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Topological phase transition in a quasi-two-dimensional Coulomb gas
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A system with an equal number of positive and negative charges confined in a box with a small but finite
thickness is modeled as a function of temperature using mesoscale numerical simulations for various values
of the charges. The Coulomb interaction is used in its three-dimensional form, U (r) ∼ 1/r. A topological
phase transition is found in this quasi-two-dimensional (2D) system. The translational order parameter, spatial
correlation function, specific heat, and electric current show qualitatively different trends below and above a
critical temperature. We find that a 2D logarithmic Coulomb interaction is not essential for the appearance of this
transition. This work suggests new experimental tests of our predictions, as well as novel theoretical approaches
to probe quasi-2D topological phase transitions.
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I. INTRODUCTION

The conventional two-dimensional (2D) Coulomb gas con-
sists of logarithmically interacting charges [1–3]. Kosterlitz
and Thouless (KT) showed that such a system undergoes
a topological phase transition as a function of temperature
[1]. As the system is heated, a transition appears between
its low-temperature dielectric phase and a conducting high-
temperature phase [1]. The transition temperature is T ∗

KT =
q∗2/4, where q∗ is the charge, in the low-density limit [4].
Asterisked symbols represent adimensional quantities. The
properties of the 2D Coulomb gas have been studied the-
oretically [1–8] and with numerical simulations [9–17]. At
temperatures below T ∗

KT, correlations drop algebraically with
distance, with a temperature-dependent exponent. By contrast,
at temperatures above T ∗

KT, the correlations decay exponen-
tially [1]. The KT transition has long been viewed as the
quintessential “topological phase transition” that occurs de-
spite the absence of a well-defined local order parameter
(forbidden by the Mermin-Wagner-Coleman theorem [18]).
Here, at finite temperature, no continuous symmetry breaking
occurs. However, at temperatures T ∗ < T ∗

KT, the correlations
can become very long-ranged displaying the above-mentioned
algebraic decay with distance. Topological transitions also
appear in gauge theories that model fundamental interac-
tions. By Elitzur’s theorem [19], no local order parameter
can appear since gauge symmetry may not be broken. The
latter transitions in gauge theories are typically discontinuous
(first-order) or conventionally continuous (i.e., second-order)
transitions [20,21]. Both KT transitions and phase transitions
in gauge theories occur from a confined phase (of particles
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or topological defects, such as vortices or other excitations)
to a deconfined phase. The KT transition is unique in various
ways. Perhaps most strikingly, it is neither a conventional first-
nor second-order transition but is rather an end point of a con-
tinuous line of critical points. Along this critical line, at T ∗ <

T ∗
KT, the system exhibits the above-noted KT algebraic decay

of correlations. There are other 2D systems that undergo KT-
type transitions, of which we note only a few. These include
point charges [22], a solid with dislocations [23], and perhaps
most well-known, the XY spin model (including recent experi-
mental observation in magnetic crystalline materials [24]) and
superfluid films [25]. It also appears in thin superconducting
films where the interaction between vortices is logarithmic
at short range [26]. KT transitions are ubiquitous to p > 5
state 2D classical clock models [27] and related 1D clock
models [28], and they feature prominently in quantum spin
chains and 2D quantum dimer models [29,30]. Typically, in
one form or another, all equilibrated systems that display a
KT transition can be mapped onto an effective 2D plasma
of interacting charges. However, with the exception of gauge
theories, all of the above-noted studies were carried out for
strictly 2D systems. Indeed, excusing renormalization-group
considerations for finite thickness systems and the investi-
gation of truly higher-dimensional driven nonequilibrium XY
models featuring KT-type transitions [31], the detailed nature
of the transitions in equilibrated quasi-2D systems (in particu-
lar, those in hard/soft-sphere charged fluids that form the focus
of our work [5,32]) has long remained largely unexplored.

