx, (3.17)

we have

f (x0, t ) = −dQ(x0, t )

dt
= −

∫
Mc

∂ p(x, t |x0)

∂t
dx

= −D
∫
Mc

∇2 p(x, t |x0)dx

= D
∫

∂M
∇p(z, t |x0) · ndz = κ0

∫
∂M

p(z, t |x0)dz.

(3.18)

Hence,

E[e−sT |X0 = x0] = κ0

∫
∂M

p̃(z, s|x0)dz

= κ0

∫
∂M

p̃(x0, s|z)dz (3.19)

by the standard symmetry property of Green’s functions.

C. Renewal equation

We define the multidimensional version of snapping out
BM as follows. Without loss of generality, suppose that the
particle starts in the domain Mc. It realizes reflected BM in
Mc until it is killed when its local time �+

t , see Eq. (3.8),
is greater than an independent exponential random variable
�̂. Let y+ ∈ ∂M+ denote the point on the boundary where
killing occurs. The stochastic process immediately restarts as
a new round of partially reflected BM, either from y+ into Mc

or from y− into M. These two possibilities occur with equal
probability. Subsequent rounds of partially reflected BM are
generated in the same way. We thus have a stochastic process
on the set G. As in the one-dimensional case [39], it can be
proven that snapping out BM is a strong Markov process. This
means that we can consider a multidimensional version of the
renewal equation introduced in Ref. [53]. First, let

p(x, t ) =
∫
Mc

p(x, t |x0)g(x0)dx0, (3.20a)

q(x, t ) =
∫
M

q(x, t |x0)g(x0)dx0, (3.20b)

where p(x, t |x0) and q(x, t |x0) are the solutions of the Robin
BVPs (3.10) and (3.7), respectively. By construction, the
probability density ρ(x, t ) satisfies the last renewal equations,

ρ(x, t ) = p(x, t ) + κ0

2

∫ t

0

{∫
∂M

p(x, τ |z)[ρ(z+, t − τ ) + ρ(z−, t − τ )]dz
}

dτ, x ∈ Mc, (3.21a)

ρ(x, t ) = q(x, t ) + κ0

2

∫ t

0

{∫
∂M

q(x, τ |z)[ρ(z+, t − τ ) + ρ(z−, t − τ )]dz
}

dτ, x ∈ M. (3.21b)
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The first term on the right-hand side of Eqs. (3.21a) and
(3.21b) represents all sample trajectories that have never been
absorbed by the boundary ∂M+ and ∂M−, respectively. The
corresponding integral term in equation (3.21a) represents all
trajectories that were last absorbed (stopped) somewhere on
∂M± at time t − τ and then switched to the domain Mc with
probability 1/2 in order to reach x ∈ Mc at time t . Since
the particle is not absorbed over the interval (t − τ, t], the
probability of reaching x ∈ Mc starting at a point z ∈ ∂M+ is
p(x, τ |z). We then have to integrate with respect to all starting
positions z at time t − τ . An analogous interpretation holds
for the integral term on the right-hand side of Eq. (3.21b),
with p → q and ∂M+ → ∂M−. Finally, the probability that
the last stopping event occurred in the interval (t − τ, t − τ +
dτ ) irrespective of previous events is κ0dτ .

We wish to establish that ρ(x, t ) is a (weak) solution of the
FP Eq. (3.2) under the initial condition ρ(x, 0) = g(x). It is
clear that ρ(x, t ) satisfies the diffusion equation in the bulk so,
as in the 1D example, we focus on the boundary conditions.
Laplace transforming the renewal Eqs. (3.21a) and (3.21b)
with respect to time t gives

ρ̃(x, s) = p̃(x, s) + κ0

2

∫
∂M

p̃(x, s|z)
ρ (z, s)dz (3.22a)

for x ∈ Mc and

ρ̃(x, s) = q̃(x, s) + κ0

2

∫
∂M

q̃(x, s|z)
ρ (z, s)dz (3.22b)

for x ∈ M. We have set


ρ (z, s) = ρ̃(z+, s) + ρ̃(z−, s). (3.23)

Taking the normal derivative of Eqs. (3.22a) and (3.22b) with
∂n ≡ n · ∇ in the limit x → y ∈ ∂M gives the pair of equa-
tions

∂nρ̃(y+, s) = ∂n p̃(y+, s) + κ0

2

∫
∂M

∂n p̃(y, s|z)
ρ (z, s)dz,

(3.24a)

∂nρ̃(y−, s) = ∂nq̃(y−, s) + κ0

2

∫
∂M

∂nq̃(y, s|z)
ρ (z, s)dz.

