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Validity of path thermodynamic description of reactive systems: Microscopic simulations
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Traditional stochastic modeling of reactive systems limits the domain of applicability of the associated path
thermodynamics to systems involving a single elementary reaction at the origin of each observed change in
composition. An alternative stochastic modeling has recently been proposed to overcome this limitation. These
two ways of modeling reactive systems are in principle incompatible. The question thus arises about choosing
the appropriate type of modeling to be used in practical situations. In the absence of sufficiently accurate
experimental results, one way to address this issue is through the microscopic simulation of reactive fluids,
usually based on hard-sphere dynamics in the Boltzmann limit. In this paper, we show that results obtained
through such simulations unambiguously confirm the predictions of traditional stochastic modeling, invalidating
a recently proposed alternative.
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I. INTRODUCTION

Thermodynamic description of nonequilibrium systems is
based on the concept of entropy production, the correct eval-
uation of which necessarily requires full knowledge of each
elementary process therein [1,2]. This prerequisite plays an
important role in the corresponding statistical formulation,
commonly modeled by means of an appropriate Markovian
stochastic process. In previous papers, we proved that the
thermodynamic formulation of homogeneous reactive sys-
tems based on their sample path, widely known as “path
thermodynamics”, will lead to erroneous results whenever the
system involves more than one elementary reaction leading to
the same change in composition [3,4]. Similar observations
were reported in [5] and [6] (see also [7]).

This result can also be appreciated from a physical per-
spective. Let us consider a perfectly homogeneous (no local
fluctuations) isothermal reactive system, such as can be pro-
duced experimentally in a “continuously stirred tank reactor”
(CSTR). The state of such a system is entirely characterized
by its composition, which is indeed the only pertinent quantity
accessible to experimental investigations. Suppose now that
we have at our disposal an ideal experimental device allowing
us to measure the precise number of each chemical species
over an arbitrarily long interval of time. Using this device, we
may gain access to the exact state trajectory of the system,
traditionally referred to as its “sample path” within the frame-
work of stochastic processes. The question is whether such
a state trajectory encompasses sufficient information to allow
us to determine the thermodynamic properties of that system.
The key issue here is obviously the fact that entropy produc-
tion in reactive systems is the sum of the entropy production
that is associated with each individual elementary reaction (cf.

Section 9.5 in [1]). The answer to this question will thus be
positive if and only if each of the measured changes in com-
position can be attributed to a specific elementary reaction.
Such an attribution becomes impossible if the reactive system
includes more than one elementary reaction leading to the
same change in composition. No matter what method we use,
the path thermodynamic properties of such a reactive system
can never be determined from its state trajectory.

Despite the undeniability of this result, from both the
mathematical and the physical point of view, its validity was
recently contested by Gaspard in a Comment article [8]. Yet
this very issue had already been raised by that same au-
thor over a decade ago [9]. In short, extending the work of
Lebowitz and Spohn [10], Gaspard initiated the path thermo-
dynamic formulation of reactive systems in 2004 [11,12]. The
theory is sound but, like all scientific theories, its domain of
applicability has limits; specific situations will exist outside
the scope of the theory. Indeed, three years later that theory
was found to encounter certain inconsistencies when applied
to the Schnakenberg graph formulation of “current” fluctua-
tions in reactive systems involving more than one elementary
reaction leading to the same change in composition [9]. A
remedy was proposed in the specific case of “current” fluctua-
tions but, as we have shown in [3], this remedy is inapplicable
to traditional modeling of reactive systems based on jump
Markov processes.

In short, a pure jump process, χ (t ), is entirely determined
by the concept of “transition rates”, W (X | X ′), defined by
Kolmogorov as [13]

P(X, t + �t | X ′, t ) = W (X | X ′) �t + o(�t ), ∀ X �= X ′.
(1)
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The function P(X, t + �t | X ′, t ) represents the conditional
probability to have χ (t + �t ) = X , given that χ (t ) = X ′. The
description of jump Markov processes in terms of their sample
path is based on this fundamental Kolmogorov equality [14].
Consider now a reactive system that involves n elementary
reactions R1 . . . Rn leading the same change in composition
X → X ′, and denote by Wρ (X | X ′) the transition rate asso-
ciated with the reaction Rρ . It was claimed in [8,9] that we
can write the sample path of χ (t ) in terms of any individual
transition rate Wρ (X | X ′). This claim, however, contradicts the
fundamental property of jump processes.

