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Master equations under appropriate assumptions are efficient tools for the study of open quantum systems.
For many-body systems, subsystems of which locally couple to thermal baths and weakly interact with each
other, the local approach provides a more convenient description than the global approach. However, these local
master equations are believed to generate inconsistencies with the laws of thermodynamics when intersubsystem
interactions exist. Here we develop an alternative local master equation by virtue of similar approximations used
in deriving the traditional Gorini-Kossakowski-Lindblad-Sudarshan master equation. In particular, we stick to
using eigenstates of each subsystem to construct quantum jump operators, and the secular approximation is also
employed to modify the intersubsystem interactions. Our results show that violations of thermodynamic laws
will be avoided after correcting intersubsystem interactions. Finally, we study a two-qubit heat transfer model
and this further shows the validity of our modified master equation.

DOI: 10.1103/PhysRevE.107.014108

I. INTRODUCTION

The theoretical description of open quantum systems is
a subject of both fundamental and practical importance. On
the one hand, quantum systems cannot be completely isolated
from the environment; on the other hand, external apparatuses
are needed to manipulate and control the quantum system
of interest. There have already been various well-established
treatments of open quantum systems [1–4], and they have
been applied to many fields, such as quantum optics [3,5],
quantum thermodynamics [6–9], quantum chemistry [10,11],
and quantum information [12,13].

For Markovian cases where memory effects of the envi-
ronment can be neglected [14–18], the Gorini-Kossakowski-
Lindblad-Sudarshan (GKLS) master equations are widely
used to describe the dynamics of quantum systems [19–25].
For quantum systems which are composed of several inter-
acting subsystems, two main approaches [26–34]—the global
approach and the local approach—are developed to describe
the time evolution. The global approach is based on eigen-
states of the whole Hamiltonian which is composed of the
Hamiltonian of each subsystem and the interaction between
subsystems. Although it is thermodynamically consistent,
those eigenstates and eigenvalues are difficult to get, espe-
cially for large-size systems. In contrast, only the eigenstates
of each individual subsystem are needed for the local ap-
proach, which holds in the weak intersubsystem coupling
regime [26]. However, the local approach was criticized for
violating the thermodynamic laws. In Refs. [35,36], the au-
thors show that the local approach will result in heat currents
spontaneously flowing from the cold bath to the hot bath,
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and thus violates the second law of thermodynamics. The
origin of this violation is found to result from the error of
approximations made in previous local treatments [37]. Re-
sorting to artificial microscopic collisional models [38–40],
one finds that after considering the extra work required to
maintain collisions, the violation of the second law can be
avoided. Sticking to physical models, rescaled Hamiltonians
are used to derive thermodynamically consistent master equa-
tions [41–43], which, in fact, are still global master equations.
In addition, Ref. [44] shows that by redefining the heat cur-
rent, the violation can also be avoided.

Here, we introduce an alternative GKLS local master equa-
tion with thermodynamical consistency. In particular, we truly
stick to the local picture, that is, we use eigenstates of each
individual subsystem to construct the quantum jump operators
and apply a local definition of the heat current. Moreover, sim-
ilar approximations as in deriving the familiar GKLS master
equation are used. Therefore, our equation shares the advan-
tage of a local approach and has a similar application scope
with the familiar GKLS master equation. The main idea of
our work is that we apply the secular approximation [3,4] to
eliminate some components of the intersubsystem interaction.
Those redundant components do not contribute to the time
evolution of the open quantum system in the weak coupling
limit, and the remaining part of the intersubsystem interac-
tion plays the role of producing transitions in the degenerate
eigensubspace of the Hamiltonian Hs = ∑n

i=1 Hi, which is the
Hamiltonian of the system without intersubsystem interac-
tions [see Eq. (1)]. In this sense, it is natural to define the local
heat current directly using the noninteracting Hamiltonian
Hs [see Eq. (12)]. Based on this definition of the local heat
current, we generally show that our modified local master
equation satisfies the first and second laws of thermodynam-
ics at the same time, and then solves the problem raised in
Refs. [35,36].
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II. THE MODIFIED LOCAL MASTER EQUATION

We begin by considering the case that a system S is com-
posed of n subsystems s1, s2, . . . , sn, which weakly interact
with each other, and each of which is weakly coupled to a bath
bi (i = 1, 2, . . . , n). Note that this is a general case for which
the local GKLS master equation is suitable. In such a scenario,
the total time-independent Hamiltonian can be written as

