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Energy diffusion in two-dimensional momentum-conserving nonlinear lattices:
Lévy walk and renormalized phonon
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The energy diffusion process in a few two-dimensional Fermi-Pasta-Ulam-type lattices is numerically simu-
lated via the equilibrium local energy spatiotemporal correlation. Just as the nonlinear fluctuating hydrodynamic
theory suggested, the diffusion propagator consists of a bell-shaped central heat mode and a sound mode
extending with a constant speed. The profiles of the heat and sound modes satisfy the scaling properties
from a random-walk-with-velocity-fluctuation process very well. An effective phonon approach is proposed,
which expects the frequencies of renormalized phonons as well as the sound speed with quite good accuracy.
Since many existing analytical and numerical studies indicate that heat conduction in such two-dimensional
momentum-conserving lattices is divergent and the thermal conductivity κ increases logarithmically with lattice
length, it is expected that the mean-square displacement of energy diffusion grows as t ln t . Discrepancies,
however, are noticeably observed.
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I. INTRODUCTION

The continuous-time random walk (CTRW) formalism has
found applications in a wide range of phenomena. In partic-
ular, the Lévy walk (LW) approach [1] has been successfully
applied for the description of superdiffusion in various phys-
ical systems, e.g., particle diffusion in a one-dimensional
(1D) dynamical channel [2], in a two-dimensional (2D) ro-
tating flow [3], in 1D and 2D optical molasses derived from
counterpropagating laser beams, and also energy diffusion
in many-particle Hamiltonian systems [4,5]. On the other
hand, through a few decades’ in-depth studies, a consensus
has been commonly reached that heat conduction in a 1D
momentum-conserving nonlinear system is generally anoma-
lous [6]. Mode-coupling theory [7] and renormalization group
analysis [8] both suggest that the global heat current autocor-
relation CJJ (t ) decays as t−γ with γ < 1, thus according to the
Green-Kubo formula [9] the corresponding heat conductivity
κ diverges with the system size L as κ ∼ Lα with 0 < α < 1.
Such a power-law divergence was first revealed in a 1D Fermi-
Pasta-Ulam (FPU) lattice [10] and later has been observed
in various 1D nonlinear systems [11–14]. Very recently, a
stochastic fractional diffusion equation which confirms the
anomalous transport in a linear system with stochastic mo-
mentum exchange has been proposed [15]. Correspondingly,
energy diffusion in such systems is generally superdiffusive
[16]. According to the nonlinear fluctuating hydrodynamic
theory [17], the diffusion propagator [18] consists of a bell-
shaped central heat mode and two sound modes moving out
in opposite directions with a constant sound speed vs. The
mean-square displacement (MSD) of the propagator follows
a power-law divergence σ 2(t ) ∼ tβ with β > 1, and more im-
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portantly the evolution of the propagator can be well described
by a LW [4,5,19]. A general relation d2

dt2 σ
2(t ) = 2CJJ (t )

kBT 2cv
where

cv denotes the specific volumetric heat capacity connects the
two power exponents α and β by β = α + 1 [20].

These properties are certainly dimension dependent. For
2D momentum-conserving nonlinear systems, the mode-
coupling theory and renormalization group analysis also
suggest that CJJ (t ) decays as t−1, thus the corresponding heat
conductivity κ diverges logarithmically. Such a t−1 decay of
CJJ (t ) and a logarithmic divergence of κ have been observed
in FPU-β rectangle [21] and disk [22] lattices with vector
displacements and a 2D purely quartic rectangle lattice with
scalar displacements [23]. Consequently, the MSD of the dif-
fusion propagator, according to the above-mentioned general
relation, should follow σ 2(t ) ∼ t ln t in the long t limit. In
contrast to the extensive studies of the 1D systems, very few
studies of the energy diffusion process in 2D nonlinear lattices
have been done due to great difficulties in both theoretical
analyses and numerical simulations [19]. The t ln t divergence
has not been convincingly checked, and more importantly,
whether the detailed diffusion process can be described
within the LW framework has not been clearly investigated
either.

In this paper, the energy diffusion process in a few 2D
FPU-type nonlinear lattices is investigated systematically via
numerical simulations. Heat and sound modes are both ob-
served clearly. Furthermore, for each lattice, the scalings of
the central part of the heat mode, the decay of its tail, and
possibly also the decay of the sound mode are all governed by
a single parameter, the decay power exponent of the duration
time τ of each walk in a LW, if the energy carriers are regarded
as the walkers. We then extend a renormalized phonon ap-
proach to 2D and found that the numerically measured sound
speed agrees very well with its expectation. Finally, the above-
mentioned general connection between the superdiffusion and
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divergent heat conduction is checked but noticeable discrep-
ancies are observed. The paper is organized as follows. The
2D lattice models and spatiotemporal correlation of the local
energy density are introduced in Sec. II. The results of a de-
tailed numerical simulation and the corresponding theoretical
analyses are presented in Sec. III. A summary and discussion
are provided in Sec. IV.