II. MODEL

Here we study a low-density, quasi-2D Coulomb gas of
spheres confined to move in a box whose thickness is small
but finite, by means of numerical simulations. The specific
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query that motivated our study is that of determining how
the topological transition of pristine 2D systems evolves as
these acquire a thickness in a transverse direction [33]. That
is, what transpires when instead of having charges (either
exact or effective, e.g., vortices or dislocations) interacting via
2D, logarithmic-type interactions, the system is a thin layer,
and the particles are 3D spheres? In investigating this ques-
tion, we found that various features persist. Our results may
afford a more direct comparison with experiments—which
are not truly 2D [34–36]. The large-distance electrostatic in-
teraction that we focus on is, accordingly, modeled as the
typical 3D electrostatic interactions, U (r) ∼ 1/r, where r
is the relative distance separating the charges, instead of
U (r) ∼ ln(1/r) for strictly 2D systems. These systems are
neutral, with an equal number of positively and negatively
charged particles. For the nonelectrostatic interactions, we
use the dissipative particle dynamics (DPD) model [37,38],
which is driven by conservative, dissipative, and random
forces. The latter forces are short-ranged, repulsive, and pair-

wise additive. The conservative force is given by �FC
i j (r

∗
i j ) =

a∗
i j (1−r∗

i j/r∗
C )�(r∗

C − r∗
i j )r̂i j , where a∗

i j is the intensity of the
force, which is chosen here as a∗

i j = 78.3 in dimensionless
units [39]. Although this type of force allows for some overlap
of the particles, our choice of a∗

i j reduces it [40]. The length
r∗

C = 1 is a cutoff radius, and �(x) is the Heaviside step
function. The dissipative and random forces are, respectively,

given by �FD
i j (r

∗
i j ) = −γ (1−r∗

i j/r∗
C )2[r̂i j .�v∗

i j]�(r∗
C − r∗

i j )r̂i j and

�FR
i j (r

∗
i j ) = σ (1−r∗

i j/r∗
C )�(r∗

C − r∗
i j )ξi j r̂i j , [38]. Here, �v∗

i j =
�v∗

i − �v∗
j is the relative velocity between particles i and j. Due

to the fluctuation-dissipation theorem, σ 2/2γ = kBT , where
kB is Boltzmann’s constant and T is the absolute temperature
[38]. The amplitudes ξi j are randomly drawn from a uniform
distribution between 0 and 1. The DPD model is chosen
because its simple force laws make it possible to use time
steps that are up to three orders of magnitude larger than those
used in conventional molecular dynamics. Additionally, the
coupling of the DPD dissipative and random forces creates
a robust, built-in thermostat that is more stable than those
used in atomistic molecular dynamics [44]. To confine the
charges so that they move on a thin slit, an effective wall
force is applied at both ends of the simulation box along the
z-direction, given by �Fwall(z∗) = a∗

w(1 − z∗/z∗
C )�(z∗

C − z∗)ẑ
[41]. The factor a∗

w sets the maximal size of this wall strength
that has z∗

C as its cutoff distance. The role of this feature-
less wall force is only to confine the motion of the charges
on a slit. The charges are modeled as charge distributions
centered at the center of mass of each particle, given by
ρ∗

q∗ (r∗) = (q∗/πλ∗3) exp(−2r∗/λ∗) [42,43]. Here, λ∗ is the
decay length of the charge distribution, and q∗ is the total
charge carried by the particle. It has been shown [43] that for
r∗ � r∗

C (the particles’ radius), the electrostatic force between
these charge distributions tends to zero as r → 0. For r∗ > r∗

C,

the electrostatic potential assumes its usual form, U (r) ∼ 1/r,
and its long-range contribution is calculated using the Ewald
sums [44]. Using this charge model with the conservative
DPD force, the collapse of particles with opposite charge is
avoided, and no singularity occurs in the Coulomb interaction
at the shortest distances. The number density, defined as the

total number of charged particles N divided by the volume
of the simulation box V , is in all cases equal to ρ∗ = 0.03.
The thickness of the simulation box is fixed at L∗

z = 1 while
its square transversal area depends on the total number of
charged particles, which goes from N = 200 up to 3 × 104.
The simulations are run for up to 4 × 103 blocks of 104δt∗
each, with the time step set at δt∗ = 0.01. Periodic boundary
conditions are applied along the x- and y-axes but not along
the z-direction since the walls are impenetrable. Full details
about the force field and simulations are provided in the Ap-
pendix, where additional results can also be found. Further
information about the method, algorithm, and other details
have been published elsewhere [40,41,43].