H =
n∑

i=1

(Hi + Hbi + αVibi ) + αHI , (1)

where Hi is the Hamiltonian of the subsystem si, Hbi is the
Hamiltonian of the bath bi, αVibi is the interaction between si

and bi, and the intersubsystem interaction is denoted as αHI ,
which may be composed of two-subsystem interactions, three-
subsystem interactions, etc. Here, α is a small dimensionless
parameter, which accounts for the weak coupling strength,
and we assume that the intersubsystem interaction and the
system-bath coupling are of the same order of magnitude.
However, we emphasize that our treatment is not restrictive
to this assumption, and the case that strengths of Vibi and HI

are different is considered in Appendix A.
The time evolution of the whole system (including baths)

is described by the von Neumann equation, which, in the
Schrödinger picture, can be written as

∂tρ(t ) = −i[H, ρ(t )]. (2)

It is easy to derive the quantum Markovian master equation in
the interaction picture, thus we transform Eq. (2) through
the unitary transformation generated by the noninteracting
Hamiltonian H0 ≡ ∑n

i=1(Hi + Hbi ). After this transformation,
Eq. (2) becomes

∂t ρ̃(t ) = −iα

[
n∑

i=1

Ṽibi (t ) + H̃I (t ), ρ̃(t )

]
, (3)

where operators in the interaction picture are defined as
Õ(t ) = eiH0t Oe−iH0t , with O being the operator in the
Schrödinger picture.

Following the standard routine, we integrate Eq. (3) once
and get

ρ̃(t ) = ρ̃(0) − iα
∫ t

0
dt ′

[
n∑

i=1

Ṽibi (t
′) + H̃I (t ′), ρ̃(t ′)

]
. (4)

Then, insert Eq. (4) into Eq. (3) and keep terms up to the
second order of the small parameter α. For scenarios where

the correlation time τb of the bath is small compared to the
relaxation time of the open system, the bath will continuously
lose the information of the connected system, and then the
Markov approximation can be used to simplify the calcula-
tion. As a result, the dependence on the past state ρ̃(t ′) can be
neglected, and one gets

∂t ρ̃(t ) = −iα[H̃int (t ), ρ̃(0)]

−α2
∫ t

0
dt ′{H̃int (t ), [H̃int (t

′), ρ̃(t )]}, (5)

where, for brevity, we let H̃int (t ) ≡ ∑n
i=1 Ṽibi (t ) + H̃I (t ). Due

to the weak coupling between the system and the bath, the
influence of the system on the bath can be neglected, and this
treatment is the so-called Born approximation. Thus, the state
of the total system can be approximately written as ρ̃(t ) ≈
ρ̃s(t ) ⊗ ∏

i τi, where ρ̃s(t ) is the reduced density matrix of the
system and τi is the stationary state of the bath bi. Note that the
system-bath coupling Vibi can be generally written as Vibi =∑

μ Aμ
i ⊗ Bμ

i [3,4], where Aμ
i and Bμ

i are Hermitian operators
of the system i and the bath bi, respectively. Taking trace over
the baths and assuming that Tr(τiB

μ
i ) = 0 [45], one arrives at

∂t ρ̃s(t ) = − iα[H̃I (t ), ρ̃s(0)]

− α2
∫ t

0
dt ′{H̃I (t ), [H̃I (t ′), ρ̃s(t )]}

− α2
∑

i

∫ t

0
dt ′Trb{Ṽibi (t ), [Ṽibi (t

′), ρ̃s(t )]}, (6)

where those cross terms, such as Trb(H̃IṼibi ρ̃ ) and
Trb(ṼibiṼjb j ρ̃ ) (i �= j), vanish due to Tr(τiB

μ
i ) = 0.

Focusing on similar circumstances with the traditional
GKLS master equation, we can further apply the secular
approximation. The resulting equation of motion will be the
generator of a completely positive and trace-preserving map.
To this end, we decompose those operators acting on the
Hilbert space of the system S in the eigenbasis of Hs ≡∑n

i=1 Hi. For instance, the decomposition of the intersubsys-
tem interaction HI can be expressed as

H̃I (t ) = eiHst HI e
−iHst =

∑
ω

e−iωt HI (ω), (7)

where HI (ω) = ∑
εn−εm=ω �(εm)HI�(εn) with �(ε) being

the projector on the eigenspace associated to the energy ε of
Hs. Substituting those interaction operators of the decompo-
sition form into Eq. (6) and doing the integration once again,
one obtains

ρ̃s(u) = ρ̃s(0) − iα
∫ u

0
dt

∑
ω

e−iωt [HI (ω), ρ̃s(0)] − α2
∫ u

0
dt

∑
ω,ω′

e−iωt {HI (ω), [HI (ω′), ρ̃s(t )]}
∫ t

0
dt ′e−iω′t ′

+α2
n∑

i=1

∫ u

0
dt

∑
ω,ω′,μ,ν

ei(ω−ω′ )t [Aμ
i (ω)ρ̃s(t )Aν†

i (ω′) − Aν†
i (ω′)Aμ

i (ω)ρ̃s(t )
]