(3.24b)

Next, imposing the boundary conditions (3.11b) and (3.11b)
for partially reflected BM and the modified boundary condi-
tions (3.14) and (3.15) yields

D∂nρ̃(y+, s) = κ0 p̃(y+, s) + κ0

2

∫
∂M

[κ0 p̃(y, s|z)

−δ(y − z)]
ρ (z, s)dz, (3.25a)

D∂nρ̃(y−, s) = −κ0q̃(y−, s) − κ0

2

∫
∂M

[κ0q̃(y, s|z)

−δ(y − z)]
ρ (z, s)dz. (3.25b)

Subtracting this pair of equations, we find that

D∂nρ̃(y+, s) − D∂nρ̃(y−, s)

= κ0[ p̃(y+, s) + q̃(y−, s)] − κ0
ρ (y, s)

+ κ2
0

2

∫
∂M

[ p̃(y, s|z) + q̃(y, s|z)]
ρ (z, s)dz = 0. (3.26)

The last line follows from setting x = y+ and x = y− in
Eqs. (3.22a) and (3.22b), respectively, and adding the results.
Finally adding Eqs. (3.25a) and (3.25b) gives

2D∂nρ̃(y±, s) = κ0[ p̃(y+, s) − q̃(y−, s)]

+ κ2
0

2

∫
∂M

[ p̃(y, s|z) − q̃(y, s|z)]
ρ (z, s)dz

= κ0[̃ρ(y+, s) − ρ̃(y−, s)]. (3.27)

Hence, we have established the equivalence of multidimen-
sional snapping out BM with single-particle diffusion through
a smooth semipermeable membrane of the form shown in
Fig. 1.

D. Spectral decomposition

Equations (3.24) are Fredholm integral equations of the
second kind for which ρ is an implicit solution. One way
to formally solve these equations is to use spectral theory.
Setting x = y± and adding the resulting equations gives


ρ (y, s) = 
p(y, s) + κ0

2

∫
∂M


p(y, s|z)
ρ (z, s)dz,

for y ∈ ∂M, (3.28)

with


p(y, s|z) = p̃(y, s|z) + q̃(y, s|z), (3.29a)


p(y, s) =
∫
G


p(y, s|x0)g(x0)dx0. (3.29b)

Introduce the linear operator L : ∂M → ∂M,

L[ f ](y, s) =
∫

∂M

p(y, s|z) f (z)dz, (3.30)

for any L2 function f on ∂M and rewrite Eq. (3.28) as


ρ (y, s) − κ0

2
L[
ρ](y, s) = 
p(y, s). (3.31)

Since ∂M is bounded and L is self-adjoint with respect to
the L2 norm, it follows that L has a complete orthonormal set
of eigenfunctions {φn(y, s), n � 0} and a corresponding set of
real nonzero eigenvalues λn(s) such that

Lφn(y, s) = λn(s)φn(y, s), y ∈ ∂M. (3.32)

Introducing the eigenfunction expansions


ρ (y, s) =
∑
n�0


ρ,n(s)φn(y, s), (3.33a)


p(y, s) =
∑
n�0


p,n(s)φn(y, s). (3.33b)

and substituting into Eq. (3.31) yields


ρ,n(s) = 
p,n(s)

1 − κ0λn(s)/2
. (3.34)

We have used the fact that the eigenfunctions are orthonor-
mal. Finally, substituting for 
ρ (y, s), y ∈ ∂M, in Eqs. (3.24)
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gives

ρ̃(x, s) = p̃(x, s) + κ0

2

∑
n�0


p,n(s)

1 − κ0λn(s)/2

×
∫

∂M
p̃(x, s|z)φn(z, s)dz (3.35a)

for x ∈ Mc, and

ρ̃(x, s) = q̃(x, s) + κ0

2

∑
n�0


p,n(s)

1 − κ0λn(s)/2

×
∫

∂M
q̃(x, s|z)φn(z, s)dz (3.35b)

for x ∈ M.

E. Spherically symmetric semipermeable interface

In special cases, it is possible to solve the renewal
Eqs. (3.24) without recourse to spectral theory by exploiting
an underlying symmetry. For example, suppose that M =
{x ∈ Rd | 0 � |x| < R} and thus ∂M = {x ∈ Rd | |x| = R},
where R is the radius of the sphere. Following Ref. [58], we
assume that the initial distribution of the particle is spheri-
cally symmetric, that is, g = g(|x0|). This allows us to exploit
spherical symmetry by setting

ρ = ρ(r, t ) = �d

∫ ∞

0
ρ(r, t |r0)g(r0)rd−1

0 dr0, (3.36)

where r = |x|, r0 = |x0|, and �d is the surface area of a unit
sphere in Rd . The renewal Eqs. (3.22) reduce to the simpler
form