II. MODEL AND SIMULATION

A. Two-dimensional momentum-conserving nonlinear lattices

We study energy diffusion in a few 2D square lattices with
a scalar displacement field ui, j . Each particle interacts with its
nearest neighbors. The Hamiltonian of the system with N =
NX × NY particles reads

H =
NX∑
i=1

NY∑
j=1

[
u̇2

i, j

2
+ V (�xi, j ) + V (�yi, j )

]
, (1)

where �xi, j ≡ ui, j − ui−1, j , �yi, j ≡ ui, j − ui, j−1, and the in-
terparticle potential takes a FPU form

V (q) = 1
2 Kq2 + 1

4λq4. (2)

The masses of all the particles have been set to unity. Periodic
boundary conditions are always applied, i.e., u0, j ≡ uNX , j and
ui,0 ≡ ui,NY . We choose the scalar displacement, i.e., each
particle can move only in 1D space. Our study will focus on
the role of the linear part of the interaction, thus the nonlinear
term λ has been fixed to unity and four values of the linear
strength K = 0, 0.2, 0.5 and 1, will be studied. When K = 0,
the lattice reduces to a purely quartic (PQ) lattice, and when
K = 1, the lattice is a standard FPU-β lattice. The PQ lattice
can be regarded as the high-temperature or strong-nonlinearity
limit of the FPU-type lattices. Commonly its asymptotic be-
haviors could be displayed in shorter timescales and space
scales. Unless otherwise stated, the PQ and the FPU-β lattices
refer to these two types hereafter and much more attention
will be paid to them. We study only a symmetric interaction
[V (q) = V (−q)] so that there is no temperature pressure, no
particle flow, and no work.

B. Spatiotemporal correlation of local energy density

The spatiotemporal correlation of the local energy density
provides a quite efficient way of characterizing the diffusion
propagator via equilibrium simulation [24]. It can be directly
applied in 2D cases. In an equilibrium state, the spatiotempo-
ral correlation function of the local energy density is defined
as

CEE(i, j, t ) ≡ 〈�Ei j (t )�E00(0)〉, (3)

where �Ei j (t ) ≡ Ei j (t ) − 〈Ei j〉 is the excess local energy den-
sity. The local energy is defined naturally as

Ei j (t ) ≡ u̇2
i, j

2
+ 1

2
[V (�xi, j ) + V (�xi+1, j )

+ V (�yi, j ) + V (�yi, j+1)]. (4)

In a homogeneous lattice, 〈Ei j〉 is site independent and is sim-
ply equal to 〈E〉, the per-particle average energy. To remove
an inherent correlation that is induced by energy conservation,

the rescaled local energy correlation function, which is equiv-
alent to the diffusion propagator [25], is defined as [26]

ρE(i, j, t ) ≡ CEE(i, j, t )∑
|i|+| j|�1 CEE(i, j, 0)

+ 1

N − 5
. (5)

The MSD of ρE(i, j, t ) reads

σ 2(t ) ≡
∑
i, j

(i2 + j2)ρE (i, j, t ), (6)

which characterizes the MSD of the energy diffusion propa-
gator.

III. NUMERICAL RESULTS AND ANALYSES

A. Overall distribution profile

Microcanonical simulations are performed in lattices with
zero total momentum, all zero initial displacements, and an
identical average energy density ε which corresponds to a
fixed temperature T = 1. Averages are taken over more than
106 time units and the system size is 501 × 501.

To have a global picture of the diffusion process, we first
plot the snapshots of ρE(i, j, t ) at t = 160 for the FPU-β and
PQ lattices in Figs. 1(a) and 1(b), respectively. In order to re-
duce the statistical fluctuation, based on the XY and reflection
symmetries, we plot actually not the ρE(i, j, t ) itself but

ρ ′
E(i, j, t ) ≡ 1

8 [ρE(i, j, t ) + ρE(−i, j, t ) + ρE(i,− j, t )

+ ρE(−i,− j, t ) + ρE( j, i, t ) + ρE(− j, i, t )

+ ρE( j,−i, t ) + ρE(− j,−i, t )] (7)

instead. We see a quite clear central peak and a circle with a
radius about 200 and 170 around the origin. They correspond
to the heat and sound modes of the energy diffusion. Interest-
ingly, we see that the sound mode displays a double ring.