μν
i (ω′) + H.c., (8)

where H.c. stands for the Hermitian conjugated expression, Aμ†
i (ω) = Aμ

i (−ω), and 

μν
i (ω′) is the one-sided Fourier transfor-

mation of the correlation function of the bath bi and is defined as



μν
i (ω′) =

∫ ∞

0
dt ′eiω′t ′

Tr
[
τiB

μ
i (t ′)Bν

i (0)
]
, (9)
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where we have taken the integral upper limit to infinity based on the fact that the correlation of the bath will decay rapidly [3].
In order to reveal those dominant terms, following the standard procedure for deriving the GKLS form [4], we define rescaled
times τ = αt , τ ′ = αt ′, and σ = αu. Then, Eq. (8) becomes

ρ̃s(
σ

α
) = ρ̃s(0) − i

∫ σ

0
dτ

∑
ω

e−i ω
α
τ [HI (ω), ρ̃s(0)] −

∫ σ

0
dτ

∑
ω,ω′

e−i ω
α
τ
{

HI (ω),
[
HI (ω′), ρ̃s

( τ

α

)]} ∫ τ

0
dτ ′e−i ω′

α
τ ′

+α

n∑
i=1

∫ σ

0
dτ

∑
ω,ω′,μ,ν

ei ω−ω′
α

τ
[
Aμ

i (ω)ρ̃s

( τ

α

)
Aν†

i (ω′) − Aν†
i (ω′)Aμ

i (ω)ρ̃s

( τ

α

)]



μν
i (ω′) + H.c. (10)

Taking the weak coupling limit α → 0 while keeping σ and
τ finite, those terms satisfying |ω| 	 O(α), |ω′| 	 O(α),
and |ω − ω′| 	 O(α) vanish due to the Riemann-Lebesgue
lemma [4], which states that the integration of a highly oscil-
lating function over a finite interval approaches zero. At this
stage, it is not enough to obtain the GKLS form. Thus, we
introduce further assumptions: |ω| 	 O(α) and |ω − ω′| 	
O(α), which, roughly speaking, means our equation holds for
scenarios where the energy spectrum of Hs is sparse. Then,
in the first and second lines of Eq. (10), only the ω = 0 and
ω′ = 0 contributions should be kept, and in the third line
of Eq. (10), only the ω = ω′ contributions should be kept.
This treatment is usually known as the secular approximation
[3,4]. Different from other derivations of GKLS-form master
equations, here the secular approximation is used to treat not
only the system-bath coupling but also the intersubsystem
interaction.

Finally, returning back to the original time variable (u, t, t ′)
and turning to the differential equation in the Schrödinger
picture, one obtains (see Appendix A for more details)

∂tρs = −i[Hs + α2HLS + αHI (0), ρs] + α2
n∑

i=1

Di[ρs], (11)

where HI (0) ≡ HI (ω = 0), and

HLS =
∑

i,ω,μ,ν

Sμν
i (ω)Aμ

i (ω)Aν†
i (ω),

Di[ρs] =
∑
ω,μ,ν

γ
μν
i (ω)Aμ

i (ω)ρsA
ν†
i (ω)

− 1

2

∑
ω,μ,ν

γ
μν
i (ω)

{
Aν†

i (ω)Aμ
i (ω), ρs

}

are the Lamb shift and the dissipation operator of the subsys-
tem si, respectively. Here, we have let 


μν
i (ω) = 1

2γ
μν
i (ω) +

iSμν
i (ω). Equation (11) is the modified local master

equation that we derived. One notes that this equation is still
in the GKLS form and only the intersubsystem interaction is
modified. In the next part, we will generally show that this
equation satisfies the first law and second law of thermody-
namics at the same time.

Here, we end this part with some notes about the modified
master equation. (i) In the derivation of our modified master
equation, we apply similar approximations as one did in deriv-
ing the traditional GKLS master equation—the second-order
approximation, the Born-Markov approximation, and the sec-

ular approximation. One key difference is that the secular
approximation is also applied to modify the intersubsystem
interaction here. Hence, in addition to |ω − ω′| 	 O(α), the
secular approximation imposes another constraint for our
equation, that is, those nonzero energy gaps of each subsystem
should be larger than the coupling coefficient α [|ω| 	 O(α)].
Since we apply similar approximations as the familiar GKLS
master equation, it is reasonable that there are no contradic-
tions between these approximations in our derivation, and our
equation is valid for scenarios which satisfy the corresponding
constraints imposed by those approximations. (ii) In order to
use the secular approximation, we decompose operators in
the eigenbasis of Hs. This makes the sparse spectrum con-
dition [|ω| 	 O(α) and |ω − ω′| 	 O(α)] stricter because
intuitively the spectrum of Hs will be quite dense for large
n (the number of subsystems) even though the spectrum of
each subsystem is sparse. However, the decomposition basis
will actually reduce to the eigenbasis of the Hamiltonian
of several subsystems and the corresponding spectrum will
be sparser. For example, the decomposition basis of Aμ