III. RESULTS AND DISCUSSION

To track the phase transition, we calculate the translational
order parameter (TOP) of the particles, defined as follows
[44]:


T = 1

N

〈∣∣∣∣∣
N∑

j=1

ei �K ·−→r∗
j

∣∣∣∣∣
〉
, (1)

where N is the total number of particles, and �K is the first
shell reciprocal-lattice vector. The angular brackets denote
an average over time. Fig. 1(a) shows the dependence of
TOP on temperature for increasing values of the charge. We
find a transition from an ordered low-temperature state to
a disordered high-temperature state, as shown in Fig. 1(a).
The transition temperature T ∗

c associated with each charge
|q∗| is found to monotonically increase with the magnitude
of the charge. Interestingly, on scaling the temperature by
T ∗

c = q∗2/4r∗
C , all of the TOP curves collapse into a single

universal function [Fig. 1(a)]. The TOP is approximately con-
stant below T ∗

c , where the charges are all paired, and it decays
sharply at temperatures above T ∗

c . Although the magnitude of
the TOP depends on the size of the system, becoming smaller
as the size increases, T ∗

c does not scale with the system size
[see Fig. 1(b) for |q∗| = 7]. At the onset of the transition, the
cluster formed by the grouping of dipoles begins to dissoci-
ate, fragmenting into smaller groups of dipoles [10,11]. This
splintering causes the TOP to decrease rapidly with a small
rise of the temperature, reaching a plateau. At the highest
temperatures, some charges still appear in isolated dipoles.
The TOP is small but remains nonzero at those temperatures.
For sufficiently large systems, several clusters of dipolar pairs
are formed, giving rise to a phase with algebraic order only.
When extrapolated to the thermodynamic limit, our data in
Fig. 1(b) suggest that the TOP tends to zero, as expected for a
topological phase transition having no local order parameter.
For a fixed value of the single-particle charge, as long as
the system remains globally neutral and confined along the
z-direction, the transition between a state where all charges
are bound to one where they are unbound occurs at the same
temperature.

The systems modeled in this work belong to the low-
density gas regime with long-range 1/r interactions. As
Alastuey and co-workers have argued [16], the transition
temperature is a function of the density of the charges
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FIG. 1. (a) The translational order parameter 
T as a function of
the scaled temperature, T ∗/T ∗

C , for four values of the charge on the
particles. In all cases, ρ∗ = 0.03, N = 200. (b) 
T as a function of
the scaled temperature at fixed number density ρ∗ = 0.03 and charge
|q∗| = 7 as the total number of charged particles N is increased; error
bars are smaller than the symbol’s size. The dashed lines are guides
for the eye.

through the dielectric function, ε, i.e., T ∗ = q2/4ε. For a
low-density gas, ε = 1 and the transition temperature between
a low-temperature dielectric phase and a higher temperature
conducting one is found to be equal to the KT prediction.
For 2D disks with logarithmic electrostatic interactions and
hard-disk (contact) nonelectrostatic interactions, Orkoulas
and Panagiotopoulos [10] find that the transition temperature
is density-dependent. We indeed remark that in systems hav-
ing contact interactions, the system density and thus the local
density of contacts may, rather naturally, play a prominent role
in determining the transition temperature. At low densities,
the critical temperature of [10] tends to that of the KT tran-
sition. Using soft DPD interactions and charge distributions
between spheres, we find that T ∗

C is given by the KT prediction
for low but finite density.

Figure 2(a) shows how the TOP changes as the intensity
of the nonbonding, nonelectrostatic conservative DPD
interaction, a∗

i j , is increased; see Eq. (A2a) in the Appendix.
The transition temperature to the topologically ordered
low-temperature phase is found to be robust against changes
in the a∗

i j parameter. The strength of the short-range,
nonelectrostatic force does not affect the phase transition
precisely because the transition is driven by the electrostatic

FIG. 2. (a) Translational order parameter TOP, 
T , see Eq. (1),
vs temperature, normalized by T ∗

c , for increasing intensity of the
conservative DPD force constant a∗

i j [see Eq. (A2a) in the Appendix]
with a total of N = 200 particles with charge |q∗| = 5, in a box with
thickness L∗

Z = 1. (b) Influence of increasing the thickness of the
simulation box along the z-axis, L∗

Z , on 
T , as a function of the
reduced temperature, T ∗/T ∗

C , for |q∗| = 4. The transverse area of
the box is equal to L∗

X × L∗
Y = 80 × 80r2

C . In all cases, the number
density is ρ∗ = 0.03. Dashed lines are only guides for the eye.

interaction. This is why T ∗
C is unaffected by a∗

i j , as long as
the charge q∗ remains constant; see Fig. 1(a). The curves
in Fig. 2(a) show the existence of a single universal curve,
where the critical temperature is the same, regardless of
the value of a∗

i j , T ∗
C = q∗2/4r∗

C , as for the KT transition [1].
Figure 2(b) displays the temperature dependence of the TOP
when the thickness of the simulation box along the z-axis is
increased while keeping the transversal area on the xy-plane
fixed. The purpose of performing these calculations is to
determine to what extent the properties of the topological
phase transition are affected as the system becomes more
three-dimensional [5]. The results show that the magnitude
of the TOP becomes smaller with increasing box thickness.
However, the transition temperature remains roughly constant.
Extrapolating the trends seen in Fig. 2(b) indicates that the
transition disappears when the system transitions from
quasi-2D to 3D, in accordance with expectations [45].

