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Reconciling nonlinear dissipation with the bilinear model of two Brownian particles
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The Brownian motion of a single particle is a paradigmatic model of the nonequilibrium dynamics of
dissipative systems. In the system-plus-reservoir approach, one can derive the particle’s equations of motion
from the reversible dynamics of the system coupled to a bath of oscillators representing its thermal environment.
However, extending the system-plus-reservoir approach to multiple particles in a collective environment is
not straightforward, and conflicting models have been proposed to that end. Here, we set out to reconcile
some aspects of the nonlinear and the bilinear models of two Brownian particles. We show how the nonlinear
dissipation originally derived from exponential system-reservoir couplings can alternatively be obtained from
the bilinear Lagrangian, with a modified spectral function that explicitly depends on the distance between the
particles. We discuss applications to the contexts of anomalous diffusion and of hydrodynamic interactions. Our
results thus broaden the applicability of the bilinear model.
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I. INTRODUCTION

The Brownian motion is a representative example of
nonequilibrium dissipative dynamics. Theoretically, the ir-
reversible dynamics of a subsystem can emerge from a
reversible dynamics of the global system. To achieve that,
one way is to phenomenologically model the particle’s en-
vironment as a set of independent oscillators, each linearly
coupled to the system of interest. This is the so-called system-
plus-reservoir approach. By tuning the spectral function,
which determines the weight of each frequency mode on the
particle’s dissipation rate, one can recover experimental ob-
servations. This framework has proven useful across classical
and quantum domains [1-3].

Let us consider two particles immersed in the same bath.
This can be relevant, for instance, when environment-induced
effects on multiple degrees of freedom are being investigated,
as in the cases of biologically inspired problems [4,5], of
non-Markovianity [6], of synchronization [7] and of quantum
entanglement [8—11], to name a few. One way to address this
problem is to employ the so-called bilinear model, which as-
sumes that each particle is linearly coupled to the same set of
oscillators [4,6,7,9,10,12,13]. However, such a bilinear cou-
pling may lead to unphysical results, namely, the free-particle
motion of the relative coordinate, and the absence of mutual
effects between proximal particles, as pointed out by Duarte
and Caldeira [14]. To solve these issues, a nonlinear model for
the system-environment couplings has been devised, which
not only recovers the well-known single-particle case, but also
predicts dissipation rates that are nonlinear functions of the
distance between the pair of Brownian particles [14].
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Despite the successes of the nonlinear model for two
Brownian particles, the bilinear approach has its merits. Ex-
perimentally, it can yield correct results, as in the case of a
recent demonstration of environment-induced entanglement
in the optical domain [15]. Theoretically, linearity allows the
model to be exactly solvable in the quantum and the classical
regimes, making it a desirable tool. We highlight the method
recently developed by Weiderpass and Caldeira to charac-
terize entropy production by a quantum Brownian particle
[16]. The ansatz proposed in Ref. [16] is strongly relying on
the linearity of the model employed. Extending Weiderpass
and Caldeira’s ansatz to multiple quantum Brownian particles
could contribute to the field of far-from-equilibrium thermo-
dynamics of quantum many-body dissipative systems [17,18].

Here, we address the following question. Is there an alter-
native way to avoid the shortcomings of the standard bilinear
model, without recurring to nonlinear system-environment
couplings? To that end, we introduce a physically motivated
spectral function that explicitly depends on the relative dis-
tance between a pair of Brownian particles, as derived from a
nonlinear response theory of the bath of oscillators perturbed
by the particles. By doing so, we obtain, from the bilinear
model, the nonlinear dissipation that had been originally de-
rived from exponential system-environment couplings [14].
Our method thereby broadens the applicability of the bilin-
ear model, as it now embraces the description of nonlinear
environment-induced forces. We discuss how our modified
bilinear model can be adjusted so as to avoid anomalous
diffusions, and to describe hydrodynamic forces between a
pair of Brownian particles [19].

In Sec. II, we revisit the bilinear and the nonlinear mod-
els. In Sec. I, we show our main result, namely, how
nonlinear dissipation can be obtained from the bilinear La-
grangian. For that, we define a spectral function that depends
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on the relative distance between the particles. In Sec. IV we
explore the consequences of specific changes in our distance-
dependent spectral function. We first show how our modified
spectral function enables us to bridge the dissipation rates
from the standard nonlinear and the standard bilinear models
(Sec. IV A). We then discuss how to avoid an anomalous diffu-
sion described in the original nonlinear model (Sec. IV B), and
how our approach can be applied to model a pair of Brownian
particles sharing a hydrodynamic environment (Sec. IV C).
Finally, in Sec. V we present our conclusions and fur-
ther considerations. Detailed derivations are presented in the
Appendixes.