i in
the system-bath coupling will reduce to the eigenbasis of
Hi, and this also reflects the local feature of our equation.
(iii) In order to eliminate those terms that satisfy |ω| 	
O(α), |ω′| 	 O(α), and |ω − ω′| 	 O(α) in Eq. (10), we
take the weak coupling limit α → 0 while keeping σ finite.
The finite σ implies that O(α) 
 σ 
 O(1/α), or else the
Riemann-Lebesgue lemma can no longer be applied in the
weak coupling limit (as the integration interval is not fi-
nite when we take α → 0). Therefore, the working timescale
of Eq. (11) should be max{O(1),O(τb)} 
 t 
 O(1/α2),
where τb is provided by the Markov approximation. One
should note that the traditional GKLS master equation has
a similar working timescale as well, which is also generated
by the secular approximation and the Markov approximation.
(iv) In Eq. (11), we express the contribution of HI through
the commutator [αHI (0), ρs]. Following the procedure in
Eqs. (3)–(5) and up to α2, it is equivalent with the contribution
of HI in Eq. (10) (modified by the secular approximation). As
HI (0) = ∑

ε �(ε)HI�(ε), we know that the effect of HI (0) is
producing transitions between energy levels in the degenerate
eigensubspace of Hs. (v) In the weak coupling limit, the order
of magnitude of the energy shift resulting from the Lamb shift
α2HLS is O(α2), while the sparse spectrum condition requires
that the energy gap ω should satisfy |ω| 	 O(α). Therefore,
the contribution of the Lamb shift to the energy level can be
safely ignored for those cases to which our modified local
master equation is applicable.
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III. THERMODYNAMICAL CONSISTENCY

We then show that our local master equation is si-
multaneously consistent with the first and second laws of
thermodynamics. In the following discussions, the Lamb shift
is ignored, as mentioned above.

One notes that after doing the secular approximation, the
weak intersubsystem interaction produces transitions in the
degenerate eigensubspace of Hs. In this sense, the local heat
current should come from the transition between energy levels
of Hs. Thus, it is natural to define the local heat current flowing
from bath bi to the system as

Q̇i = α2Tr{HsDi[ρs(t )]}. (12)

This definition is also used in Refs. [38,46]. Since the tran-
sition in the degenerate eigensubspace does not cost extra
energies, for a system without external power, the dynamical
version of the first law can be expressed as

Ės =
n∑

i=1

Q̇i, (13)

where

Ės = d

dt
Tr[Hsρs(t )] (14)

is the change rate of the internal energy. We now show that
Eq. (13) (the first law of thermodynamics) holds for our mod-
ified local master equation.

Using the local master equation (11) and ignoring the
Lamb shift, the left-hand side of Eq. (13) will be

Ės = Tr{−iHs[Hs + αHI (0), ρs]} + α2
n∑

i=1

Tr(HsDi[ρs])

=
n∑

i=1

Q̇i, (15)

which proves Eq. (13). Note that in the third equality, we have
used the equation Tr{Hs[Hs + αHI (0), ρs]} = 0.

For the entire setup that contains the baths and the subsys-
tems, the second law of thermodynamics can be described by
the irreversible entropy production,

dS

dt
−

n∑
i=1

βiQ̇i � 0, (16)

where βi denotes the inverse temperature of the bath bi, and
S = −Tr(ρs ln ρs) [12] is the entropy of the system S. In the
following, we will show how to produce Eq. (16) from our
modified local master equation. The derivations are similar to
those in Ref. [44].

According to the definition of the entropy S and the local
master equation (11), the time derivative of S can be expressed
as

dS

dt
= −Tr(L[ρs] ln ρs), (17)

where L is the Liouvillian superoperator and defined as

L[ρs] = −i[Hs + αHI (0), ρs] + α2
n∑

i=1

Di[ρs]. (18)

We further introduce a partial superoperator L′,

L′[ρs] = −i[Hs, ρs] + α2
n∑

i=1

Di[ρs]. (19)

Note that τs = ∏
i exp(−βiHi )/Z , with Z being the partition

function, is the steady state of the partial superoperator L′,
that is, L′[τs] = 0. Applying the Spohn’s inequality [47] to
the partial superoperator L′, one gets

−Tr(L′[ρs] ln ρs) � −Tr(L′[ρs] ln τs). (20)

Inserting the explicit expression of τs into the right-hand side
of Eq. (20), one has

−Tr(L′[ρs] ln τs) = α2
n∑

i=1

βiTr(HsDi[ρs])

=
n∑

i=1

βiQ̇i. (21)

The left-hand side of Eq. (20) can be rewritten as

− Tr(L′[ρs] ln ρs)

= −Tr(L′[ρs] ln ρs) + iTr{[αHI (0), ρs] ln ρs}
= −Tr(L[ρs] ln ρs)

= dS

dt
, (22)

where, in the second equality, we have used the iden-
tity Tr{[HI (0), ρs] ln ρs} = 0. Combining Eqs. (20)–(22), the
second law of thermodynamics, given by Eq. (16), can be
obtained. And thus, we recover the thermodynamical consis-
tency in our local master equation.