ρ̃(r, s) = p̃(r, s) + κ0

2
�d Rd−1 p̃(r, s|R)
ρ (R, s) (3.37a)

for r � R+ and

ρ̃(r, s) = q̃(r, s) + κ0

2
�d Rd−1q̃(r, s|R)
ρ (R, s) (3.37b)

for 0 � r � R−. We have also set


ρ (R, s) = ρ̃(R+, s) + ρ̃(R−, s). (3.38)

Equations (3.37) are identical in structure to Eqs. (2.21). This
means that we can immediately write down the solution for

ρ (R, s):


ρ (R, s) = 
p(R, s)

1 − [κ (R)/2][ p̃(R, s|R) + q̃(R, s|R)]
, (3.39)

with κ (R) = κ0�d Rd−1. Hence, obtaining an explicit solu-
tion for ρ̃(r, s) reduces to the problem of solving the FP
equation for p̃(r, s|r0), r, r0 � R, and the corresponding FP
equation for q̃(r, s|r0), 0 � r, r0 � R.

The Laplace transformed density p̃(r, s|r0) satisfies the FP
equation

D
∂2 p̃(r, s|r0)

∂r2
+ D

d − 1

r

∂ p̃(r, s|r0)

∂r
− sp̃(r, s|r0)

= −�dδ(r − r0), R < r, (3.40a)

D
∂ p̃(r, s|r0)

∂r
= κ0 p̃(r, s|r0), r = R, (3.40b)

with �d = 1/(�d rd−1
0 ). Equations of the form (3.40) can be

solved in terms of modified Bessel functions [58]. The general
solution is

p̃(r, s|r0) = A(s)F (ηr) + G(r, s|r0), η =
√

s

D
(3.41)

for R � r, where F (x) = xνKν (x), ν = 1 − d/2, and Kν is a
modified Bessel function of the second kind. The first term
on the right-hand side of Eq. (3.41) is the solution to the
homogeneous version of Eq. (3.40) and G is the modified
Helmholtz Green’s function in the case of a totally absorbing
surface ∂M:

D
∂2G

∂r2
+ D

d − 1

r

∂G

∂r
− sG = −�dδ(r − r0), R < r,

(3.42a)

G(R, s|r0) = 0. (3.42b)

The latter is given by [58]

G(r, s|r0)

= (rr0)ν

D�d

[Iν (ηr<)Kν (ηR) − Iν (ηR)Kν (ηr<)]Kν (ηr>)

Kν (ηR)
,

(3.43)

where r< = min (r, r0), r> = max (r, r0), and Iν is a modified
Bessel function of the first kind. The unknown coefficient A(s)
is determined from the boundary condition (3.40b):

κ0

D
A(s)F (ηR) = A(s)ηF ′(ηR) + ∂rG(R, s|r0), (3.44)

with

∂rG(R, s|r0) = 1

D�d Rd−1

F (ηr0)

F (ηR)
. (3.45)

Rearranging (3.44) shows that

A(s) = ∂rG(R, s|r0)

κ0F (ηR)/D − ηF ′(ηR)
. (3.46)

A similar analysis can be carried out for q̃(r, s|r0) and we
find that

q̃(r, s|r0) = A(s)F (ηr) + G(r, s|r0), r � R, (3.47)

with F (x) = xν[c1Iν (x) + c2Kν (x)],

G(r, s|r0)

= − (rr0)ν

D�d

[Iν (ηr>)Kν (ηR) − Iν (ηR)Kν (ηr>)]Iν (ηr<)

Iν (ηR)
,

(3.48)

−D
d

dr
G(r, s|r0)

∣∣∣∣
r=R

= 1

�d Rd−1

F (ηr0)

F (ηR)
, (3.49)

and

A(s) = − ∂rG(R, s|r0)

κ0F (ηR)/D + ηF
′
(ηR)

. (3.50)

The coefficients c1, c2 in the definition of F (x) depend on the
value of ν = 1 − d/2 and are determined by requiring that the
solution remain bounded as x → 0 and by any symmetries. In
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FIG. 6. Diffusion through a spherically symmetric semiperme-
able interface in Rd . (a) For d = 2 the interface is a circle of radius
R (b) For d = 1 there exist two semipermeable barriers at r = ±R
and a totally reflecting barrier at r = 0±. The solution is reflection
symmetric about r = 0.

particular, for d = 1, 2, 3, we have ν = 1/2, 0,−1/2, respec-
tively, and

F (x) =
⎧⎨⎩

sinh(x) d = 1,

I0(x) d = 2,
sinh(x)

x d = 3.