Recall that the probability associated with a random event
is unique. This property results from the basic definition of
the concept of probability, first stated by Pascal, and refined
over the years by various mathematicians to Kolmogorov’s
axiomatic formulation [15,16]. A transition X ′ → X is clearly
a random event. The probability that this event occurs in
the time interval [t, t + �t] is precisely P(X, t + �t | X ′, t ).
Accordingly, this probability cannot assume several values
simultaneously, that is, for any given X, X ′, t , and �t , the con-
ditional probability distribution P(X, t + �t | X ′, t ) is unique.
The Kolmogorov equality (1) then implies that this is also
the case for the transition rate W (X | X ′). In particular, if a
reactive system involves several elementary reactions lead-
ing to the same change in composition, then the resulting
transition rate is necessarily the sum of the transition rates as-
sociated with each of them, i.e., W (X | X ′) = ∑

ρ Wρ (X | X ′).
Consequently, expressing the sample path of χ (t ) in terms of
individual transition rates Wρ (X | X ′) does not apply to jump
stochastic processes.

Given this limitation, Gaspard proposed in his Comment
a brand new type of stochastic modeling of reactive sys-
tems that extends the domain of validity of the associated
path thermodynamics to the controversial situation of reactive
systems involving more than one elementary reaction leading
to the same change in composition [8]. The resulting stochas-
tic process proves to be quite different from that associated
with the traditional stochastic modeling of reactive systems.
They do not even share the same state space. The state space of
the stochastic process associated with the traditional modeling
of an n component isothermal homogeneous (CSTR) reactive
system is simply Zn, in one-to-one correspondence with quan-
tities that can actually be measured in laboratory experiments
(Z represents the set of non-negative integers). First proposed
by McQuarrie in 1967 [17], traditional stochastic modeling
was then refined over the years by Van Kampen [15], Haken
[18], Nicolis and Prigogine [19], Kurtz [20], Gardiner [16],
and many others. Everything we currently know about the
statistical properties of nonequilibrium reactive systems was
established in this way, including the stochastic formulation
of path thermodynamics by Seifert [21], Lebowitz and Spohn
[10], and Gaspard [11,12].

The state space of the stochastic process associated with
the new type of modeling proposed in [8] is different. In addi-
tion to the number of particles of chemically active molecules,
it also includes an extra variable designed to select the pre-
cise elementary reaction at the origin of an observed change
in composition. As clearly stated by the author, the main
consequence of this modeling is that it allows us to define
several Markov processes associated with a given reactive

system (Sec. III in [8]). Among them, there will undoubtedly
be found a process guaranteeing the validity of the associated
path thermodynamics in controversial situations.

One may argue that in this new formulation the model
has been changed simply to shoehorn it to fit the theory. As
they have different state spaces, it is impossible to use the
framework of one of these stochastic processes to confirm or
deny the validity of the other. Conversely, it is impossible to
discuss the validity of the proposed new modeling within the
framework of the traditional stochastic modeling.

Nevertheless, the main purpose of the two approaches is
to provide a theoretical description of a “real-world” system:
a system with properties that can be observed in labora-
tory experiments. In this respect, we know that reactive
processes result from local interactions between chemically
active molecules (reactive collisions). If the reactive system
is well stirred (CSTR), it will be impossible to determine
experimentally which reaction led to an observed change in
composition, unless that reaction is unique. In other words,
determining the precise state trajectory of a well-stirred reac-
tive system, as required by the new modeling [8], is beyond
the reach of real-life laboratory experiments.

On the other hand, the new stochastic modeling of reactive
systems, however strange, may nevertheless represent reality.
The only way to investigate this possibility is through labora-
tory experiments. Unfortunately, the accuracy of the available
experimental data are insufficient to address this issue. The
alternative option is to perform microscopic simulations of
reactive fluids, usually based on Newtonian hard sphere dy-
namics. Introduced in the mid-1970s [22,23], this technique
provides quite useful information on the relevance and accu-
racy of theoretical developments in nonequilibrium reactive
systems [24–28] (see [29] for a review).