In order to observe the details of the diffusion more
clearly, we plot the cross section at the axis, i.e., ρ ′

E(i, 0, t ) or
ρ ′

E(0, j, t ) in Figs. 1(c) and 1(d). The sound modes are much
lower than those in the 1D lattices [19,27]. Corresponding to
the double ring observed in the 2D profile, the cross section of
the sound mode displays a double peak, which is not observed
in 1D FPU-type lattices.

B. Scaling properties of the heat mode

1. Return probability and scaling of the central part

It is predicted by the nonlinear fluctuating hydrodynamic
theory [17] that for a 1D model with three conserved
quantities—energy, momentum, and stretch—a small pertur-
bation will induce a central bell-shaped heat mode and two
sound modes moving out in opposite directions with a con-
stant speed vs. The tail of the heat mode is cut at the location of
the sound mode. On the other hand, a LW describes a walker
moving with a constant velocity v0 and direction for a random
time τ and then, at a turning point, instantaneously choosing a
new direction and moving again [28]. There exists a ballistic
cone extending with the velocity, beyond which no walker can
go. Due to the similarity of the underlying mechanisms and
also the distribution properties of the above two processes,
one naturally tries to describe the energy diffusion process

014109-2



ENERGY DIFFUSION IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 107, 014109 (2023)

FIG. 1. Snapshots of the rescaled local energy correlation ρ ′
E(i, j, t ) at time t = 160 for (a) the FPU-β lattice and (b) the PQ lattice. Clear

circles with radii about 200 and 170 can be observed respectively for the two lattices. (c) and (d) 1D distributions of the two lattices in a single
logarithmic plot. The curves from the top down are for t = 20, 40, and 80. Small peaks that correspond to the above-mentioned circles can be
observed.

phenomenologically by a LW, although LW commonly de-
scribes the motions of real objects. In such a case, the energy
carriers, possibly the effective phonons [29], are regarded as
the “walkers” of the LW.

Suppose the duration time τ of each move of LW is
independent and follows an identical distribution ψ (τ ) that
satisfies a power-law decay [4,5]

ψ (τ ) =
(

τ

τ0

)−μ−1

, (8)

then in the long-time t cases the central part of the probability
density function (PDF) of the walkers of LW is governed by a
Lévy stable distribution

ρ1D(x, t ) ∼ PL(x, t ) = 1

π

∫ ∞

0
e−ηtzμ

cos(zx)dz, (9)

where μ is the index of the Lévy distribution and η ∼ v
μ
0 τ0

μ−1

describes the speed of diffusion. Throughout this paper, only
the superdiffusion regime, i.e., μ ∈ (1, 2), will be studied.
ρ1D(x, t ) is a bell-shaped distribution with height

ρ1D(0, t ) = 1

π

∫ ∞

0
e−ηtzμ

dz =
�

(
1
μ

)
η

− 1
μ t− 1

μ

μπ
, (10)

which decays with time t by t− 1
μ . The � function �(x) ≡∫ ∞

0 t x−1e−t dt . ρ1D(x, t ) satisfies a scaling invariant relation

ρ1D(x, ut ) ∼ u− 1
μ ρ1D(u− 1

μ x, t ). (11)

For ballistic and normal diffusion, μ = 1 and 2, respectively,
and values in between correspond to superdiffusion. Such a
scaling has been observed in various 1D systems [4,5,19].

To extend the LW to 2D, various intuitive methods are
available [30], including the so-called product model where
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FIG. 2. The height of the heat mode HT (t ) = ρE (0, 0, t ) vs time
t for the 2D PQ (black squares) and FPU-β (blue triangles) lattices.
Lines with the best fitted slopes −1.151 and −1.091 are plotted for
reference.

the motions along each axis are identical 1D LW processes,
the so-called XY model where the walkers choose each step
of LW along one of the X or Y directions with equal prob-
ability, and the so-called uniform model where each step a
walker chooses a random direction from a uniform distri-
bution. Based on the observed nearly isotropic distributions
shown in Figs. 1(a) and 1(b), the uniform model might be the
best choice. As a result, the scaling relation in 2D follows

ρ2D(x, 0, ut ) ∼ u− 2
μ ρ2D(u− 1

μ x, 0, t ), (12)

and μ = 2 is still the border that separates normal diffusion
and superdiffusion. The height of the heat mode HT (t ) =
ρE (0, 0, t ) in the 2D lattices is then expected to decay with
t by t− 2

μ . In Fig. 2, HT (t ) versus time t for the 2D FPU-β and
PQ lattices are plotted in double logarithmic scale. The data
follow straight lines very well. The scaling power exponents
can thus be determined very exactly. The best fitted slope for
the last 15 points of the FPU-β lattice reads −1.091 ± 0.005
and that for the last 16 points of the PQ lattice reads −1.151 ±
0.002. Correspondingly, μ = 1.834 and 1.738 for the FPU-β
and PQ lattices, respectively. The diffusion in the observed
time regime is slightly, however evidently, faster than normal
in both lattices.