(3.51)

The cases d = 1, 3 follow from the identities

I−1/2(z) =
√

2

πz
cosh (z), (3.52a)

K1/2(z) = K−1/2(z) =
√

π

2z
e−z, (3.52b)

I1/2(z) =
√

2

πz
sinh (z). (3.52c)

In Fig. 6 we show how the one-dimensional case is equiv-
alent to the problem considered in Sec. III, see Fig. 2, with
L′ = R and L → ∞. More precisely, spherical symmetry im-

plies that the one-dimensional system is reflection symmetric
about r = 0, which means that there is no flux through the
origin. In other words, we can treat r = 0 as a totally reflecting
barrier. Hence, we can treat diffusion to the right and left of
this barrier as independent BMs involving a semipermeable
barrier at a distance R from r = 0.

Finally, substituting Eqs. (3.41) and (3.47) back into
Eqs. (3.37) and noting that G and G vanish on the boundary,
we have

ρ̃(r, s) = p̃(r, s) + κ (R)

2
A(s)F (ηr)
ρ (R, s), (3.53a)

ρ̃(r, s) = q̃(r, s) − κ (R)

2
A(s)F (ηr)
ρ (R, s), (3.53b)

for r � R+ and r < R−, respectively, and with


ρ (R, s) = p̃(R+, s) + q̃(R−, s)

1 − κ (R)
2 [A(s)F (ηR) + A(s)F (ηR)]

. (3.54)

IV. ENCOUNTER-BASED MODEL OF SNAPPING OUT BM

As we have already highlighted, one of the advantages
of the renewal approach is that it provides a relatively sim-
ple framework for developing more general probabilistic
models of diffusion through semipermeable membranes. In
our previous paper [49], we illustrated this in the case of
one-dimensional diffusion by considering the effects of (i)
stochastic resetting and (ii) modifying the rule for killing
each round of partially reflected BM. Here we show how
to incorporate the latter into the example of the spherically
symmetric interface analyzed in Sec. IV B. The basic idea is
to combine snapping out BM with the encounter-based model
of diffusion-mediated surface absorption [51–54]. This means
that each round of partially reflected BM is killed when its
local time �±

t on ∂M± is greater than an independent random
variable �̂ with a nonexponential distribution �(�) = P [�̂ >

�]. Following Ref. [49] we construct a first rather than a last
renewal equation. We add a subscript � to all probability
densities in order to indicate the fact we are considering a
general threshold distribution �(�).

A. First renewal equation

The spherically symmetric first renewal equation takes the
form

ρ� (r, t ) = p� (r, t ) + 1

2

∫ t

0
[ρ� (r, t − τ |R+) + ρ� (r, t − τ |R−)] f� (τ )dτ, R+ � r < ∞, (4.1a)

ρ� (r, t ) = q� (r, t ) + 1

2

∫ t

0
[ρ� (r, t − τ |R+) + ρ� (r, t − τ |R−)] f� (τ )dτ, 0 � r � R−. (4.1b)

The first terms on the right-hand sides of Eqs. (4.1a) and
(4.1b) represent all sample trajectories that have never been
absorbed by the barrier at r = R± up to time t . The corre-
sponding integrals sum over all trajectories that were first
absorbed (stopped) at time τ somewhere on the boundary

∂M± = {x, |x| = R±} and then with probability 1/2 entered
the domain M or its complement, depending on the value of r,
after which an arbitrary number of switches can occur before
reaching r at time t . The probability that the first stopping
event occurred in the time interval (τ, τ + dτ ) is f� (τ )dτ ,
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where f� (τ ) is the FPT for absorption given the spherically
symmetric initial distribution g(|x0|). Introducing the survival
probability

Q� (t ) =
∫
Mc

p� (x, t )dx +
∫
M

q� (x, t )dx, (4.2)

we have

f� (t ) = −dQ� (t )/dt (4.3)

= −D
∫
Mc

∂ p� (x, t )

∂t
dx − D

∫
M

∂q� (x, t )

∂t
dx

= −D
∫
Mc

∇2 p� (x, t )dx − D
∫
M

∇2q� (x, t )dx

= D
∫

∂M+
∇p� (z, t ) · ndz

−D
∫

∂M−
∇q� (z, t ) · ndz

= D�d Rd−1[∂r p� (R, t ) − ∂rq� (R, t )]. (4.4)

The last line follows from spherical symmetry.
Laplace transforming the renewal Eq. (4.1) with respect to

time t gives

ρ̃� (r, s) = p̃� (r, s) + 1

2
[̃ρ� (r, s|R+) + ρ̃� (r, s|R−)] f̃� (s),

r � R+, (4.5a)