IV. TWO-QUBIT HEAT TRANSFER MODEL

As an example of our local master equation, we consider a
two-qubit heat transfer network [26,31,43]. This model con-
tains two qubits, each of which couples to a large bosonic bath
with temperature Ti (i = 1, 2). The total Hamiltonian reads

H = Hs + αHI +
2∑

i=1

(Hbi + αVibi ), (23)

where Hs = (E1σ
z
1 + E2σ

z
2 )/2 is the bare Hamiltonian of the

two qubits, αHI = ασ x
1 σ x

2 is the weak intersubsystem inter-
action, Hbi = ∫ ∞

0 dω ωa†
i (ω)ai(ω) is the Hamiltonian of large

baths bi, and αVibi = ∫ ∞
0 dωαhi(ω)σ x

i [a†
i (ω) + ai(ω)] is the

weak coupling between qubit i and bath bi. ω is the energy
of bosonic modes in the baths, αhi(ω) is the coupling func-
tion, and ai(ω) denotes the bosonic annihilation operator. For
energies of the two qubits, E1 and E2, one can always tune
them into the regime satisfying the sparse spectrum condition.
Therefore, this example is a suitable platform to apply the
second-order approximation, the Born-Markov approxima-
tion, and the secular approximation, and thus our equation can
be used to treat this model.

For the case that E1 = E2 ≡ E , {|10〉 , |01〉} in the basis of
σ z is a degenerate eigensubspace of the Hamiltonian Hs. Thus,
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the intersubsystem interaction HI will be modified to be

HI (0) = σ+
1 ⊗ σ−

2 + σ−
1 ⊗ σ+

2 , (24)

where σ± = (σ x ± iσ y)/2.
Here, we study the behavior of the steady state in this

model through our modified local master equation. Note that
in the steady state, Eq. (11) becomes

0 = −i[Hs + αHI (0), ρss] + α2
2∑

i=1

Di[ρss], (25)

where ρss is the density matrix of the steady state, the Lamb
shift has been ignored, the condition that Tr(τiB

μ
i ) = 0 is

satisfied, and Di[ρss] reads

Di[ρss]=2πh2
i (Ei )[ni(Ei )+1]

[
σ−

i ρssσ
+
i − 1

2 {σ+
i σ−

i , ρss}
]

+ 2πh2
i (Ei )ni(Ei )

[
σ+

i ρssσ
−
i − 1

2 {σ−
i σ+

i , ρss}
]
,

(26)

where ni(ω) = 1/(eβiω − 1) is the Bose-Einstein distribution
of the bosonic bath.

Combining Eqs. (25) and (26), the steady state can be
obtained. And then using Eq. (12), one can get the heat current
flowing from the bath b1 to the qubits, that is,

Q̇1 = eβ2E − eβ1E

(eβ1E + 1)(eβ2E + 1)
F , (27)

where F is a positive function. The heat current flowing from
bath b2 to the qubits can be derived in a similar way and
can be expressed as Q̇2 = −Q̇1. Since Q̇1 + Q̇2 = 0 and the
change rate of the internal energy is zero, it is obvious that
the first law of thermodynamics is satisfied. One also finds
that when β1 < β2, Q̇1 > 0 and Q̇2 < 0, which means that the
heat current flows from the hot bath to the system, and then
to the cold bath. This process conforms to the second law of
thermodynamics.

As for E1 �= E2, the intersubsystem interaction dose not
contribute to the local master equation, and then it reduces
to two separated local master equations—one for the qubit
1 and the bath b1 and one for the qubit 2 and the bath b2. In
the steady state, Q̇1 = Q̇2 = 0, which means no heat current
exists between these two baths. This case is also consistent
with the second law of thermodynamics, as now two baths are
disconnected.

This result can be interpreted through the following pic-
ture. In the local approach, subsystems are localized and
do not form collective modes, thus the weak intersubsys-
tem interaction can be regarded as external operations but
without implementers. As implementers do not exist, those
fake external operations can be implemented only if they do
not cost extra work. This is similar to the idea of a self-
contained refrigerator (not requiring external sources of work)
[46]. Therefore, only HI (0), which produces transitions in the
degenerate subspace, will contribute to the evolution. Since
now those unphysical processes encoded in HI (ω �= 0) are
excluded, it is obvious that the second law of thermodynamics
will not be violated.