In Sec. II, we consider the microscopic simulation of
Schlögl-like reactive systems [30], often used to illustrate
some peculiar aspects of path thermodynamic properties of
reactive systems [11,12]. The results obtained are in perfect
agreement with the traditional stochastic modeling of reactive
systems, thus calling into question the alternative modeling
proposed by Gaspard. Conclusions and perspectives are pre-
sented in Sec. III; algorithmic details of the simulations are in
the Appendix.

II. MICROSCOPIC SIMULATION

Let us consider the reactive system

A + X
k1�

k−1

2 X B + C
k2�

k−2

B + X, (2)

where the mole fractions of the reactants A, B, and C are
supposed to remain constant. Following the traditional prac-
tice, we shall use the same symbols (here, A, B,C, X ) to
denote the number of particles of the corresponding chemi-
cal species. Upon setting k−1 = k1, k−2 = k2, C = A/2, and
A/B = k2/k1 = 5/6, the number of X particles at the station-
ary state reads Xs = A. This choice of parameters guaranties
that the system operates under nonequilibrium conditions. For
instance, we can check that in dilute (ideal) systems, the
thermodynamic entropy production, σs, is strictly positive at
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the stationary state

σs = 6
5 N kB k2 a2 ln(2) > 0, (3)

where kB is the Boltzmann constant, a the mole fraction of
A, and N the total number of particles present in the system,
including solvent or other nonreactive particles (extensivity
parameter) [1].

The model (2) belongs to the class of one variable reac-
tive systems where the reactions lead either to the change
in composition X → X + 1 (forward) or X → X − 1 (back-
ward). A well known example is the Schlögl model [30]. As
such, the associated state trajectory (sample path) contains no
information allowing one to distinguish these reactions from
each other. We showed that this property implies necessarily
that the state trajectory is time-reversible at the stationary
regime, so that the resulting path entropy production is zero
[3,4]. It is worthwhile to recall that the time-reversibility of
Schlögl type of reactive systems at the stationary regime was
first established by Graham and Haken in 1971 for diffusion
processes [31]. It was then generalized by several authors
in order to include jump processes as well (see for example
[15]). An exhaustive demonstration is given in Section 6.3 of
Gardiner’s textbook [16].

The validity of this result was contested by Gaspard [8],
who proposed a new type of stochastic modeling of reactive
systems where the resulting path entropy production satisfies,
in average, the macroscopic thermodynamic prediction (3). In
the absence of sufficiently accurate experimental results, an
alternative way to clarify this issue is through the microscopic
simulation of the reactive system (2). Measuring the number
of X particles over a sufficiently long time interval allows us to
estimate the direct probability distribution P(X, t ; X ′, t + τ ),
for a given τ > 0, and compare it with the “reverse” probabil-
ity distribution P(X ′, t ; X, t + τ ). In principle, we should also
be able to estimate the average of the resulting path entropy
production and compare it with the thermodynamic result
(3). However, obtaining statistically reliable results for this
purpose requires an extremely large number of data points.

The simplest way to deal with this problem is to resort to
the simulation of the reactive Boltzmann equation for which
there exists a well-established algorithm introduced half a
century ago by Bird [32]. Not only is this technique much
faster than traditional hard spheres molecular dynamics, but
it can also be adapted easily to simulate a perfectly homo-
geneous systems while conserving the main characteristics
of microscopic dynamics. Even though the latter procedure
is a well established and widely known algorithm [33], for
the sake of completeness we present in the Appendix a short
review of its basic features.

For the microscopic simulation we consider an assembly
of N = 5000 hard spheres of diameter d confined in a box
of volume V with a number density of 3 × 10−3 particles
per d3. This choice guaranties that the system is well within
the range of validity of Boltzmann equation (see Ref. [32]
for more details). The other parameters are set as follows:
A = 1000 particles (thus B = 1200 and C = 500 particles)
and k2 = 0.75 × ν, where ν is the collision frequency. In
other words, 75% of collisions between B and C or B and X
particles (second reaction) are assumed to be reactive (recall
that k1 = 6/5 k2 = 0.9 ν). For these parameters σs ≈ 125 kBν.