To check the 2D scaling relation Eq. (12), we plot the
rescaled distribution t

2
μ ρ ′

E (i, t ) vs it− 1
μ for the 2D FPU-β and

PQ lattices in Figs. 3(a) and 3(b), respectively. For the FPU-β
lattice all the data for different times t overlap each other very
well, except for the very short time t = 20 (black squares) and
40 (red circles) cases. For the PQ lattice, the overlap is even
better. The validity of the scaling Eq. (12) is then strongly
confirmed.

2. Decay of the tail

In the large |x| cases the Lévy stable distribution Eq. (9)
follows asymptotically,

ρ1D(x, t ) ∼ η�(μ + 1) sin
(

πμ

2

)
π

t |x|−(μ+1). (13)

The tail decays asymptotically as |x|−(μ+1) [31]. Such a fat
tail, which induces a divergent second moment, is a key fea-
ture of the Lévy distribution. The PDF of a LW should satisfy
this scaling in the regime |x| ∈ (η1/μt1/μ, vst ) [32].

For 2D LW, the distribution ρ2D(x, y, t ) might be quite
complicated [30]. Due to its rotation invariance, in the large
radius r ≡

√
x2 + y2 regime, the radial distribution should be

a Lévy with the same index μ. Therefore, the tail of ρ2D(r, t )
should decay as

ρ2D(r, t ) ∼ Ctr−(μ+2), (14)

which still implies a well-defined mean value but a diver-
gent second moment. The decay exponent −(μ + 2) equals
−3.834 and −3.738 for the 2D FPU-β and PQ lattices, re-
spectively. In Figs. 3(c) and 3(d), we plot the rescaled tail
distributions for the two 2D lattices as well as the curves that
satisfy the power law i−(μ+2) in double logarithmic scale. We
see that the curves for different t basically overlap each other
in a regime, in which the power-law decays basically follow
the above expectations [Eq. (14)]. As a conclusion, the LW
describes quite well the superdiffusion of the heat mode in
these 2D lattices.

C. Scaling and speed of the sound mode

1. Scaling of the sound mode

Next, we turn to the profile of the sound mode. For 1D
systems, the original LW approach failed to capture the dy-
namics of the sound modes [4] since they display smooth,
humplike profiles, and with a scaling that was incompatible
with the scaling behavior of the delta-function-like peaks of
the LW propagator [5]. Therefore, the interaction between the
walkers, which causes fluctuations of their velocities, must
be considered. The diffusion process is then characterized by
a random-walk-with-velocity-fluctuation process [28], during
which the dispersion of the humplike sound mode grows as
t

1
2 and the volume of the sound mode generally follows a

power-law decay t−ξ . Then the height of the sound mode
HS (t ) decays as t−(ξ+ 1

2 ) and its PDF satisfies the scaling [5]

ρ1D sound(x̄, ut ) ∼ u−(ξ+ 1
2 )ρ1D sound(u− 1

2 x̄, t ), (15)

where x̄ ≡ x − vst and vs is the speed of sound. In 2D cases,
supposing again the radial diffusion is described by a LW
and the decay of volume and the growth of dispersion remain
unchanged, since the sound mode forms a circle whose radius
is proportional to time t , HS (t ) should decay with t by not
t−(ξ+ 1

2 ) but t−(ξ+ 3
2 ), and the scaling of the PDF should change

to

ρ2D sound(x̄, ut ) ∼ u−(ξ+ 3
2 )ρ2D sound(u− 1

2 x̄, t ). (16)

The detailed value of ξ may vary and depend on the mem-
ory effect of the system [28]. For the so-called equilibrated
setup where we suppose that the system has reached a certain
equilibrium before we start measuring it, ξ = μ − 1 [5,32],
whereas for the nonequilibrated setup where all walkers are
introduced to the system at t = 0 and do not have prehistories,
ξ = μ [32]. Since μ equals 1.834 and 1.738 for the 2D FPU-β
and PQ lattices, respectively, the expected power exponent
−(ξ + 3

2 ) equals −2.334 and −2.238 for the equilibrated
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FIG. 3. The rescaled central distribution of (a) the FPU-β and (b) the PQ lattices in linear scale. (c) and (d) The rescaled tail distributions
of the two lattices in double logarithmic scale.