V. CONCLUSION

In this work, we have presented an approach to derive an al-
ternative thermodynamically consistent local master equation,
which works when the spectrum condition and the timescale
condition are satisfied. Based on a concise and natural defini-
tion of the heat current, we generally prove that the modified
local master equation fulfills the first and second laws of ther-
modynamics at the same time. This good property suggests
that our modified local master equation may be a more suit-
able method to deal with weak-interacting systems, especially
when the thermodynamic properties of open quantum systems
are considered.
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APPENDIX A: DETAILS ABOUT THE DERIVATION OF THE MODIFIED LOCAL MASTER EQUATION

In this section, we show more details about the derivation of our modified local master equation and discuss the case in which
strengths of the system-bath coupling and the intersubsystem interaction are different.

Here, we consider a more general time-independent Hamiltonian of the total system,

H =
n∑

i=1

(Hi + Hbi + βVibi ) + αHI , (A1)

where α and β are different interaction strength, but both in the weak coupling regime. In the interaction picture, after doing
the second-order approximation with respect to α, β and the Born-Markov approximation as we discussed in the main text, one
arrives at Eq. (6) in the main text, and we also show it here:

∂t ρ̃s(t ) = −iα[H̃I (t ), ρ̃s(0)] − α2
∫ t

0
dt ′{H̃I (t ), [H̃I (t ′), ρ̃s(t )]} − β2

∑
i

∫ t

0
dt ′Trb{Ṽibi (t ), [Ṽibi (t

′), ρ̃s(t )]}. (A2)
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In the derivation, one will encounter cross terms, such as Trb(H̃IṼibi ρ̃ ) and Trb(ṼibiṼjb j ρ̃) (i �= j). Here we briefly show how they
vanish due to Tr(τiB

μ
i ) = 0,

Trb[Ṽibi (t )H̃I (t ′)ρ̃(t )] = Trb

⎡
⎣∑

μ

Ãμ
i (t ) ⊗ B̃μ

i (t )H̃I (t ′)ρ̃s(t ) ⊗
∏

j

τ j

⎤
⎦

=
∑

μ

Ãμ
i (t )H̃I (t ′)ρ̃s(t ) ·

∏
j �=i

Trb j (τ j ) · Trbi

[
τiB̃

μ
i (t )

]

=
∑

μ

Ãμ
i (t )H̃I (t ′)ρ̃s(t ) ·

∏
j �=i

Trb j (τ j ) · Trbi

[
τiB

μ
i

]
= 0, (A3)

where the third equality is due to the fact that τi is a stationary state of the bath bi, that is, [Hbi , τi] = 0. Other cross terms can be
calculated in a similar way.

To ensure that the equation of motion is the generator of a completely positive and trace-preserving map, we further apply the
secular approximation. To this end, we decompose those operators acting on the Hilbert space of the system S in the eigenbasis
of Hs ≡ ∑n

i=1 Hi [see Eq. (7)]. One notes that the decomposition basis, which is formed by the eigenstates of Hs, will reduce to
eigenstates of each subsystem, that is, eigenstates of Hi. Thus, our master equation is indeed a local approach.

Substituting those interaction operators of the decomposition form into Eq. (A2) and doing the integration once again, one
obtains

ρ̃s(u) = ρ̃s(0) − iα
∫ u

0
dt

∑
ω

e−iωt [HI (ω), ρ̃s(0)] − α2
∫ u

0
dt

∑
ω,ω′

e−iωt {HI (ω), [HI (ω′), ρ̃s(t )]}
∫ t

0
dt ′e−iω′t ′

+β2
n∑

i=1

∫ u

0
dt

∑
ω,ω′,μ,ν

ei(ω−ω′ )t[Aμ
i (ω)ρ̃s(t )Aν†

i (ω′) − Aν†
i (ω′)Aμ

i (ω)ρ̃s(t )
]



μν
i (ω′) + H.c. (A4)

Following the standard procedure for deriving the GKLS form [4], we define rescaled times τ = αt , τ ′ = αt ′, and σ = αu. We
have assumed that α > β and one can treat the α < β case similarly. Then, Eq. (A4) becomes

ρ̃s

(σ

α

)
= ρ̃s(0) − i

∫ σ

0
dτ

∑
ω

e−i ω
α
τ [HI (ω), ρ̃s(0)] −

∫ σ

0
dτ

∑
ω,ω′

e−i ω
α
τ
{

HI (ω),
[
HI (ω′), ρ̃s

( τ

α

)]} ∫ τ

0
dτ ′e−i ω′

α
τ ′

+ β2

α

n∑
i=1

∫ σ

0
dτ

∑
ω,ω′,μ,ν

ei ω−ω′
α

τ
[
Aμ

i (ω)ρ̃s

( τ

α

)
Aν†

i (ω′) − Aν†
i (ω′)Aμ

i (ω)ρ̃s

( τ

α

)]