The radial distribution function (RDF), g(r), for parti-
cles of opposite charge is shown in Fig. 3 at T ∗ < T ∗

C
[Figs 3(a) and 3(b)] and at T ∗ > T ∗

C [Figs. 3(c) and 3(d)].
At the lowest temperatures, all dipoles are bound in dipole
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FIG. 3. (a) The RDF and (b) snapshot of oppositely charged spheres at T ∗/T ∗
c = 0.24. The RDFs shown in (c) are all for T ∗ > T ∗

c , with
T ∗

c = 0.41. The snapshot in (d) shows the system at T ∗/T ∗
c = 2.45. The dashed red line in (a) is the fit to the function g(r∗) ∼ r∗−η, with

η = 1.1. The solid red line in (c) is the function g(r∗) ∼ e−(r∗/2.2). The snapshot in (d) is taken at T ∗ > T ∗
c , showing most charges unpaired.

Red/blue circles are positive/negative charges. In all cases, ρ∗ = 0.03, |q∗| = 7, N = 3 × 104. The snapshots were obtained with VMD [46].

pairs; see Fig. 3(b). The sharp maxima displayed at relatively
short distances in the RDF [Fig. 3(a)] correspond to closely
bound dipolar pairs [15]. Accordingly, maxima appear at r∗ =
1,

√
5,

√
8, …, etc., as a consequence of the coordination of

opposite charges forming a square lattice on the xy-plane, with
the first peak due to dipolar pairs, the second to four-charge
clusters, and so on. The long-range behavior of the RDF,
indicated by the dashed line in Fig. 3(a), shows algebraic
decay, as expected [1–4]. To capture this dependence, the area
of the simulation box has to be large enough to allow for
the formation of dipolar clusters. If the number of charges is
small, they all condense into a single square lattice at the low-
est temperature. The snapshot in Fig. 3(b) shows all charges
condensed into clusters with quasi-long-range order at the
lowest temperature. At T ∗ > T ∗

c , the RDF decays exponen-
tially [1–3]; see Fig. 3(c). The charge clusters are dissolved,
and most charges move individually, although some remain
bound in dipoles; see Fig. 3(d). Comparison of the RDFs
below [Fig. 3(a)] and above [Fig. 3(c)] T ∗

c vividly sheds light
on the nature of this phase transition [1]. Most of the structure
of the system when it is condensed at T ∗ < T ∗

c [Figs. 3(a) and
3(b)] vanishes at T > T ∗

c [Figs. 3(c) and 3(d)].
To contrast our predictions with those for strictly 2D sys-

tems, we compare in Fig. 4 the radial distribution functions
obtained in this work between opposite charges below and
above the transition temperature, Figs. 4(a) and 4(c), respec-
tively, with those obtained for disks in 2D. Figure 4(b) shows
the radial distribution function obtained from molecular-
dynamics simulations of charged disks interacting through the

potential v12(r) = e2[(σ/r)ν + ln(r/L)], where the exponent
ν = 10, σ is the core radius of the disks, L is an arbitrary
lengthscale, and e is the elementary charge [15]. The positive
ions are fixed on a hexagonal cell, and the negative ions are
free to move. The data shown in Fig. 4(b) were obtained [15]
below the transition temperature, when most negative ions are
grouped near the positive ions, thereby giving rise to maxima
in the radial distribution function, as in Fig. 4(a) for spheres.
The periodicity of the peaks in Fig. 4(b) [15] is different from
our results, Fig. 4(a), because in this work all charges are free
to move, whereas the positive charges in the work of Clerouin
et al. [15] are fixed on a hexagonal lattice. Figure 4(d) dis-
plays the radial distribution function for oppositely charged
hard disks obtained from Monte Carlo simulations above the
transition temperature [13]. The spatial correlations are seen
to decay exponentially for disks, as they do for spheres, see
Fig. 4(c), above the transition temperature. There is only a
very weak correlation at small distances, but that is because
the DPD intermolecular interactions of the spheres are not as
short-ranged as those of hard spheres; see Eq. (A2a) in the
Appendix. In conclusion, the spatial correlations for spheres
under quasi-2D confinement below [Fig. 4(a)] and above
[Fig. 4(c)] T ∗

C present qualitatively the same behavior as their
strictly 2D counterparts [Figs. 4(b) and 4(d)].