ρ̃� (r, s) = q̃� (r, s) + 1

2
[̃ρ� (r, s|R+) + ρ̃� (r, s|R−)] f̃� (s),

r � R−, (4.5b)

with

f̃� (s) = 1 − sQ̃� (s)

= D�d Rd−1[∂r p̃� (R, s) − ∂r q̃� (R, s)]. (4.6)

In order to determine the factor ρ̃� (r, s|R+) + ρ̃� (r, s|R−) we
set g(r0) = [δ(r0 − R+) + δ(r0 − R−)]/2 in Eq. (4.5). We also
make the R dependence explicit by writing Q� = Q� (R, s)
and f� = f� (R, s). This yields

ρ̃� (r, s|R+) + ρ̃� (r, s|R−) = p̃� (r, s|R) + q̃� (r, s|R)

+ [̃ρ� (r, s|R+) + ρ̃� (r, s|R−)] f̃� (R, s), (4.7)

where f̃� (R, s) = 1 − sQ̃� (R, s) with

Q̃� (R, s) (4.8)

= D�d Rd−1

2
lim

ε→0+
[∂r p� (R, t |R + ε) − ∂rq� (R, t |R − ε)].

Note that p̃� (r, s|R) = 0 for r < R and q̃� (r, s|R) = 0 for r >

R. Rearranging Eq. (4.7) leads to the result

ρ̃� (r, s|R+) + ρ̃� (r, s|R−) = p̃� (r, s|R) + q̃� (r, s|R)

sQ̃� (R, s)
.

Substituting back into Eq. (4.5) yields the explicit solution

ρ̃� (r, s) = p̃� (r, s) + 1 − sQ̃� (s)

2sQ̃� (R, s)
p̃� (r, s|R), r > R, (4.9a)

ρ̃� (r, s) = q̃� (r, s) + 1 − sQ̃� (s)

2sQ̃� (R, s)
q̃� (r, s|R), r < R. (4.9b)

B. Boundary conditions at the interface

We would like to determine the boundary conditions for
ρ̃� (r, s) at the interface. In order to proceed further, we use
the following general results from studies of encounter-based
models [51–54]. Consider partially reflected BM in a bounded
domain M. Let p(x, z, t |x0) be the solution of the correspond-
ing FP equation for constant absorption rate κ0 = zD on ∂M.
Then

p� (x, t |x0) =
∫ ∞

0
�(�)L−1

� p(x, z, t |x0)d�, (4.10a)

−∇p� (y, t |x0) · n =
∫ ∞

0
ψ (�)L−1

� p(y, z, t |x0)d�, (4.10b)

for x, x0 ∈ M and y ∈ ∂M, with z treated as the Laplace
variable conjugate to �, and ψ (�) = −� ′(�). In the specific
case of a spherically symmetric interface, these results imply
that

p� (r, t |r0) =
∫ ∞

0
�(�)L−1

� p(r, z, t |r0)d�, (4.11a)

∂r p� (R, t |r0) =
∫ ∞

0
ψ (�)L−1

� p(R, z, t |r0)d�, (4.11b)

for r, r0 > R and

q� (r, t |r0) =
∫ ∞

0
�(�)L−1

� q(r, z, t |r0)d�, (4.12a)

−∂rq� (R, t |r0) =
∫ ∞

0
ψ (�)L−1

� q(R, z, t |r0)d�, (4.12b)

for r, r0 < R.
We now calculate the terms p̃� (r, s|R), q̃� (r, s|R), and

sQ̃� (R, s) appearing in Eqs. (4.9). First, setting r0 = R in
Eq. (3.41) gives

p̃(r, z, s|R) = 1

D�d Rd−1

F (ηr)

zF (ηR) − ηF ′(ηR)
. (4.13)

Substituting into Eq. (4.11a), we find that

p̃� (r, s|R) = �̃[F (s)]

D�d Rd−1

F (ηr)

F (ηR)
, (4.14a)

F (s) = −ηF ′(ηR)

F (ηR)
. (4.14b)

Similarly, setting r0 = R in Eq. (3.47), we have

q̃(r, z, s|R) = 1

D�d Rd−1

F (ηr)

zF (ηR) + ηF
′
(ηR)

, (4.15)

so that from Eq, (4.12a)

q̃� (r, s|R) = �̃[F (s)]

D�d Rd−1

F (ηr)

F (ηR)
, (4.16a)

F (s) = ηF
′
(ηR)