setup, and −3.334 and −3.238 for the nonequilibrated setup.
In our system, the walkers (phonons) do have their own pre-
histories and different ages at t = 0, thus the former scaling is
naturally expected. The simulations also prefer it. In Fig. 4(a),
the height of the sound mode HS (t ) versus time t for t � 90
as well as the above predicted power-law decays are plotted.
Due to the very fast decay of the sound mode, it is hard to
determine HS (t ) for even longer t . Therefore, we are not able
to draw a very convincing conclusion for the long t limit.
Nevertheless, we can see that the data in the plotted regime
prefer the former one, i.e., the equilibrated setup where ξ =
μ − 1. In Figs. 4(b) and 4(c), we plot the rescaled correlations
according to the equilibrated setup versus the rescaled coor-
dinate (i − vst )t− 1

2 . The speed of sound vs equals 1.325 and
1.056, respectively, for the FPU-β and PQ lattices. The way
to determine vs will be discussed later in Sec. III C 2. Also
due to the very fast decay of the sound mode, fluctuation soon
dominates, thus the data for even longer time t > 80 cannot
display well the overlap. Given the large relative fluctuation,
the overlap of the data for various time t in the plotted regime
is acceptable, in particular for the PQ lattice. As a comparison,
those according to the nonequilibrated setup are also plotted in
Figs. 4(d) and 4(e). The overlap is apparently poor. The valid-
ity of the random-walk-with-velocity-fluctuation description

and also the equilibrated setup in these 2D nonlinear lattices
is then confirmed.

It is also observed that, unlike in a general 1D strong non-
linearly lattice that a sound mode forms a single-peak profile,
the cross section of the sound mode in these 2D lattices appar-
ently does not. This fact implies that the simple presumption
of the interaction is incomplete here. More in-depth studies
are necessary to well understand such an unexpected profile.

2. Speed of sound

The LW provides universal connections among various
scaling power exponents. However, the absolute value of some
key quantities still depends on the details of the system. An
important one is the speed of sound vs, which determines
the velocity of the ballistic peaks of the LW. For the lattice
models, vs can be calculated by the group velocity of effective
phonons [29].

For a 2D standard linear lattice (K = 1 and λ = 0), the
dynamics of the system is described by a linear differential
equation group. The dispersion relation is known analytically
as

ω1,0(kx, ky) = 2

√
sin2 kxπ

NX
+ sin2 kyπ

NY
, (17)
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FIG. 4. (a) The height of sound mode HS (t ) vs time t for the 2D FPU-β and PQ lattices. The power-law decays that are predicted by the
equilibrated setup t−2.334 and t−2.238, and by the nonequilibrated setup t−3.334 and t−3.238 are also plotted for reference. The numerical data
follow the equilibrated ones much better. (b) and (c) The rescaled correlation tμ+ 1

2 ρ ′
E (i, t ) according to the equilibrated setup vs the rescaled

coordinate (i − vst )t− 1
2 . In the long t cases, those for different t basically overlap each other. (d) and (e) The rescaled correlation tμ+ 3

2 ρ ′
E (i, t )

according to the nonequilibrated setup. The overlap is apparently not as good as those for the equilibrated setup.

where kx/y = 0, 1, 2, . . . , NX/Y − 1. The subscripts of ω de-
note the values of K and λ. In the thermodynamic limit
NX , NY → ∞, Eq. (17) takes a continuous form

ω̃1,0(k′
x, k′

y) = 2

√
sin2 k′

x

2
+ sin2

k′
y

2
, (18)

where k′
x, k′

y ∈ [0, 2π ). The speed of sound vs(1, 0) in any
direction (k′

x, k′
y) = (k′ cos θ, k′ sin θ ) equals

vs(1, 0) = ∂ω̃1,0(k′
x, k′

y)

∂|k′|

∣∣∣∣∣
|k′|→0

= 1, (19)
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which is orientation θ independent. Thus the sound mode
forms a circle.

When nonlinearity is present, the motion of the system is
still periodiclike [33], but with renormalized phonon frequen-
cies ωK,λ(kx, ky) that read

ωK,λ(kx, ky) = η2D(K, λ)ω1,0(kx, ky). (20)

In an equilibrium state, the renormalization factor η2D(K, λ)
should be mode independent due to the Gibbs measure, as for
the cases in 1D [33,34].