II. PRELIMINARY REMARKS

A. Standard bilinear model

In the bilinear model, the Lagrangian of two classical
Brownian particles immersed in a collective environment
reads

L= 48) 4 Y (R - oiR)
k

(C,El)xl + C,Ez))q)z

2
2mw;,

— ZRk(ngl)xl + CIEZ))CQ) — Z
k

k

(D

Here, x;, and x;, are the velocity and the positions of the
particles with mass m. R; is the position of the kth bath
oscillator, with frequency w; and mass m;. The coupling be-
tween the system and each oscillator is assumed to be linear
in their positions, with distinct coupling strengths C,E’). The
counterterm is added so as to offset the environment-induced
modification of the external potential.

One can derive the Euler-Lagrange equations for both the
system and the bath. From now on, we define the center of
mass and relative coordinates as

X1+ x2
= —, 2
q > 2

and
U =Xy — X, 3
which yield the following equations of motion,
m(t) + (0 + m2)g(t) = f,(0),
mii(t) + (1 — m2)u(r) = fu().

One can interpret f,(t) and f,(¢) as the fluctuating forces for
the center of mass and the relative coordinate,

(@ +c)
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k
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x | Re(0) + Ri(0) cos axyt ). (6)
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where  R;(0) = Ry(0) 4 [Cx;(0) + CVx;(0)] /myw?. The
statistical properties of these forces stem from the initial state
of the total system.

For the dissipation term, we assume an Ohmic bath [3], so
the spectral functions read

()2

C
Hw)y=3 Y

w,
X k Pk

with the high-frequency cutoff Q2 [20,21], and with ® being
the Heaviside step function. Similarly, a mixed spectral func-
tion appears,

Ji(w) = % >

k

8w —wp) =nwB(Q —w), ((7)
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E b §(w—ap) = n1200(Q — ), (8)
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as an indication of bath-mediated interactions between the
particles. This introduces the dissipation rates n and 7».

Two properties of this model call our attention. First, the
case of identical couplings, C,El) =C 22), (areasonable hypoth-
esis, as far as two proximal particles in the same environment
are concerned) implies that n = ny, and f,(¢) = 0, leading to
vanishing dissipation and fluctuating forces [see Egs. (4) and
(6)]. It means that a free-particle motion is found, namely,

i) =0. &)

Second, even for nonidentical couplings one finds that 7,
is independent of the distance between the particles. Both
considerations suggest instantaneous effects between spatially
separate entities. As discussed by Duarte and Caldeira [14],
these are undesirable features, arising from the lack of an ap-
propriate length scale for environment-mediated phenomena.

B. Standard nonlinear model

In the nonlinear model as introduced by Ref. [14], the
Lagrangian reads

mo, oo | -
L=2({+5)+; Zk:mk(RkR,k — 02RR_)

1
= 5 2_MCix) + Coilm)Ric + (Cexy)
k

+ Cr(x2))R 4], (10
where
Ci(x) = rpe™. (11)

The exponential couplings between the bath and the particles
guarantee homogeneity and translational invariance. Note that
the index k now has dimensions of [L]~!, explaining why it
introduces the required length scale.

The equations of motion are

mXx;(t) + f K(xij(t) — xi(t)), t —t)x;(t)Hdt
0
+ / K(xi(t) — x;(t"), t —t")x;(t")dt’
0

0]
+ a—V(xi(t) —x;(t)) = Fi(t) (12)
Xi
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with i, j = 1, 2, and once again F;(¢) can be interpreted as the
fluctuating force. The dissipation kernels are

K(r,t) = Z/ dow 2k kyk_x
= Jo

Imy”
X—(w)cos Wy T COS kr, (13)
Tw

written in terms of the imaginary part of the dynamical re-
sponse of the environment oscillators, namely,

Imx."(0) =

T S(w— ). (14)
Wk

In the present model, Im X,fi )(w) is equivalent to the spectral
function in that it allows for the transformation of a discrete
set of oscillators into a continuum. The § function is thus
replaced by a Lorentzian peaked around wy. The next step is
to focus on the low-frequency limit of that Lorentzian so as
to recover the Ohmic regime (linear in w). This justifies the
approximation