In Fig. 5(a) we show the evolution of the density of free
charges with increasing temperature for two values of the
charge. The charges are considered free if their relative dis-
tance is r∗

i j � 1.4. This condition was chosen based on the
value of the cutoff length of the DPD forces, r∗

C = 1.0, see
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FIG. 4. Comparison of the radial distribution functions [g(r∗)] obtained in this work below (a) and above (c) T ∗
C , for oppositely charged

spheres under quasi-2D confinement, with those taken from the literature for strictly 2D disks, also below (b) and above (d) T ∗
C . The data in (a)

and (c) are for number density ρ∗ = 0.03, charge |q∗| = 7, and N = 3 × 104 at normalized temperature T ∗/T ∗
C = 0.24 and 2.44, respectively.

The data in (b) are taken from Clerouin and co-workers [15] for hard charged disks in 2D below T ∗
C for ρ∗ = 0.01 and T ∗ = 1/5.7. The data

in (d) are taken from Aupic and Urbic [13] and correspond to a system of hard disks for ρ∗ = 0.01 and T ∗ = 0.6, above T ∗
C .

Eqs. (A2) in the Appendix. For the relative distance between
particles larger than r∗

C , all the nonbonding, nonelectrostatic
forces vanish. Thus, at any relative distance r∗

i j > r∗
C the

charged particles can be considered unbound. By choosing
particles to be free if r∗

i j � 1.4, ample range is provided to
ensure that under such a condition they are not bound. As
Fig. 5(a) shows, the number of free charges increases rapidly
as the temperature grows above T ∗

C , following the same trend
for both values of the charge on each sphere. The solid line
in Fig. 5(a) corresponds to the approximate analytical solu-
tion, provided by Minnhagen [3] for the Kosterlitz-Thouless
transition in charged disks. It is concluded that the quasi-2D
condensed phase melts similarly to the strictly 2D phase. At
temperatures below the transition temperature, the spatial cor-
relations between charges of opposite sign decay as a power
law, g(r∗

i j ) ∼ 1/r∗η
i j , where the exponent η depends linearly

on temperature, for T ∗ well below T ∗
C ; see Fig. 5(b). This is

in agreement with the expected behavior for the strictly 2D
KT transition [1]. At T ∗

C , η ≈ 4.5 ± 1.8, which is much larger
than the expected value for the KT transition, η = 1/4 [1]. A
more appropriate comparison would be with the value of the
exponent extrapolated from the low-temperature data [black
line in Fig. 5(b)], where the power law dependence of g(r∗

i j )
is well-defined. There, one finds η = 2.1. Although notably
larger than the expected 2D value, this value of η is not too
different from that found in other quasi-2D models [47,48].
We note that the 1/r interaction between charged spheres that
we investigate decays more rapidly than the ln(1/r) interac-
tion, appearing in the BKT theory, between two-dimensional

defects (including notably XY vortices) or charges. Since the
1/r interactions drop more swiftly with particle separation
than the conventional logarithmic interactions, the associated
correlations that they lead to may drop more precipitously
with distance than those in the canonical BKT theory.

The transition found here can be understood as being
driven by the proliferation of defects that melt the crystal
[1,50,51]. As shown by Toxvaerd [52], the lattice melts as
the temperature increases, where the defects become charge
quadruplets of disclinations. The role of disclinations is
played by dipolar pairs. We calculate the specific heat, C∗

V =
1/Nq∗2(∂U ∗/∂T ∗)V , as |q∗| increases, from numerical dif-
ferentiation of the total internal energy curves, U ∗. As seen
in Fig. 6(a), we find that C∗

V has a maximum at T ∗ ∼ T ∗
c ,

regardless of the charge, in agreement with previous reports
for strictly 2D systems [9,11–13,15,17]. The maximum in C∗