F (ηR)
. (4.16b)
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Finally, we determine sQ̃� (R, s) by combining Eqs. (4.8), (4.11b), (4.13), and (4.15):

sQ̃� (R, s) = 1 − D�d Rd−1

2

∫ ∞

0
ψ (�)L−1[ p̃(R, s, z|R) + q̃(R, s, z|R)]d� = 1 − 1

2

{
ψ̃[F (s)] + ψ̃[F (s)]

}
. (4.17)

Determining the boundary conditions at the interface requires differentiating both sides of Eqs. (4.9) with respect to r and
setting r = R±. This yields terms of the form ∂r p̃� (R, s|R) and ∂r q̃� (R, s|R). Since the initial state is on the boundary we cannot
simply set r0 = R in Eqs. (4.11b) and (4.12b). Instead, we differentiate Eqs. (4.14) and (4.16) directly:

∂r p̃� (R, s|R) = 1

D�d Rd−1

√
s

D
�̃[F (s)]

F ′(
√

s/DR)

F (
√

s/DR)
= − 1

D�d Rd−1
�̃[F (s)]F (s), (4.18a)

∂r q̃� (R, s|R) = 1

D�d Rd−1

√
s

D
�̃[F (s)]

F
′
(
√

s/DR)

F (
√

s/DR)
= 1

D�d Rd−1
�̃[F (s)]F (s). (4.18b)

Differentiating Eqs. (4.9) with respect to r, setting r = R± and subtracting the results

∂r ρ̃� (R+, s) − ∂xρ̃� (R−, s) = ∂r p̃� (R, s) − ∂r q̃� (R, s) − 1

D�d Rd−1

�̃[F (s)]F (s) + �̃[F (s)]F (s)

2 − ψ̃[F (s)] − ψ̃[F (s)]
f̃� (s). (4.19)

Since ψ̃ (F )F = 1 − ψ̃ (F ), etc., we deduce from Eq. (4.6) that

∂r ρ̃� (R+, s) − ∂xρ̃� (R−, s) = ∂r p̃� (R, s) − ∂r q̃� (R, s) − f̃� (s)

D�d Rd−1
= 0. (4.20)

Hence, the probability flux is continuous across the interface ∂M. Next, differentiating Eqs. (4.9) with respect to r, setting
r = R± and adding the results gives

2∂r ρ̃� (R±, s) = ∂r p̃� (R, s) + ∂r q̃� (R, s) − �̃[F (s)]F (s) − �̃[F (s)]F (s)

D�d Rd−1

f̃� (s)

2sQ̃(R, s)

= ∂r p̃� (R, s) + ∂r q̃� (R, s) + ψ̃[F (s)] − ψ̃[F (s)]

D�d Rd−1

f̃� (s)

2sQ̃(R, s)

= ∂r p̃� (R, s) + ∂r q̃� (R, s) +
[

ψ̃[F (s)]

�̃[F (s)]
p̃� (R, s|R) − ψ̃[F (s)]

�̃[F (s)]
q̃� (R, s|R)

]
f̃� (s)

2sQ̃(R, s)
. (4.21)

Finally,

∂r p̃� (R, s) + ∂r q̃� (R, s) =
∫ ∞

0
ψ (�)

{∫ ∞

R
L−1

� p̃(R, z, s|r0)g(r0)dr0 −
∫ R

0
L−1

� q̃(R, z, s|r0)g(r0)]dr0

}
d�

= 1

D�d Rd−1

∫ ∞

R
ψ̃ (F (s))

F (
√

s/DR)

F (
√

s/Dr0)
g(r0)dr0 −

∫ R

0
ψ̃[F (s)]

F (
√

s/DR)

F (
√

s/Dr0)
g(r0)dr0

= ψ̃[F (s)]

�̃[F (s)]
p̃� (R, s) − ψ̃[F (s)]

�̃[F (s)]
q̃� (R, s). (4.22)

Hence

2∂r ρ̃� (R±, s) = ψ̃[F (s)]

�̃[F (s)]
ρ̃� (R+, s) − ψ̃[F (s)]

�̃[F (s)]
ρ̃� (R−, s). (4.23)

Introducing the Laplace transforms

κ+(s) = D
ψ̃[F (s)]

�̃[F (s)]
, κ−(s) = D

ψ̃[F (s)]

�̃[F (s)]
, (4.24)

we can rewrite the boundary condition (4.23) in the more
suggestive form

2D∂r ρ̃� (R±, s) = κ+(s)̃ρ� (R+, s) − κ−(s)̃ρ� (R−, s).
(4.25)

This can be inverted using the convolution theorem for
Laplace transforms to yield the following result:

2D∂rρ� (R±, t ) =
∫ ∞

0
[κ+(t − τ )ρ(R+, τ )