Imy,"(0) ~ fk) 0 O(Q — ). (15)
Nonlinear equations of motion are obtained, such that

mg(t) + (n + n[u(®))q(t) = f,(1), (16)

and

mii(t) + (n — n[u(@®)Di(t) + V, (u(t)) = fu (). (17)
Here,

2Qn

V.iuy= —-—————
= e+ 1)

(18)

represents an environment-induced potential, which depends
on the relative distance. Similarly,

(1 - 3K2u?)
(K2 +1)°

describes a distance-dependent bath-mediated dissipation
rate. The constant &y is a characteristic inverse length intro-
duced when the summation over k is transformed into an
integral, >, — (L/27) [ dk, and a density of spatial modes
is postulated,

nelul =n (19)

L ~
ngk) = P Kk i f(k), (20)
T

such that [ dk k*g(k) = 1. Finally, the choice for

1
g(k) = (2k3)e’</"° 1)

explains how ky is defined in Ref. [14].

Equations (16)—(19) describe rich environment-induced
behaviors for proximal particles, while recovering the inde-
pendent Brownian movement for arbitrarily large distances.
The free-particle anomaly found in the bilinear model is no
longer present, since both the dissipative and the fluctuating
forces are finite for any finite u(¢). The statistical properties of

the fluctuating forces are such that (see Appendix A)
(fo()) = (fu(t)) =0,
(faO f,t") = kT (n + ne[u®)))st — 1),
(fu@) (")) = 4kpT (n — n[u(®)S( — 1),

in agreement with the fluctuation-dissipation theorem.

III. RESULTS

In this section we show how the nonlinear dissipation
term n,[u(t)] in Egs. (16) and (17) can be obtained from the
bilinear Lagrangian. Let us consider once again the model
from Eq. (1). Note that our results could be easily extended
to include direct couplings between the particles and external
potentials, as done in Ref. [9]. In order to avoid the anoma-
lous free-particle motion for the relative coordinate (ii = 0),
we have to assume that each particle has a distinct coupling
parameter (C #* C( ), otherwise the bath decouples from
U=x —x3. Us1ng s1mllar techniques as in the previous sec-
tions, one gets to the following equations of motion for each
particle:

mx; —I—Z

(1)2

/ cos w(t —t')x;(t)dt

mkwk
C(l)c(j) t
D /Cosa)k(t—t'))'cj(t’)dt’=f,-(t), (22)
X mkwk 0

where i # j = 1,2, and f;(¢) term can be interpreted as the
fluctuating force,

fit) = —Zc,&i’[ g
k

where R;(0) = Ry (0) + (C”x,(0) + Cx;(0) (my ).
To evidence the center of mass and the relative coordinates,
we rewrite the equations of motion as

}, (23)

1 t
mg(t) + 3 f [Ki(t — )i (1) + K (t — t)in(¢")]dt’
0

+ fo Kyt — 1))’ = f,0), (24)
and

mii(t) + / [Ki(t —1)x1(t") — Ko (t — t)ip(e")]dt’
0

—/ Kij(t — tHu(t)dt' = f,(). (25)
0

The dissipation kernels in Egs. (24) and (25) are different from
the ones in Ref. [14] in the lack of a spatial dependence of the
environment-induced effects, as we show below,

o Iy @
K@ —1)=) 2" / dka—(‘”) cosa(t —1'),
% 0 Tw
(26)
AR R S (7)
Kijt —t') = ZZC,?)C,E")/ dka—(a)) cosaw(t —t').
A 0 Tw
(27)
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We have also used Eq. (14) to write the kernels in terms of the
imaginary part of the bath susceptibility functions.

As far as the single-particle dissipation rates are concerned,
we define

n=y_ Cf), (28)

k

where f (k) comes from the Ohmic approximation in Eq. (26),
ie., Imx\"(0) & f(k) @ O(Q — w) [similarly to Eq. (15)].
To obtain the continuum limit, we replace ), C,Ei)z k)
by n [ dk k>g(k), where g(k) = 2"k, exp(—k/ko) (as in
Sec. II B).