μν
i (ω′) + H.c. (A5)

Taking the weak coupling limit α → 0 while keeping σ and τ finite, those terms satisfying |ω| 	 O(α), |ω′| 	 O(α), and
|ω − ω′| 	 O(α) vanish due to the Riemann-Lebesgue lemma [4]:

Lemma 1. Let f (t ) be integrable in a finite interval [a, b], then

lim
x→∞

∫ b

a
dt eixt f (t ) = 0.

In the main text, we introduce further assumptions: |ω| 	 O(α) and |ω − ω′| 	 O(α). Then, in the first and second lines of
Eq. (A5), only the ω = 0 and ω′ = 0 contributions should be kept, and in the third line of Eq. (A5), only the ω = ω′ contributions
should be kept.

After the secular approximation, one arrives at

ρ̃s

(σ

α

)
= ρ̃s(0) − i

∫ σ

0
dτ [HI (0), ρ̃s(0)] −

∫ σ

0
dτ

{
HI (0),

[
HI (0), ρ̃s

( τ

α

)]} ∫ τ

0
dτ ′ · 1

+ β2

α

n∑
i=1

∫ σ

0
dτ

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s

( τ

α

)
Aν†

i (ω) − Aν†
i (ω)Aμ

i (ω)ρ̃s

( τ

α

)]



μν
i (ω) + H.c. (A6)

By defining rescaled times, we connect the energy gaps with the coupling strength and reveal the dominant terms for the
evolution. This treatment is analogous to the regularization procedure in eliminating infinity in quantum field theory. Returning
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back to the original times, we have

ρ̃s(u) = ρ̃s(0) − iαu[HI (0), ρ̃s(0)] − α2
∫ u

0
dtt[HI (0), [HI (0), ρ̃s(t )]]

+β2
n∑

i=1

∫ u

0
dt

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s(t )Aν†
i (ω) − Aν†

i (ω)Aμ†
i (ω)ρ̃s(t )

]



μν
i (ω) + H.c..

Rewriting the above equation in the differential form, we have

∂t ρ̃s(t ) = −iα[HI (0), ρ̃s(0)] − α2t{HI (0), [HI (0), ρ̃s(t )]}

+ β2
n∑

i=1

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s(t )Aν†
i (ω) − Aν†

i (ω)Aμ
i (ω)ρ̃s(t )

]



μν
i (ω) + H.c.

= −iα[HI (0), ρ̃s(0)] − α2
∫ t

0
dt1{HI (0), [HI (0), ρ̃s(t )]}

+ β2
n∑

i=1

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s(t )Aν†
i (ω) − Aν†

i (ω)Aμ
i (ω)ρ̃s(t )

]



μν
i (ω) + H.c. (A7)

This equation can be further approximated as

∂t ρ̃s(t ) = −iα[HI (0), ρ̃s(t )] + β2
n∑

i=1

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s(t )Aν†
i (ω) − Aν†

i (ω)Aμ
i (ω)ρ̃s(t )

]



μν
i (ω) + H.c. (A8)

The error of this treatment is about O(α3). As the leading order of HI is O(α), O(α3) errors have very limited contributions.
We now prove that Eq. (A8) differs from Eq. (A7) up to O(α3). Integrating Eq. (A8) once, one gets

ρ̃(t ) = ρ̃s(0) − iα
∫ t

0
dt ′[HI (0), ρ̃s(t

′)] + β2
n∑

i=1

∑
ω,μ,ν

∫ t ′

0
dt ′[Aμ

i (ω)ρ̃s(t
′)Aν†

i (ω) − Aν†
i (ω)Aμ

i (ω)ρ̃s(t
′)
]



μν
i (ω) + H.c. (A9)

Substituting this into [HI (0), ρ̃s(t )] in Eq. (A8) and keeping terms up to α2, one has

∂t ρ̃s(t ) = −iα[HI (0), ρ̃s(0)] − α2
∫ t

0
dt ′{HI (0), [HI (0), ρ̃s(t

′)]}

+ β2
n∑

i=1

∑
ω,μ,ν

[
Aμ

i (ω)ρ̃s(t )Aν†
i (ω) − Aν†

i (ω)Aμ
i (ω)ρ̃s(t )

]



μν
i (ω) + H.c. (A10)

The Markov approximation thus leads to Eq. (A7).
Finally, letting 


μν
i (ω) = 1

2γ
μν
i (ω) + iSμν

i (ω) and then returning to the Schrödinger picture, Eq. (A8) becomes

∂tρs = −i
[
Hs + β2HLS + αHI (0), ρs

] + β2
n∑

i=1

Di[ρs]. (A11)

We thus obtain the modified local master equation for α �= β, and it is in the same form as Eq. (11) in the main text.