V
occurs at a temperature that increases with |q∗|, since larger
energy is required to unbind dipoles for larger charge, and it
becomes smaller in magnitude as |q∗| increases. The stronger
coupling produced by increasing |q∗| makes the transition
broader, with more dipolar pairs present at T ∗ > T ∗

c . This
behavior reproduces that found for C∗

V of charged disks below
and above T ∗

c [15]. Once T ∗ is renormalized by the corre-
sponding T ∗

c for each charge, the maximum in C∗
V occurs at

roughly the same normalized temperature for all the values
of q∗; see Fig. 6(a). The influence on the specific heat of
increasing the total number of charged spheres in the system,
N , while keeping the number density and the charge on the
particles fixed is presented in Fig. 6(b). Since the charge is
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FIG. 5. (a) Number density of free charged spheres, nF , re-
gardless of their sign, as a function of reduced temperature for
spheres with charge |q∗| = 4 (red circles) and |q∗| = 6 (blue tri-
angles). In both cases there are N = 200 charged particles, with
total number density ρ∗ = 0.03. The solid black line represents an
approximate analytical solution for finite screening length of the
Coulomb interaction between disks taken from [3]. The function is
nF = a(r0/λ)1/2(T/TC ), where r0 is the linear extension of the charge
distribution, λ is the screening length, and a is a parameter [3],
chosen here to be a = 0.025, with (r0/λ) = 0.001. (b) Exponent (η)
of the algebraic decay of the radial distribution function between
charges of opposite sign, g(r∗

i j ) ∼ 1/r∗η

i j , as a function of the normal-
ized temperature. The solid black line is the best linear fit for the data
below T ∗

C . There are 3 × 104 particles in the system with |q∗| = 7 and
ρ∗ = 0.03.

fixed, the temperature at which the specific heat reaches its
maximum is relatively unaffected by the change in N . This is
in agreement with the results of Clerouin and co-workers for
charged disks [15]. Just as the structure of the system shows
that the topological phase transition disappears as it becomes
more 3D [see Fig. 2(b)], the thermodynamics of the system
confirms this fact. This is more clearly seen in Fig. 6(c), which
shows that the maximum in the specific heat (normalized by
its value for the thinnest box, with L∗

Z = 1) is reduced as
the box thickness increases. The finite-size scaling analysis
of Fig. 6(d) shows that the maximum in the specific heat as
the temperature crosses the transition temperature for charged
spheres under quasi-2D confinement displays a weak depen-
dence on the size of the system. The dashed line in Fig. 6(d) is

the best fit to the function C∗
V max = a + b ln(L∗) + c/L∗ [49],

where a, b, and c are fitting parameters, and L∗ is the side
length of the square transversal area of the simulation box.
This fitting function is consistent with the scaling exponent
α = 0 expected for the 2D Ising model, where the scaling
relation is C∗

V ∼ |T ∗ − T ∗
C |−α [53]. For the 2D XY model,

the maximum in the specific heat occurs at a temperature
higher than T ∗

C , signaling the proliferation of defects [1]. In
our work, the maximum in the specific heat occurs also at tem-
peratures slightly larger than T ∗

C , with the difference between
these temperatures becoming larger as the value of the charge
increases.

We also calculate the average current in the system, I∗
x ,

once a weak electric field �E∗ = 0.02x̂ is applied along the x-
axis of the simulation box, for particles with charge |q∗| = 5.
The current is given by

I∗
x = 1

Nr∗
C

〈∣∣∣∣∣
N∑

i=1

q∗
i

−→
v∗

ix

∣∣∣∣∣
〉
, (2)

where
−→
v∗

ix is the x-component of the velocity of the ith
particle with charge q∗

i , and r∗
C = 1 is the cutoff length of

the nonelectrostatic forces. The results are shown in Fig. 7,
where U ∗ is included also, for comparison. There is clearly
a transition from a low-temperature dielectric phase to a con-
ducting phase at T ∗ > T ∗

c , as in the strictly 2D KT transition.
Consistent with Ohm’s law, the temperature dependence of
the current follows that of U ∗. The inset in Fig. 7 presents U ∗
versus I∗

x , where a linear dependence between them clearly
arises. The trends found in both C∗

V and U ∗ in Fig. 7 are the
same as those found for charged disks in strictly 2D systems
[9,14].

The phase transition found here may, once again, be un-
derstood as being driven by a proliferation of defects in the
form of pairs of opposite charges that melt the crystal. At the
onset of the melting transition, bound dislocation pairs begin
to appear. Raising the temperature leads to the appearance of
more dislocations and disclinations, with some remaining at
the largest temperature modeled here. This scenario is similar
to the KTHNY theory [1,50,51] that predicts that the 2D crys-
tal melts due to the unbinding of dislocations and the spread of
disclinations. Consequently, the effective interactions between
defects responsible for the phase transition in this quasi-2D
system may be predominantly logarithmic, as they are in the
KTHNY theory, although the electrostatic pair interactions
vary as 1/r.