The key step in our derivation concerns the two-particle
susceptibility X/fl'] ). We consider that, when two Brownian
particles are sufficiently close, the environment acting on each
particle is composite: It is jointly formed by the free envi-
ronment dynamics plus the perturbation of the other particle
dynamics on that environment. Put differently, each particle is
immersed in a structured environment due to the presence of
the complementary particle, when these are close enough. As
a consequence, our insight translates into a response function
that should depend on the distance between the particles or,
more generally, on the relative coordinate #. We thus postulate
that, in our model,

Imy 7 (w) = Imy" (o, u). (29)

In Appendix B, we show that Im X,gij )(a), u) results from a
nonlinear response theory of the environment under the per-
turbation of the pair of particles. We obtain the Ohmic regime
by choosing a linear function in @, namely,

Imy 7 (w, u) ~ hik, u) © O — w), (30)

where h(k, u) is to be defined. The explicit choice for h(k, u)
will allow us to define the bath-related length scale. Because
our main goal is to obtain nonlinear dissipation consistently
with the standard nonlinear model, we write h(k, u) in the
form

hk, u) = F(k)G(k, u). 31)

Here, F (k) is analogous to f (k) in that it allows us to define
Nett[u] = nfdk et (k)G (k, u) (32)

as the continuum limit of ), C,E”C,Ej F (k)G(k, u). This sum-
mation is obtained from applying Egs. (30) and (31) to (27).
We have also defined

gerr (k) = k*g(k), (33)

motivated by the fact that we recover the single-particle dissi-
pation rate by choosing G(k, u) = 1.

Using Egs. (28) and (32), and taking the limit 2 — oo in
Egs. (26) and (27), the dissipation kernels become

Ki(t —1') =2n8(t —1") (34)
Kij(t —t') = 2nege[u]d(t — ). (35)

The length scale is now explicit, given by the dependence of
the kernel on the relative coordinate u. By tuning G(k, u), one

controls the nonlinear dissipation force appearing in the equa-
tions of motion, be it in order to recover a certain theoretical
model or to explain a specific experiment.

Finally, we find that

mg(t) + (n + nec[ul)g(t) = fq(t)’ and
mii(t) + (1 — nese[uDin(t) = fu(t),

where the center of mass and the relative fluctuating forces
are given by f, () = (fi + f2)/2 and f,(t) = fi — f2. Note
that, although nonlinear dissipation forces have been found,
the effective bath-induced potential V,[u] from Eq. (17) could
not be recovered in our modified bilinear model. This suggests
that, if a given experiment reveals bath-mediated conservative
forces, the theoretical model should probably start from non-
linear system-bath couplings.

(36)

IV. APPLICATIONS

The idea here is to illustrate the versatility of our main
result, namely, Eq. (32). First, we recover the usual dissipation
rates of both the standard nonlinear and the standard linear
models. Finally, we discuss ways to avoid an anomalous dif-
fusion that may appear, and revisit the Brownian dynamics of
two particles with hydrodynamics interactions.

A. Recovering the dissipation rates

In order to recover the nonlinear dissipation n.[u] from
Eq. (19), we choose

G(k, u) = cos(ku). (37)
We use this in Eq. (32), thus finding that
o0 —k/ko 1 — 3k3u?
neir[u] = n/ dk kS cos(ku) = n(—‘)uz.
0 2k (k3u? + 1)

(38)

As expected, neg[u] = n.lul.

We also recover the constant dissipation rate 1> shown
in Eq. (8), in the context of the standard bilinear model. By
choosing G(k, u) = Gy, we find that

et (] = nGo = n12. (39)

This means that our result bridges the standard bilinear and the
standard nonlinear models, as far as dissipation is concerned.

B. Avoiding the anomalous diffusion

It is worth discussing the anomalous diffusion due to the
specific form of neg[u] in Eq. (38). This can be seen from the
diffusion coefficients appearing in the correlation functions of
the Langevin forces, namely,

(i) f2(t)) = 2D (w)s(t — 1), (40)
(fu@) fut")) = 2Dy (u)d(t — 1), and (f4(1) f4(t")) = 2Dq(u)é

(t — t'). The connection comes from the fact that

Dya(u) = negr[ulkpT. (41)
Similarly, we also find
Dy(u) = 2(n — nese [uDkpT (42)
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and
D,(u) = wkﬂ. (43)
The anomalous diffusion arises from
nesrllul > kg /+/3] < 0, (44)

implying a reduction in the diffusion coefficient D, at in-
termediate separations, as compared to arbitrarily far apart
Brownian particles, as well as an anticorrelation (D}, < 0)
between the Langevin forces acting on the particles.