APPENDIX B: STEADY STATE OF THE PARTIAL LIOUVILLIAN SUPEROPERATOR

In this section, we show that τs = ∏
i exp(−βiHi )/Z is the steady state of the partial Liouvillian superoperator L′. Before

rigorously proving this statement, we first provide a physical interpretation. When the system is in contact with a bath,
temperatures of the system and the bath will reach the same value. At this time, the steady state of the system will be the
thermal equilibrium state. This is similar to the derivation of the canonical ensemble in statistical mechanics.

We now provide a brief proof to illustrate this. In order to show that τs = ∏
i exp(−βiHi )/Z is the steady state of L′, we need

to show L′(τs) = 0. Since τs commutes with Hs = ∑
i Hi, that is, [Hs, τs] = 0, we just need to prove∑

ω,μ,ν

γ
μν
i (ω)

{
Aμ

i (ω)τsA
ν†
i (ω) − 1

2

[
Aν†

i (ω)Aμ
i (ω), τs

]} = 0. (B1)

Since ω and −ω appear in pairs, Eq. (B1) then reduces to∑
ω,μ,ν

{
γ

μν
i (ω)Aμ

i (ω)τsA
ν†
i (ω) − 1

2
γ

μν
i (−ω)

[
Aν†

i (−ω)Aμ
i (−ω), τs

]} = 0. (B2)
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Given that τs = ∏
i exp(−βiHi )/Z, Eq. (B2) can further reduce to∑

ω,μ,ν

{
γ

μν
i (ω)Aμ

i (ω)e−βiHi Aν†
i (ω) − 1

2
γ

μν
i (−ω)

[
Aν†

i (−ω)Aμ
i (−ω), e−βiHi

]} = 0. (B3)

Substituting Aμ
i (ω) = ∑

εn−εm=ω �(εm)Aμ
i �(εn) into the first term, one will get

γ
μν
i (ω)Aμ

i (ω)e−βiHi Aν†
i (ω) = γ

μν
i (ω)

∑
εn−εm=ω

�(εm)Aμ
i �(εn)e−βiHi

⎡
⎣ ∑

ε′
n−ε′

m=ω

�(ε′
n)Aν

i �(ε′
m)

⎤
⎦

= γ
νμ
i (−ω)eβiω

∑
εn−εm=ω

∑
ε′

n−ε′
m=ω

�(εm)Aμ
i �(εn)e−βiHi�(ε′

n)Aν
i �(ε′

m)

= γ
νμ
i (−ω)eβiω

∑
εn−εm=ω

∑
εn−ε′

m=ω

e−βiεn�(εm)Aμ
i �(εn)�(εn)Aν

i �(ε′
m), (B4)

where the second equality is due to the detailed balance condition: γ
μν
i (ω) = γ

νμ
i (−ω)eβiω [3,48]. Similarly, the second term in

Eq. (B3) becomes

1

2
γ

μν
i (−ω)

{
Aν†

i (−ω)Aμ
i (−ω), e−βiHi

} = γ
μν
i (−ω)

∑
εn−εm=ω

∑
εn−ε′

m=ω

e−βi (εn−ω)�(εm)Aν
i �(εn)�(εn)Aμ

i �(ε′
m). (B5)

Together with Eq. (B4), we have∑
μ,ν

γ
μν
i (ω)Aμ

i (ω)e−βiHi Aν†
i (ω) − 1

2

∑
μ,ν

γ
μν
i (−ω)

{
Aν†

i (−ω)Aμ
i (−ω), e−βiHi

}

=
∑
μ,ν

γ
νμ
i (−ω)eβiω

∑
εn−εm=ω

∑
εn−ε′

m=ω

e−βiεn�(εm)Aμ
i �(εn)�(εn)Aν

i �(ε′
m)

−
∑
μ,ν

γ
μν
i (−ω)

∑
εn−εm=ω

∑
εn−ε′

m=ω

e−βi (εn−ω)�(εm)Aν
i �(εn)�(εn)Aμ

i �(ε′
m)

=
∑
μ,ν

∑
εn−εm=ω

∑
εn−ε′

m=ω

γ
μν
i (−ω)e−βi (εn−ω)

[
�(εm)Aν

i �(εn)Aμ
i �(ε′

m) − �(εm)Aν
i �(εn)Aμ

i �(ε′
m)

]

= 0. (B6)

Therefore, Eq. (B3) and then Eq. (B2) can be proved.
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