Lastly, Fig. 8 illustrates the structural evolution of a sys-
tem of 200 charged spheres on a quasi-2D simulation box
as the temperature is increased, with a series of snapshots.
The melting of the ordered structure is found to occur at first
by the appearance of defects as pairs of charges (see, for
example, the rightmost snapshot in the top row in Fig. 8).
As the temperature is raised, the charges remain in groups
of four or at least as dipoles mostly, breaking the trans-
lational order; see the third and fourth row snapshots in
Fig. 8. This transition has features reminiscent of the KTHNY
transition in strictly 2D systems [54,55]. At very high tem-
peratures the dipoles decouple, and the system becomes
conducting.
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FIG. 6. (a) Specific heat, C∗
V = 1/Nq∗2(∂U ∗/∂T ∗)V , as a function of temperature normalized by T ∗

C , for four values of the charge. The
number of charges is N = 200. (b) Evolution of the specific heat as a function of temperature, as the number of charged spheres, N , is
increased. The charge is |q∗| = 4. (c) Maximum value of the specific heat as a function of box thickness, normalized by the maximum in
C∗

V for the thinnest simulation box, L∗
Z = 1. The charge is |q∗| = 4, and the transverse area of the box is equal to L∗

X × L∗
Y = 80 × 80r2

C . (d)
Dependence of the maxima in the specific heat (C∗

V max) of spheres under quasi-2D confinement as the length of the side of the square area (L∗)
of the parallelepiped simulation box on the xy-plane is increased. The number density is equal to ρ∗ = 0.03 and the charge is |q∗| = 7. The
red dashed line is the best fit to the function C∗

V max = a + b ln(L∗) + c/L∗ [49]. In all cases, the number density is equal to ρ∗ = 0.03; in (a),
(b), and (d) the thickness of the box along the z-direction is fixed at L∗

z = 1.
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FIG. 7. Comparison of the internal energy, U ∗/Nq∗2 (blue
squares, right axis), with the average current along the direction of
the applied electric field, I∗

x (red circles, left axis), when E∗ = 0.02 is
applied along the x axis. The dashed lines joining the data are guides
for the eye. The inset shows the dependence of U ∗/Nq∗2 on I∗

x ; the
dashed line is the best linear fit. For all curves, ρ∗ = 0.03, N = 200,
|q∗| = 5, and the error bars are smaller than the symbol sizes.

IV. CONCLUSIONS

To summarize, the structural, thermodynamic, and dy-
namic properties of neutral systems of charged spheres
confined to move in a quasi-2D geometry have been obtained
at various temperatures for various charge values. We find
that it is possible to locate a topological phase transition in
a low-density Coulomb gas that is not strictly confined to 2D
but has a finite thickness, and that its properties resemble those
of its strictly 2D counterpart. The T ∗

c is found to take place
at T ∗

C = q∗2/4r∗
C , as predicted for disks [1–8]. The explicit

dependence of the Coulomb interaction [ln(r) or 1/r ] is not
crucial for the appearance of the topological phase transi-
tion, but charge neutrality in reduced dimensionality is [11].
This is relevant for comparison with, understanding of, and
interpretation of recent quasi-2D experiments. Our approach
may suggest new experimental tests of our predictions, such
as in colloids trapped between membranes, as well as new
theoretical approaches to probe this type of topological phase
transition.
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FIG. 8. Snapshots on the xy-plane of the system with charge
|q∗| = 7 and number density ρ∗ = 0.03 as a function of temper-
ature, showing how the crystal-like structure at low temperature
melts as the temperature is increased. The normalized tempera-
tures of the first row are T ∗/T ∗

C = 0.24, 0.49, 0.61, 0.98. For
the second row, T ∗/T ∗

C = 1.0, 1.02, 1.05, 1.07. For the third-
row snapshots, T ∗/T ∗

C = 1.1, 1.22, 1.46, 1.71. For the last row,
T ∗/T ∗

C = 1.95, 2.2, 2.44, 122.4; in all cases, from left to right. The
blue line shows the edges of the simulation box, whose volume is
V ∗ = 80 × 80 × 1r∗3

C . In all cases, there is a total of 200 charges; red
points are positively charged spheres and blue ones are negatively
charged. The system at the critical temperature is emphasized by the
frame in red. There are periodic boundary conditions on the xy-plane.
The snapshots were obtained with VMD [46].
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APPENDIX