For a 1D FPU-type lattice, in which the interparticle poten-
tials take the same form as shown in Eq. (2), the renormalized
frequencies

ωK,λ(k) = η1D(K, λ)ω1,0(k). (21)

An estimation suggested via the self-consistent phonon theory
(SCPT) [35,36] and the renormalized phonon approach [37]
reads

η1D(K, λ) =
√

K + √
K2 + 12λT

2
. (22)

This agrees quite well with numerical simulations [37].
Intuitionistically speaking, in a 2D square lattice the po-

tential energy of each particle is shared by not two but four
connections. The amount in each connection is thus reduced
by half compared with the 1D lattices. As a result, the term
temperature T in Eq. (22) should also be divided by 2, i.e.,

η2D(K, λ) =
√

K + √
K2 + 6λT

2
. (23)

We will detail a more rigorous derivation of Eq. (23) in the
Appendix. Correspondingly, the speed of sound in the 2D
nonlinear lattices is expected to be

vs(K, λ) = η2D(K, λ)vs(1, 0). (24)

Since the derivation in Eq. (19) is performed in the long-
wavelength limit, we are interested more in the low-frequency
regime. In Fig. 5, the power spectra P(ω) of the lattices
with size 501 × 501 for fixed λ = 1 and various K = 0, 0.2,
0.5, and 1 are plotted. The renormalized frequency ωK,λ, i.e.,
the prediction of Eqs. (17), (20), and (23), of a few lowest-
nonzero-frequency modes [38] are also plotted as symbols
for reference. ωK,λ agrees quite well with ωnum

K,λ , which cor-
responds to the locations of the peaks of P(ω), with only a
few percents’ relative overestimation (RO). The greater the
K , i.e., the lower the relative nonlinearity, the smaller the
overestimation. The detailed values of ωnum

K,λ and ωK,λ of the
lowest-nonzero-frequency mode for each lattice, as well as
the relative overestimation, are listed in Table I, middle group
(columns 2–4).

To determine the speed of sound in the lattices numerically,
we measure the radius RS (t ) of the sound mode versus time
t [39]. RS (t ) for various K = 0, 0.2, 0.5, and 1 are plotted
in Fig. 5(b). The data follow very good straight lines. The
best fitted slopes vnum

s (K, λ) are shown in the legend. The
comparison of vnum

s (K, λ) with their expectations vs(K, λ) is
plotted in the inset and also listed in Table I, right-hand group
(columns 5–7). The agreement is quite well. The observed

FIG. 5. (a) Power spectra P(ω) (curves) for lattices with various
linear strengths K . System size NX = NY = 501. Symbols indicate
the locations of a few lowest-nonzero-frequency modes expected
by Eqs. (17), (20), and (23). Detailed values of ωK,λ of the lowest-
nonzero-frequency modes for each lattice, which are surrounded by
the dashed circle, are also listed in Table I. (b) The radius RS (t ) of the
sound modes vs time t of 2D lattices with various K (symbols). Lines
are their corresponding best linear fits, whose slopes are shown in the
legend. Inset: The speed of sound measured by numerical simulation
vnum

s (K, λ) (black stars) and the analytical expectation vs(K, λ) (red
dashed curve), vs linear strength K .

TABLE I. Renormalized phonon frequency and speed of sound
for 2D lattices with fixed λ = 1 and various K . System size
NX = NY = 501. Middle group (columns 2–4): The frequency of
the lowest-nonzero-frequency mode measured numerically ωnum

K,λ ,
expected by Eqs. (17), (20), and (23), ωK,λ, and the relative over-
estimation. Right-hand group (columns 5–7): The speed of sound
measured numerically vnum

s (K, λ), expected by Eq. (24), vs(K, λ),
and the relative overestimation.

K ωnum
K,λ ωK,λ RO vnum

s (K, λ) vs(K, λ) RO

0 0.013258 0.013879 4.7% 1.056 ± 0.002 1.107 4.8%
0.2 0.013932 0.014457 3.8% 1.117 ± 0.003 1.153 3.2%
0.5 0.014980 0.015360 2.5% 1.192 ± 0.002 1.225 2.8%
1.0 0.016703 0.016932 1.4% 1.325 ± 0.002 1.350 1.9%
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FIG. 6. The MSD of the diffusion σ 2(t ) vs time t for fixed λ = 1
and various K = 0, 0.2, 0.5, and 1. To present the finite-size effects,
the results for smaller 451 × 451 lattices (solid symbols) are also
plotted for comparison. In the observed regime, they follow the
power-law divergence quite well.

few percents’ relative overestimation can be mostly attributed
to the above-mentioned overestimation of the renormalized
frequencies.

D. Mean-square displacement of the energy diffusion and the
connection to the global heat current autocorrelation

Finally, we check the general relation between heat con-
duction and energy diffusion. It is proposed that the global
heat current autocorrelation

CJJ (t ) ≡ lim
N→∞

1

N
〈J (t0)J (t0 + t )〉t0 (25)

is generally connected with the MSD of the spatiotemporal
correlation of local energy density σ 2(t ) by [20]

d2

dt2
σ 2(t ) = 2CJJ (t )

kBT 2cv

, (26)

where cv denotes the specific volumetric heat capacity. Such
a connection is rigorous for 1D systems with symmetric in-
terparticle interactions and the derivations can be directly
extended to 2D.