If we are interested in describing a system where such
anomalous diffusion is absent, we can tune G(k, u) accord-
ingly. To be concrete, let us take the example of the spectral
functions used to model localized excitons interacting with
a bath of acoustic phonons [22,23]. Their typical Gaussian
features motivate us to set

Gk, u) = e 0", (45)
This results in an effective dissipation rate given by
n
(1+Ku2)”

That is, Eq. (45) guarantees that neg[u] > 0, and also re-
covers the independent Brownian motions of two arbitrarily
distant particles (in the limit of |u| — 00). In fact, any positive
and convergent function [i.e., G(k,u) > 0 and G(k, |u| —
oo) = 0] is sufficient to guarantee that neg[u] > 0, and that
Nett[|u] — oo] = 0.

Because our main point in this paper is to reconcile the
bilinear and the nonlinear models as far as possible, it is
worth highlighting that avoiding the anomalous diffusion is
also possible in the standard nonlinear model. For that, one
could tune g(k) in Eq. (21) when applying it to Eq. (38). For
instance, making g(k) = k‘zko’ ! exp(—k/ko) yields neg[u] =
n(1 + (kou)*>)~' > 0. One advantage we see in our modified
bilinear model is that it allows us to replace cos(ku) by some
other function of u in Eq. (38). To our understanding, this pro-
vides a more practical means to recover the phenomenological
dissipation rate under scrutiny.

Nefr[u] = (46)

C. Hydrodynamics-inspired model

In disagreement with the standard nonlinear model, our
approach does not predict an effective potential between the
particles, so that only bath-induced dissipation rates arise.
Does it mean that our modified bilinear model is physically
flawed? On the contrary, here we revisit a model of Brownian
particles with hydrodynamic interactions [19], an instance that
illustrates this feature of our model.

Let us consider two Brownian particles immersed in a
viscous fluid. The fluid can mediate interactions between
the particles, so that the dissipative forces may depend on
the interparticle distance, as shown in Ref. [19]. Here, we
restrict our discussion to the limit where the radius of each
Brownian particle is vanishingly small as compared to their
relative distance (i.e., the regime of validity of the so called
Oseen tensor). We also assume the one-dimensional limit of
the Brownian motion. In that case, an effective dissipation
rate mediated by the hydrodynamic environment, as derived

with the help of the fluctuation-dissipation relation, is given
by Ref. [19] (see Appendix C)

(U] & yylul, (47)

where yj, is a constant proportional to the solvent viscosity.
To model Eq. (47), we can simply choose

Gk, u) = k|u|, (48)
since
k
e[l = nf Ak Kl = ylul,  (49)
0 0

with y,, = 3nkp.

We have thus shown that an environment-mediated dissi-
pation of hydrodynamic nature can be mapped into a fictitious
bath of harmonic oscillators with no need for nonlinear
system-environment couplings. In other words, we can in
principle always find the appropriate G(k, u) able to reproduce
the phenomenological behavior of interest, including more
sophisticated hydrodynamic models than the one studied here.

V. CONCLUSIONS

In summary, we have widened the degree of applicability of
the bilinear model for the dynamics of two Brownian particles
in a collective environment. In particular, we have recon-
ciled a controversy between the bilinear and the nonlinear
approaches, namely, whether distance-dependent dissipation
forces mediated by the environment, and affecting both the
center of mass and the relative coordinate, should exist or not,
and in which circumstances.

Our main result was the derivation of the effective dissi-
pation rate n.g[u] departing from a bilinear Lagrangian. Our
method was based on the introduction of a distance-dependent
nonlinear spectral function (response function) X,E” )(a), u),
which settles a length scale to the dynamics of the Brownian
particles (as also achieved with the standard nonlinear model,
but not with the standard bilinear model). This allowed us
to recover the dissipation forces as derived both from the
standard bilinear and the standard nonlinear models. We have
also discussed the physical meaning of X,E” )(a), u) in terms
of a nonlinear response theory of the bath perturbed by the
Brownian particles.

As applications, we have discussed some consequences of
tuning our distance-dependent spectral function. For instance,
a change from a trigonometric function to a Gaussian in
G(k, u) made it possible to avoid the anomalous diffusion
presented in the original nonlinear model. Also, we described
hydrodynamic correlations between a pair of Brownian par-
ticles in a viscous fluid by means of our phenomenological
distance-dependent spectral function. These examples illus-
trate how our results represent a simple and versatile way to
express diverse nonlinear dissipative forces in the dynamics
of pairs of Brownian particles.

As a perspective, we would like to generalize our distance-
dependent spectral function to a larger number of Brownian
degrees of freedom in a common environment (N particles
in a three-dimensional space). We believe it to be a feasible
goal, given the pairwise character that typically underlies

014107-5



ELISA I. GOETTEMS et al.