− κ−(t − τ )ρ(R−, τ )]dτ. (4.26)

That is, the inward flux into the sphere is determined by an
asymmetric pair of time-dependent permeabilities with mem-
ory. This asymmetry occurs even though the non-Markovian
absorption process on either side of the interface is the same.
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In the special case of an exponential distribution, we have
ψ̃ (s) = κ0�̃(s)/D for all s so that κ±(s) = κ0/D and κ (t −
τ ) = (κ0/D)δ(t − τ ). We thus recover the classical permeable
boundary condition. Note that a boundary condition of the
form (4.26) has recently been considered within the context
of a subdiffusion model, in which anomalous behavior is
generated by a thin membrane with a nonexponential waiting
time density for the particle sojourn time within the membrane
[55].

C. Analysis of permeability functions

For the sake of illustration, suppose that ψ (�) is given by
the gamma distribution:

ψ (�) = γ (γ �)μ−1e−γ �

�(μ)
, μ > 0, (4.27)

where �(μ) is the gamma function. The corresponding
Laplace transforms are

ψ̃ (z) =
(

γ

γ + z

)μ

, �̃(z) = 1 − ψ̃ (z)

z
. (4.28)

Here γ determines the effective absorption rate. If μ = 1,
then ψ reduces to the exponential distribution with constant
reactivity κ0 = Dγ . The parameter μ thus characterizes the
deviation of ψ (�) from the exponential case. If μ < 1 (μ >

1), then ψ (�) decreases more rapidly (slowly) as a function
of the local time �. Substituting the gamma distribution into
Eqs. (4.24) yields

κ̃+(s) = D
F (s)γ μ

[γ + F (s)]μ − γ μ
, (4.29a)

κ̃−(s) = D
F (s)γ μ

[γ + F (s)]μ − γ μ
. (4.29b)

If μ = 1, then κ̃ (s) = γ D = κ0 and κ (τ ) = κ0δ(τ ) as ex-
pected. In order to explore an example of a nonexponetial
distribution we take μ = 2 such that

κ̃+(s) = κ0

2

1

1 + D
2κ0

F (s)
, κ̃−(s) = κ0

2

1

1 + D
2κ0

F (s)
. (4.30)

In the one-dimensional case (d = 1) we have, see
Eq. (3.51),

F (s) =
√

s

D
, F (s) =

√
s

D
tanh(

√
s/DR), (4.31)

and

κ̃+(s) = κ0

2

1

1 +
√

sD
2κ0

, (4.32a)

κ̃−(s) = κ0

2

1

1 +
√

sD
2κ0

tanh(
√

s/DR)
, (4.32b)

with κ0 = γ D. Note that∫
∞

κ±(t )dt = κ̃±(0) = κ0/2,

so that κ±(t ) are normalizable in 1D. We first consider the
permeability on the right-hand side of the barrier at x = R, see

Fig. 6(b). The function κ̃+(s) is identical to the permeability
function on either side of a semipermeable barrier in R [49],
and has the explicit inverse

κ+(τ ) = κ2
0√
D

[
1√
πτ

− 2κ0√
D

e4κ2
0 τ/Derfc(2κ0

√
τ/D)

]
,

(4.33)

where erfc(x) = (2/
√

π )
∫ ∞

x e−y2
dy is the complementary

error function. The permeability κ+(τ ) is a monotonically
decreasing function of time with κ+(t ) → 0 as t → ∞. In ad-
dition, it is a heavy-tailed distribution with infinite moments.
The latter follows from the large-t behavior of κ+(τ ), which
can be determined by performing a small-s expansion and
using [58] ∫ ∞

0
e−st tα−1

�(α)
dt = s−α. (4.34)

Although this formula only holds for Re(α) > 0, it can be ex-
tended in the complex α plane (excluding α = 0,−1,−2, . . .)
using the theory of distributions; the resulting singular terms
can then be ignored when considering the large-t behavior.
Taylor expanding κ̃+(s) as a function of s, we find that

κ̃+(s) = κ0

2

1 − √
sD/2κ0

1 − sD/4κ2
0

∼ κ0

2[1 − sD/4κ2
0 ]

+ κ0

2

[
−

√
sD

2κ0
− (sD)3/2

8κ3
0

]
(4.35)

as s → 0. Hence,

κ (t ) ∼
√

D

π

1

8t3/2
, t → ∞. (4.36)

This is consistent with asymptotically expanding erfc(x) in
Eq. (4.33) using the formula

erfc(x) ∼ 1√
π

e−x2
∞∑

k=0

(−1)k (2k)!

22kk!