Note that, by definition, the number of solvent particles is
changing over time since their role is to maintain constant the
number of A, B, and C particles (cf. Appendix for details). We
verified that the solvent mole fraction remains always above
20% during the simulation.

In addition, we considered a slightly different reactive sys-
tem:

A + A
k1�

k−1

X + X ; B + C
k2�

k−2

B + X. (4)

Unlike the reactive system (2), here each elementary reaction
leads to a different change in composition. For example, for
system (4) a change X → X + 1 in the path only occurs due
to the second reaction while in system (2) it can be either
reaction. As such, for system (4) the corresponding state tra-
jectory is expected to be time-irreversible in a nonequilibrium
stationary regime. The comparison of the statistical proper-
ties of these two systems proves to be quite helpful for the
correct interpretation of the results. Setting k1 = k2 = k−1 =
k−2, B = 5 A/3, and C = A/3, the macroscopic number of
X particles at the stationary state takes the same value as
in system (2), that is Xs = 1000. Furthermore, the stationary
state entropy production σs is strictly positive. For instance, in
ideal systems, we find

σs = 5
9 N kB k1 a2 ln(9/2) > 0 (5)

so that, as before, the system operates under nonequilibrium
conditions.

For the microscopic simulation of Eq. (4), the total number
of hard spheres is set to N = 7000 with the same number
density as in system (2), i.e., 3 × 10−3 per d3. The other
parameters are as follows: A = 1500 particles (thus B = 2500
and C = 500 particles) and k1 = 0.9 × ν (recall that k1 =
k2 = k−1 = k−2). For these parameters σs ≈ 242 kBν.

As stated above, our purpose in performing these
simulations is to estimate the probability distributions
P(X, t ; X ′, t + τ ) and P(X ′, t ; X, t + τ ). To this end, succes-
sive values of X , separated by a relatively small time interval
τ , were recorded for statistical analysis. For each reactive
system, Eqs. (2) and (4), we collected a total of 109 sample
points (SP), after the stationary regime has been reached (at
about 104 SP).

The results are presented in Fig. 1. This figure shows
P(X, t ; Xref , t + τ ) and P(Xref , t ; X, t + τ ) as a function of
X , for both systems (2) and (4), where Xref = 1000 (i.e.,
macroscopic stationary state value in both systems) and τ =
10 mean reactive collision time (MRCT). The statistical er-
ror, estimated from ten successive runs of 108 SP, does not
exceed 1% (less than the size of the marker symbols in
Fig. 1). While the sample path associated with model (4) is
distinctly time-irreversible, as expected, this is not the case of
that associated with model (2), where P(X, t ; Xref , t + τ ) ≈
P(Xref , t ; X, t + τ ). This observation is further confirmed in
Fig. 2, where the ratio P(X, t ; Xref , t + τ )/P(Xref , t ; X, t +
τ ) is depicted for both models.

The time-reversible symmetry of a sample path is the key
signature of systems at thermodynamic equilibrium. But the
system (2) operates under strict non-equilibrium conditions
[cf. Eq. (3)]. Consequently, the thermodynamic properties of
this reactive system based on its sample paths will necessarily
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FIG. 1. Joint probability distributions P(X, t ; Xref , t + τ )
(crosses) and P(Xref , t ; X, t + τ ) (bullets), as a function of X , with
Xref = 1000 (macroscopic stationary state) and τ = 10 MRCT as
measured in the simulations. Top: model (2). Bottom: model (4).
Note that in both cases the entropy production σs > 0.

lead to a zero entropy production at the stationary state, in ob-
vious contradiction with assertions presented in the Comment
[8]. In other words, for path thermodynamics system (2) is in-
distinguishable from a system at thermodynamic equilibrium
with the same total rates for X → X + 1 and X → X − 1.
The situation is different for the case of the second model
(4) since in this reactive system each elementary reaction
leads to a different change in composition. The microscopic

model eq.(2)
model eq.(4)
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FIG. 2. Probability ratio P(X, t ; Xref , t + τ ) / P(Xref , t ; X, t +
τ ) (see the caption of Fig. 1)

simulation results thus confirm perfectly the validity of our
results [3,4], namely that path thermodynamics is valid if there
is one, and only one, elementary reaction associated with each
possible composition change of the system.