PHYSICAL REVIEW E 107, 014107 (2023)

effective interactions. This could allow us to characterize re-
laxation processes and entropy production in nonequilibrium
dissipative many-body systems, across classical and quantum
regimes [17]. For instance, we could think of generalizing
a recent study concerning entropy production of a single
quantum Brownian particle [16].
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APPENDIX A: TWO-TIME CORRELATION FUNCTIONS
AND THE FLUCTUATION DISSIPATION THEOREM

From the condition of thermal equilibrium, we have the
following identities:

(Re(0)) =0, (Al)
(Re(0)Ry(0)) = 0, (A2)

(R (0)) =0,
(Re(0)R(0)) = 0,
kgT

5 Sk »
14O

(R (0)Ry(0)) =

. . kgT
(Rr(0)Ry (0)) = m—krskk',
(A3)

where kp is the Boltzmann constant. As defined in the main
text, the formal expressions for the fluctuating forces are given
by

sin wyt

finy==3"¢ [ka)

+ R (0) cos wkt:ls (A4)
k

Wk

where the displaced equilibrium positions of the oscillators
(due to their couplings with the particles) are R, (0) = R (0) +
(C]Ei)xi(O) + C,Ej)xj(O))(mkw,%)’l. We have also defined f, =
(fi + f2)/2, and f,, = fi — f>. With the above expressions at
hands, we obtain the general form for the two-time correlation
functions,

(fa@)fp()) = 2Dap ()8t — 1), (AS5)

where Dqg(u) is a type of diffusion coefficient having a differ-
ent form according to the choice of forces we are dealing with.
To explicitly compute them, we apply the continuum limit in
the same way we did in Sec. III. We thus find Egs. (41), (42),
and (43) as results.

For the sake of completeness, and also to highlight
that Eq. (AS) is indeed a general form of the fluctuation-
dissipation theorem, we recall the original version of the
theorem below. The Langevin equation for a free Brownian
particle reads

mu(t) = —nu(t) + F (), (A6)

where 1 is a friction coefficient, and F(¢) is a fluctuating
force caused by collisions of the particle with the atoms of
the surrounding fluid. The fluctuating force fulfills

(F(t)) =0, and (F()F (1)) = 2D8(t — 1), (A7)

where D can be seen as a measure of the strength of the
fluctuating force. The § function in time indicates that there is
no correlation between impacts at any distinct time intervals.
The solution for the linear, first-order, and inhomogeneous
differential equation reads [1]

t
v(r) = e "Mmy(0) + / di'e 1 ME ) Im. (A8)
0

We can get the mean-squared velocity and evaluate for long
times, thus

2 D
(vi(c0)) = —. (A9)
nm
At thermal equilibrium, (v?)eq = kgT /m (equipartition theo-
rem), hence

D = nkgT. (A10)

This relates the strength D of the random noise, or fluctuating
force, to the magnitude n of the friction, or dissipation rate,
explaining why it is known as the fluctuation-dissipation the-
orem. It expresses the balance between friction and noise that
is required to have thermal equilibrium state at long times.

APPENDIX B: RESPONSE THEORY

Here we set out to discuss the physical meaning of our
phenomenological response function as defined in Eq. (29).

1. Linear response theory of an environment
perturbed by a single particle

First, we revisit Caldeira [3], so as to provide a more
detailed, self-contained discussion on the standard single-
particle scenario (cf. p. 107 of Ref. [3]). The bath’s
equations of motion for a single Brownian particle with linear
couplings are given by

m Ry + mwi Ry — Cex = 0, (B1)
which gives that

3 Cy

Ry = — X(w) (B2)

mi(0? — o)

for each mode with frequency w. An effective (and collective)
coordinate for the environment has been defined in Ref. [3] as
the linear combination

Ry = ZCkRk- (B3)
k

It can also be decomposed in the Fourier space as

Refi = Xenv(@)X(w), (B4)
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where the susceptibility is defined as

G
aw(w) = — —_— B5
Heny (@) Xk:mk(a)z—wz) (BS)
The imaginary part of x.,, (@) comes from replacing
w*wy > o xw + i€, (withe — 0), (B6)

and using identity

1 1
—_— = —ind(w* . B7
o+ o + i€ (w:l:w;) fed(w = wr) ®B7)
It thus follows that

Im Xeny (@) = Xy (@) (B8)

=TS G0 — w0+ 5@ o)l (B
= 3 - Meeon w Wi w wri ).