1

x2k+1
, (4.37)

whose rate of decay depends on κ0 and D.
Turning to the permeability on the left-hand side of the

barrier, x = R−, we note from Eq. (4.32b) that κ̃−(s) has an
infinite set of poles in the negative half of the complex-s plane.
These are determined from the zeros of the function f (x) =
1 + (D/2κ0)x tanh(x) with x = √

s/DR. The zeros also corre-
spond to the discrete spectrum of the diffusion operator in the
bounded interval [0, R]. The smallest eigenvalue is real and
determines the exponential rate of decay in the large-t limit.

In the three-dimensional case (d = 3)

F (s) =
√

s

D
, F (s) =

√
s

D

[
coth(

√
s/DR) − 1√

s/DR

]
,

(4.38)
so that κ̃+(s) is the same as for d = 1, whereas

κ̃−(s) = κ0

2

1

1 +
√

sD
2κ0

[
coth(

√
s/DR) − 1√

s/DR

] . (4.39)

Again the permeability κ−(t ) decays exponentially for large
t , except now the decay rate is determined by the smallest
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negative zero of the function f (x) = 1 + (D/2κ0)(coth(x) −
x−1). Finally, when d = 2 we have

F (s) = −
√

s

D

K ′
0(

√
s/DR)

K0(
√

s/DR)
, (4.40a)

F (s) =
√

s

D

I ′
0(

√
s/DR)

I0(
√

s/DR)
. (4.40b)

The zero-order modified Bessel functions have the follow-
ing small-s expansions:

I0(x) = 1 + x2

4
+ O(x4), (4.41)

K0(x) = −[log(x/2) + γe]I0(x) + x2

4
+ O(x4), (4.42)

where γe is Euler’s constant, that is, γe ≈ 0.5772. Hence,

F (s) ∼ − 1

R log(
√

s/DR/2)
(4.43)

for s → 0. It follows that

κ̃+(s) ∼ κ0

2

[
1 + D

κ0R log s

]
, (4.44)

and thus

κ+(t ) ∼ D

2R

1

t (log t )2
. (4.45)

In contrast to 1D and 3D, the permeability kernel κ+(t ) is
not normalizable since κ̃+(s) → ∞ as s → 0. On the other
hand, κ−(t ) decays exponentially at a rate determined by the
leading order zero of I0(x). Finally, note that another mecha-
nism for generating power law behavior would be to consider
a heavy-tailed distribution ψ (�) such as a Pareto-II (Lomax)
distribution [51].

V. CONCLUSION

In this paper we established the equivalence between
snapping out BM and single particle diffusion through a
semipermeable interface for several simple geometries. Ex-
amples included an asymmetric barrier in a one-dimensional
bounded domain, and a higher-dimensional closed membrane

in Rd . In each case we derived a renewal equation relating the
full probability density to the probability densities of partially
reflected BM on either side of the interface. The renewal equa-
tions were solved using a combination of Laplace transforms
and Green’s function methods. One of the potential advan-
tages of the renewal approach is that it provides a probabilistic
framework for developing more general models of semiper-
meable membranes. We illustrated this by considering an
encounter-based model of absorption on either side of a spher-
ically symmetric interface. (Absorption is the mechanism that
kills each round of partially reflected BM.) In particular, we
showed that non-Markovian models of absorption generate
an asymmetric time-dependent permeability that tends to be
heavy tailed.

Our formulation in terms of renewal equations also pro-
vides an alternative method for solving classical boundary
value problems in the presence of a semipermeable interface,
at least in the Laplace domain. We considered the particular
example of a one-dimensional first-passage-time problem, in
which a semipermeable barrier was placed between a reflect-
ing boundary and an absorbing boundary. The MFPT was
calculated in terms of the Laplace transformed flux through
the absorbing boundary. This raises a more general issue:
Can the renewal approach simplify the analysis of certain
boundary value problems in more complex media contain-
ing multiple interfaces and heterogeneous diffusivities? This
would require developing efficient numerical schemes for
solving the renewal equation directly or for implementing
snapping out BM. There has been considerable recent interest
in finding hybrid analytical or numerical methods for solving
the diffusion equation in multilayered media [15,20,48,59–
62].

Finally, another possible application of the renewal ap-
proach is to incorporate a stochastic resetting protocol, see
the review [50]. In our previous paper, we analyzed stochastic
resetting in the case of diffusion through a semipermeable
barrier in R and studied the relaxation to a nonequilibrium
stationary state in the large time limit [49]. One of the novel
features arising from the presence of a semipermeable inter-
face is that it is natural to exclude resetting paths that cross
the interface, which can lead to a space-dependent form of
resetting.
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