III. CONCLUDING REMARKS AND PERSPECTIVES

The study of the statistical properties of reactive systems is
traditionally based on jump Markov process type of modeling,
introduced in the mid-1960s [17]. As shown in [3,4], this tra-
ditional stochastic modeling limits the domain of applicability
of the associated path thermodynamics to reactive systems in-
volving only a single elementary reaction at the origin of each
observed change in composition. An alternative modeling that
straightened this limitation was proposed recently [8]. Using
a microscopic simulation of dilute reactive systems, in the
Boltzmann limit, we showed in the present work that results
obtained through this procedure are in excellent agreement
with the predictions of the traditional modeling.

A peculiar consequence of this result concerns the class of
one variable reactive systems in which all reactions lead either
to the change in composition X → X + 1 (forward) or X →
X − 1 (backward). A well-known example is the Schlögl
model [30]. The model (2) considered in our microscopic
simulations is precisely of this type. With the chosen param-
eter values for this model, the entropy production is strictly
positive, which guarantees that the system operates under
nonequilibrium conditions [cf. Eq. (3)]. However, the asso-
ciated observed state trajectory proves to be time-reversible,
in the sense that a sample path joining an arbitrary state �1 to
another arbitrary state �2 will occur with the same probability
as the corresponding reverse path joining �2 to �1. But such
a time-reversal symmetry is the key signature of thermo-
dynamic equilibrium state where, on average, each forward
reaction is exactly balanced by its reverse. That is not the case
here. In addition, as shown previously [3,4], upon restricting
ourselves to a well stirred system (no diffusion) and adopting
a traditional Markovian modeling, the results observed in the
simulation can be proved rigorously (see Section 6.3 in [16]
for more details). We are thus faced with a strange paradox.

Meticulous readers may object to our conclusions by point-
ing out that they may just result from an over simplified
theoretical modeling of the system. And they are right. In
particular, a problematic feature concerns the “perfect ho-
mogeneity” assumption. Keeping a reactive system out of
equilibrium requires fixing the concentration of some chem-
ically active components to prescribed values. Not only do
these chemical intermediates fluctuate locally because of re-
active collisions, even in well stirred systems, but they also
diffuse. Even though we are only interested in global (space
averaged) quantities, there is a priori no guaranty that the
effect of these local fluctuations cancels out through space av-
eraging. In other words, local fluctuations could compromise
the “perfect homogeneity” assumption.

Here again, in the absence of sufficiently accurate experi-
mental results, the only way to address this issue is through
microscopic simulations of reactive fluids. For evident effi-
ciency reasons, in the present article we used Bird’s algorithm
for microscopic simulations. Not only this algorithm is up to
3 orders of magnitude faster than the traditional hard spheres
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molecular dynamics, but in addition it allows the simula-
tion of perfectly homogeneous (zero dimensional) Boltzmann
equation. This choice was motivated by our main purpose: in-
vestigate the validity of different types of stochastic modeling
of a perfectly homogeneous reactive systems. The next step
is to perform microscopic simulations of reactive fluids using
the exact hard spheres molecular dynamics procedure. Work
in this direction is in progress.

Finally, while numerical simulations are useful one should
not conflate a computational algorithm with a mathematical
process. For example, it is misleading (and incorrect) to define
a jump Markov process as being equivalent to the Gillespie
algorithm [34,35] (see Eqs. (2) and (3) in [8]). Such a process
is, in fact, defined by the “transition rate” concept, introduced
by Kolmogorov [13], while the algorithm is simply a numer-
ical procedure to generate the so-called “minimal process”
associated with jump Markov processes [36].
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APPENDIX: DIRECT SIMULATION MONTE CARLO FOR
REACTIVE SYSTEMS