Since w and w; > 0, we get the spectral function,

w) = w) = w Wi ),
Xeny 5 Ek o k

(B10)

in agreement with Eq. (7). This concludes our revision of
Ref. [3]. In what follows, we address an issue that has not
been discussed so far, to the best of our knowledge.

2. Nonlinear response theory of an environment perturbed by a
couple of particles within the nonlinear couplings model

What should be the effective (collective) coordinate of the
environment R, as analogous to that defined in Eq. (B3), in
the case of nonlinear system-bath couplings? As a matter of
fact, the equations of motion for the bath modes, namely,

MR+ miR_ + C_;(x)) + C_4(x2) =0, and  (B11)

mRy + m? Ry + Ci(x)) 4 Ci(x) = 0, (B12)

imply that Egs. (B2) and (B3) no longer apply. The function
Ci(x;) mixes the Fourier components of the particle’s coor-
dinates, ¥;(w), generally in a nonlinear manner. Physically
speaking, if the environment causes on the pair of particles a
dissipative force that nonlinearly depends on the interparticle
distance, we expect as a reaction that the particles disturb the
environment in a similar manner, thus making R.¢ to depend
nonlinearly on the interparticle distance.

To address this question, we assume that Ri(t) =
Ry exp(—ior), and Ce(x1) 4 Gi(x2) = [C(x)) +
Cr (xg )]exp(—iwt). This can be seen as a quasi-static
(Born-Oppenheimer) approximation, in the sense that, in
the limit of very slowly varying Brownian movement of the

particles as compared with the fast bath dynamics (0 < @),
we have that x; ~x; = x;(t), and exp(—iwt)~ 1. Such
approximations are equivalent to the low-frequency limit
employed when assuming the Ohmic regime. We thus get that

B ~ Coi(x1) + Cp(x2)

N , and (B13)

(@ — af)

B _Gx) + Gi(x2)

K A (B14)

(o — o)

By extrapolating Eq. (B3), we define an effective (collective)
coordinate of the environment as a linear combination of R;s
with coefficients now given by Cy;(x;), that is,

Rer = ) _(R(C_ (1) + Ci(12)) + R4 (Cex1) + Ce(x2))).
k
(B15)

This definition allows us to find the emergence of both
“cos(ku)” and “6(w — wy)” terms in the dynamics of the effec-
tive environment, as they appear in Egs. (13) and (14). Indeed,

KiK_k

Resr = —22 ————— (1 4+ 2cosku), (B16)
3

my(0? — o)

after having made Ci(x;) = xze™® in Eq. (B15). We find
“8(w — wy)” when we apply Eq. (B7) to (B16). By expanding
R.¢ in a power series of u, an effective nonlinear susceptibility
Xenv,u(@, 1) shows up,

Rett = Xenv.u(w, u) u. (B17)
In the following, we build on this line of thought in order to

explain the physical meaning of our nonlinear susceptibility,
as we have introduced it in Eq. (29).

3. Nonlinear response theory of an environment perturbed by a
couple of particles within the bilinear couplings model

An analogy with the effective (collective) bath coordinate
from Eq. (B15) allows us to assign a physical meaning to our
nonlinear susceptibility, as given in Eq. (29). The equations of
motion for the bath within the bilinear couplings model are
given by

miRy + mywiRy + CVxy + CPxy = 0. (B18)

Inspired by Eq. (B14), we set

(M)
k=T

’

(@ — o)

where the coordinates x; = x;(f) now explicitly depend on
time. In terms of the center of mass and the relative coordi-
nates, we get that

(¢q + Ack)

ﬁk(q, u) = —m,

(B19)
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where

c=cV+c?, (B20)

c=CP-cP?. (B21)

Instead of assuming that the nonlinearity arises from the non-
linear couplings C(x;), as in Eq. (B15), we now consider that
the collective coordinate is itself a nonlinear combination of
bath modes,

Rer =Y _ (CVFVIRi(g, w] + CPFP[Ri(q. w)]), (B22)

in a power series as

FO Z (1)[Rk(61, u)]" and (B23)
F® = ZFk(ii [Rk(Z;!M)]’". (B24)

m=0
We also assume that Fk(ln) and Fk(iz can be renormalized as

(&)