For 2D momentum-conserving nonlinear lattices, it is ex-
pected by both the renormalization group analysis and the
mode-coupling theory that CJJ (t ) ∼ t−1, which implies a
logarithmically divergent heat conductivity κ . Numerical sim-
ulations for the 2D PQ lattice well confirm it. Considering
that, for the FPU-β lattice, the finite-size effects are much
more serious, thus in a quite long regime CJJ (t ) still follows a
much slower decay CJJ (t ) ∼ t−0.75, which indicates a power-
law divergence of κ ∼ L0.25 [23]. According to Eq. (26), the
above results imply that the MSD of the energy diffusion
σ 2(t ) should follow, in similar timescales and space scales,
t ln t and t1.25 for the 2D PQ and FPU-β lattices, respectively.
In Fig. 6, our direct numerical calculation of σ 2(t ), which is
defined in Eq. (6), is plotted. Quite surprisingly, σ 2(t ) follows
a very clear power law t1.35 for the PQ lattice, and t1.5 for

the FPU-β lattice. These power exponents are qualitatively
consistent with the values 1.269 and 1.509 that are measured
for the PQ and the FPU-β lattices with vector displacements
[19]. However, compared with the above expectations, the
numerically measured divergence of σ 2(t ) shown in Fig. 6
is much faster for both lattices. We attribute the noticeable
discrepancy to the finite-size effects and still believe that in a
much longer timescale and a much larger size scale the t ln t
growth of σ 2(t ) would finally emerge, given the observation
in Fig. 6 that all the curves are still bending down slowly.
However, it is far beyond our current computational ability
to confirm it.

IV. SUMMARY AND DISCUSSION

Energy diffusion in a few 2D FPU-type momentum-
conserving nonlinear lattices with various linear strengths is
studied via the equilibrium local energy spatiotemporal cor-
relation. The diffusion propagator consists of a bell-shaped
central heat mode and a sound mode extending with a con-
stant speed of sound vs. If the energy carriers are regarded
as random walkers, then the evolution of the propagator can
be well governed by a random-walk-with-velocity-fluctuation
process, in which the duration times τ for each walk satisfy a
power-law distribution (τ/τ0)−μ−1 with μ ∈ (1, 2). The pro-
file of the heat mode, including the central part and the tail,
fits quite exactly a Lévy stable distribution with an index μ,
where μ = 1.738 and 1.834 for the PQ and the FPU-β lattices,
respectively. Both values are evidently lower than 2, implying
a superdiffusion. The profile of the sound mode also fits the
scaling that is expected by an equilibrated setup, i.e., its height
decays as t−(μ+ 1

2 ) and its dispersion grows as t
1
2 . Because

the studied lattices are representative 2D models with strong
nonlinearity and total momentum conservation, we expect that
the random walk can well describe the energy diffusion in a
large class of 2D systems, regardless of their detailed topolo-
gies and parameters. However, the detailed properties of the
random walk such as the index μ may vary and depend on the
details of the systems. Since the time regime for the fitting is
quite short (�80 or so), we are not able to draw any convinc-
ing conclusion for the long-time limit. It is also revealed that
the profile of the cross section of the sound mode is apparently
not single peaked. Two peaks are observed. Further in-depth
studies need to be done before we can confirm its generality
and make sure whether the two peaks are two separate sound
modes or a part of an even more complicated structure.

We have also extended the renormalized phonon approach
to the 2D lattices. By minimizing an upper bound of the free
energy of a nonlinear lattice, we are able to work out an
estimation of the speed of sound vs analytically. Compared
with the direct numerical measurements, there exists only a
few percents’ overestimation. This fact strongly supports that
just as in the 1D lattice [29], phonons are still the dominant
energy carriers in these 2D nonlinear lattices.

An unexpected observation also appears. The theoretical
prediction is that the global heat current autocorrelation CJJ (t )
in 2D momentum-conserving nonlinear lattices decays as t−1.
Our previous study has confirmed it for a 2D PQ lattice,
although for a 2D FPU-β lattice the decay is slower due
to the finite-size effects [23]. It is then naturally expected,
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based on the general connection Eq. (26), that the MSD of the
energy diffusion σ 2(t ) diverges as t ln t , at least for the 2D PQ
lattice. However, power-law superdiffusivity is still observed
clearly in our numerical simulation, i.e., σ 2(t ) ∼ tβ and β is
noticeably greater than 1, which indicates clear discrepancies
between the observation and the expectation. We have to say
that the finite-size effects are very strong and robust and their
influences on the energy diffusion are even much greater than
on the heat conduction. The sizes of the systems for the simu-
lations are still far from enough, thus the asymptotic behaviors
cannot be well displayed. Simulations on many times larger
sizes and longer timescales might be required, which is far
beyond our current computation capability.