As in molecular dynamic simulation (MD), the state of
the system in direct simulation Monte Carlo (DSMC) is the
set of particle positions and velocities, {ri, vi}. The evolu-
tion equations are integrated over successive time steps �t ,
typically a fraction of the mean collision time for a particle.
Within a time step, the free flight motion and the particle
interactions (collisions) are assumed to be decoupled. The free
flight motion for a particle i is trivially computed as ri(t +
�t ) = ri(t ) + vi(t )�t . After all particles have been moved,
they are sorted into “collisional” cells, typically a fraction
of mean free path in length. The main hypothesis in Bird’s
DSMC algorithm is that the cells are assumed to be perfectly
homogeneous, i.e., all particles within a cell are considered
to be potential collision partners, regardless of their exact
positions. This basic hypothesis simplifies considerably the
dynamics and allows the algorithm to be up to three orders
of magnitude faster than the corresponding exact hard sphere
MD.

A set of representative collisions, for the time step �t , are
then chosen in each cell. A collision probability is assigned
to each selected pair based on their relative speed; a random
impact parameter is selected and the collision is performed.
After the collision process has been completed in each cell,
the particles are moved according to their updated velocities
and the procedure is repeated. At this point we may recall that
our main purpose here is the study of the statistical properties

of perfectly homogeneous reactive systems. The DSMC algo-
rithm is particularly well adapted for this case since it allows
the simulation of a homogeneous Boltzmann gas simply by
associating the entire system volume to a single collisional
cell.

Reactions are modeled using “hard sphere chemistry”
which was introduced in the mid-1970s [22,24]. The basic
idea is quite elegant and simple. We first assign to each species
an attribute, say a “color”. A reactive collision occurs if the
colliding particles have “enough” energy, i.e., if the relative
kinetic energy of the colliding particles exceeds some thresh-
old related to the activation energy of the reaction [37]. If
this is the case, then the colors of the particles are changed,
according to the chemical step under consideration.

A major problem with this procedure is that it leads to
the deformation of the Maxwell-Boltzmann distribution since
only the most energetic particles can actually undergo a re-
active transformation [25,38]. To avoid this nonequilibrium
effect, the frequency of reactive collisions must be signifi-
cantly smaller than the frequency of elastic collisions, which
results in a significant waste of CPU time. One way to over-
come this difficulty is to further simplify the reactive collision
rules by the following procedure. If the intensive quantities are
expressed through mole fractions, instead of concentrations,
then the kinetic constants are proportional to the collision
frequency, that is

ki = νi exp {− Ei/kB T } ≡ νi k̃i, (A1)

where Ei is the activation energy of the reaction i and νi is
the collision frequency between the corresponding reactant
particles. After a collision between two such reactive particles
has occurred, we choose randomly k̃i% of the collisions to be
reactive, where k̃i stands for the Arrhenius factor defined in
Eq. (A1). Note that since the first reverse reaction in Eq. (2)
involves a pair of the same particles (i.e., X particles), the
relation (A1) must be replaced by k−1 = ν−1 k̃−1/2 for that
reaction. In any case, this procedure avoids the deformation
of the Maxwell-Boltzmann distribution since it does not in-
volve any systematic energy transfer between reactants and
products. It is, however, restricted to isothermal second-order
(binary collisions) reactions (see [29] for a review).

A final issue concerns the appropriate microscopic pro-
cedure to maintain constant the mole fractions of some of
the chemical species. To this end, in addition to the reactive
chemicals, we also consider “solvent” particles S. Their role
is precisely to maintain constant the number of A, B, and
C particles through the following strategy. Each time one
of these particles is created through a reactive collision, it
is replaced by an S particle. Similarly, when one of these
particles is destroyed through a reactive collision, an S particle
is chosen randomly and transformed into that species. Since
the solvent particles don’t intervene directly in the reaction
scheme (2), they do not modify the system’s dynamics while
maintaining it out of equilibrium [39]. The very same way as
the presence of particle reservoirs do, for example in CSTR
(well stirred tank reactor). Finally, note that for both reaction
models (2) and (4) the number of A, B, and C particles and the
sum of X and solvent particles X (t ) + S(t ) remain constant.
As such, knowledge of X (t ) determines entirely the state of
the system at each instant of time.
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