‘ = 1 (@ —op)]" and - (B25)
where the functions Fk(i)[o] must be appropriately chosen so F<2> ]((2’7)1 [mk (wZ — wi)]’"’l, (B26)
as to reproduce the phenomenological behavior of the system
of interest. Without loss of generality, Fk(‘)[o] can be expanded so that

|
[R ( ;)" [R ( ; u)
Ryt = ZCm(Z F % q ZC@) Z <2> Relg, W
m=0
(1) (1) n I[Rk] 2) (2) 2\\m—1 [Rk]m
- (Lot o ) 4 T (3 oo
n=0
=D""" 2 =" o "
_ c® ( ) A c? ( ) Ac— ) B27
Xk:mk(a)z—w ( Z n! 7+ C2 + k r;) m! 7+ 02 (B27)

Using the binomial expansion (a + b)" = " ( ) "~PpP, we obtain

p=0

R Do Y

(I)Z( - p<Ac_) ( )+C152)Z(_ "
m=0

£2 ni - 7 (m
o) ()
p'=0 2 P

k M (a) n=0
_ Z 1 i (_l)n’— (C(l)f(l) + C(Z)f(2)) HZ, (n/>(5q)nf_m’ (Acz)m/
p m (wz _ 60/%) — n'! k,n' k,n’ — m' 2
1 — DT 0 a (ﬂ)_ oA\
—— C f C f Cn m [ == qn m um
;Mk(wz—wf)g T )mZ:O m 2
Rer = Z Z g " " (B28)
n'=0m'=0
[
where o, is defined as we find a nonlinear susceptibility, such that
n—1 Rett = Xenv(w, g, 1) u. (B31)
-1 eff = Xe q
oy = — Z =D (VA + 1)

(@ — o)l

W\ L Ac " (B29)
X c —
m' 2
By writing the effective bath coordinate as
eff - Z Z Apm' q ' m—] u, (B30)

n'=0m'=0

Explicitly, we have that

(l)nl

Xenv(a)’ q5 M) 2
mk w n!

"2 =

(Ca)f(l) n Cmf(z))

S () e

m'=0
(B32)
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The imaginary part of the susceptibility comes from employ-
ing Eq. (B6) and Eq. (B7), which gives that

Im Yeny (@, @, 1) = Xepy o (@5 4, 1)

T Wk, q,u)
= Z W[S(w — ) + 8(w + wp)],

(B33)
where we have defined
/ (— 1)
Wk, q,u)= Z (C(l)f“) i C<2>f(2))
i n/ ' —m Ac m i 1
Z , Cn L qn m um ) (B34)
m'=0 m 2

Since w and wy > 0, only §(w — wy ) remains in Eqs. (B34), as
usual. Finally, to keep consistency with our choice in Eq. (30),
we set

Wk, q,u) = h(k, u), (B35)
showing how our distance-dependent susceptibility,
Imy (@) = x (@, ), (B36)

results from a nonlinear response theory of a bath of oscilla-
tors perturbed by a pair of Brownian particles. In summary,
both in the standard nonlinear couplings model and in our
bilinear model with a modified spectral function, the bath of
oscillators reacts nonlinearly when subjected to the distur-
bance provided by the pair of Brownian particles.

APPENDIX C: DISSIPATION RATE OF TWO BROWNIAN
PARTICLES SHARING A HYDRODYNAMIC
ENVIRONMENT

Here we discuss the dissipation rate we used in Eq. (47). In
Ref. [19], we find that the so-called Oseen tensor is given by

koT P
D, = 2 (H n r’fzr”), (C1)

8wk ri

for particles i and j, with i # j. Here, « is the fluid vis-
cosity, I the identity matrix, 7;; is the vector linking the
centers of each particle, and r;; = |Fj;|. Because D;; de-
scribes diffusion in configuration space, its dimensions are
[D;;1 = [LI*[T]™". The fluid viscosity has dimensions of
[«] = [M][L]"'[T]~". The dimension of the dissipation rate
in our model is [ner] = [M1[T]~! (see Sec. III). Hence,
[1lrij] = IMIIT]™" = [n™"°]. Guided by this dimensional
analysis, we can infer how the Oseen tensor provides us with
an effective (tensorial) dissipation rate depending on the rel-
ative coordinate for a pair of Brownian particles in a fluid,
namely,

kgT

Dy= b )
! n:zfd [7i;]
where
o —1
L) = 8mc|ﬁ|<]1 + %) . (C3)

In the one-dimensional model of the Brownian motion, we
make ## — u, and [ — 1. Our effective dissipation rate medi-
ated by the hydrodynamic environment is thus found to be

IO = daiclul = yulul, (C4)

where y, = 4mk.
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