To understand the thermal transport in 2D systems is
of apparent theoretical interests [40]. Recent progress in
nanotechnology has also enabled us to measure experimen-
tally the size dependence of the thermal conductivity in
2D nanoscale materials [41–44]. Our study may deepen
the understanding of the energy diffusion process in high-
dimensional materials and also help in fabricating the building
blocks of nanoscale phononics devices [45].
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APPENDIX: RENORMALIZED PHONON FREQUENCIES
AND SOUND SPEED OF THE 2D NONLINEAR LATTICES

In this Appendix we extend an effective phonon approach
to 2D and work out an estimation of the renormalized fre-
quencies. The derivation basically follows the framework that
is proposed in Refs. [37,46].

The renormalized Hamiltonian of the original one in
Eq. (1) reads

H0 =
NX∑
i=1

NY∑
j=1

[
1

2
u̇2

i, j + η2
2D

2

(
�x2

i, j + �y2
i, j

)]
, (A1)

where �xi, j ≡ ui, j − ui−1, j and �yi, j ≡ ui, j − ui, j−1. The pa-
rameters of η2D, K and λ, are omitted in this Appendix for
simplicity. The partition function for the renormalized 2D
lattice reads

Z0 =
∫

e− 1
kBT H0 d �ud �̇u

=
NX∏
i=1

NY∏
j=1

∫∫
e− 1

kBT [ 1
2 u̇2

i, j+
η2

2D
2 (�x2

i, j+�y2
i, j )]dui, jdu̇i, j

=
(√

2πkBT

η2D

)N

, (A2)

where �u and �̇u are short for the products of all the coordinates
and their time derivatives, respectively. N ≡ NX × NY denotes
the total particle number, as has been defined in the main text.
The corresponding Helmholtz free energy

F0 = −kBT ln Z0 = −NkBT ln

√
2πkBT

η2D
. (A3)

The free energy F of the nonlinear lattice satisfies [47]

F � F0 + 〈H − H0〉H0 , (A4)

where 〈·〉H0 denotes the ensemble average with respect to the

canonical measure e− 1
kBT H0 ,

〈H − H0〉H0

=
∫

(H − H0)d �ud �̇u
Z0

=
NX∑
i=1

NY∑
j=1

∫ K−η2
2D

2

(
�x2

i, j + �y2
i, j

)
e− 1

kBT

η2
2D
2 (�x2

i, j+�y2
i, j )dui, j∫

e− 1
kBT

η2
2D
2 (�x2

i, j+�y2
i, j )dui, j

+
NX∑
i=1

NY∑
j=1

∫
λ
4

(
�x4

i, j + �y4
i, j

)
e− 1

kBT

η2
2D
2 (�x2

i, j+�y2
i, j )dui, j∫

e− 1
kBT

η2
2D
2 (�x2

i, j+�y2
i, j )dui, j

= NkBT

8η4
2D

(−4η4
2D + 4Kη2

2D + 3λkBT
)
. (A5)

To find the value of η2D that minimizes the upper bound of F ,
i.e., the right-hand side of Eq. (A4), let

∂ (F0 + 〈H − H0〉H0 )

∂η2
2D

= NkBT

4η6
2D

(
2η4

2D − 2Kη2
2D − 3λkBT

) = 0. (A6)

Then the physically relevant root

η2D =
√

K +
√

K2 + 6λkBT

2
(A7)

reproduces Eq. (23), in which kB has been set to unity.
On the other hand,

F � F0 + 〈H − H0〉H , (A8)

where 〈·〉H denotes the ensemble average with respect to the

canonical measure e− 1
kBT H . By maximizing the above lower

bound, i.e., ∂ (F0+〈H−H0〉H )
∂η2

2D
= 0, we obtain another estimation

of η2D, which reads

η2D =
√

NkBT∑NX
i=1

∑NY
j=1

〈
�x2

i, j + �y2
i, j

〉
H

=
√

kBT〈
�x2

i, j + �y2
i, j

〉
H

. (A9)

We have confirmed numerically that, similar to the case in
1D systems [37], the so obtained η2D is even more accurate.
However, since the result cannot be written in a closed form,
it has been much less widely applied, compared with the one
obtained from the upper bound of F in Eq. (A4).
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