1. DPD model

The standard algorithm of molecular dynamics [44] is
used for the dissipative particle dynamics (DPD) force model
[37,38]. The net (nonelectrostatic) force acting on the ith
particle, F i, is given by

F i =
∑
i �= j

FC
i j + FD

i j + FR
i j, (A1)

where the DPD interparticle force exerted by particle i on
particle j is pairwise additive. The conservative FC

i j , dissipa-
tive FD

i j, and the random forces FR
i j are defined as follows,

FIG. 9. Nonbonding, pairwise conservative DPD force (FC
i j , red

line) as a function of the relative distance between the centers of
mass of the particles (r∗

i j); see Eq. (A2a). The maximum intensity of
this repulsive force if given by the constant a∗

i j , and r∗
C is the cutoff

radius. The blue circles represent particles overlapping when their
relative distance is smaller than r∗

C , when FC
i j is large but finite. For

relative distances larger than r∗
C , FC

i j = 0.

respectively:

�FC
i j (r

∗
i j ) = a∗

i j (1 − r∗
i j/r∗

C )�(r∗
C − r∗

i j )r̂i j, (A2a)

�FD
i j (r

∗
i j ) = −γ (1 − r∗

i j/r∗
C )2[r̂i j .�v∗

i j]�(r∗
C − r∗

i j )r̂i j, (A2b)

�FR
i j (r

∗
i j ) = σ (1 − r∗

i j/r∗
C )�(r∗

C − r∗
i j )ξi j r̂i j . (A2c)

The length r∗
C = 1 is a cutoff radius, and �(x) is the Heavi-

side step function. Here, �v∗
i j = �v∗

i − �v∗
j is the relative velocity

between particles i and j. Due to the fluctuation-dissipation
theorem, σ 2/2γ = kBT , where kB is Boltzmann’s constant
and T is the absolute temperature [38]. The amplitudes ξi j are
randomly drawn from a uniform distribution between 0 and 1.
They become zero for r∗

i j > r∗
C, where r∗

C is a cutoff radius.
This cutoff distance is selected as the reduced unit of length
r∗

C = 1 and is the intrinsic lengthscale of the DPD model. The
masses of all particles are equal and chosen as m∗

i = 1, in
reduced units. Asterisked quantities are reported in reduced
units, except where explicitly stated otherwise. Figure 9 il-
lustrates the dependence of the nonbonding, nonelectrostatic
conservative DPD force (FC

i j) on the relative distance r∗
i j

between the centers of mass of the particles. For distances
larger that the cutoff distance, r∗

C , this force vanishes, and the
particles behave as if they were in an ideal gas. For relative
distances in the range 0 � r∗

i j � r∗
C the force grows linearly as

the distance is reduced.
The constant that defines the maximum amplitude of the

random force, σ , is in all cases fixed at σ = 3, as is customary
[38]. Once the temperature is chosen, the amplitude of the
dissipative force, γ , is fixed, since γ = σ 2/2kBT [38]. The
constant that defines the maximum strength of the nonelec-
trostatic conservative DPD force, a∗

i j , is chosen as a∗
i j = 78.3

for all particles, regardless of their charge, except when stated
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FIG. 10. Effective wall force applied perpendicularly to the
xy-plane at both ends of the simulation box along the z-direction.
The wall force is linearly decreasing with the z-component of the
particles’ positions. The maximum strength of the wall force is given
by the constant a∗

w; the force vanishes for z∗ > z∗
C . The inset shows

the walls (brown rectangles), defined by Eq. (A4), confining the
charged particles in the box. The snapshot of the charges flanked
by the walls is taken from an actual simulation, with red circles
representing positive charges and blue ones representing negative
charges.

otherwise. This value is obtained from the equation [39]

a∗
ii = [16Nm − 1]

0.6
kBT ∗, (A3)

where Nm is the so called “coarse-graining degree,” i.e., the
volume of the DPD particles in terms of the volume of a
water molecule; we choose Nm = 3 [39]. In reduced units,
the thermal energy scale is kBT ∗ = 1. Since this force is
linearly decaying with interparticle separation, the particles
are soft and could in principle overlap; see Fig. 9. However, by
choosing a∗

i j = 78.3 one finds that particle overlap is always
avoided [40].

To keep the charged spheres moving on a quasi-two-
dimensional slit on the xy-plane, a force along the z-axis is
applied at both ends of the simulation cell on the z-axis. It is
defined as [41]

�Fwall(z
∗) = a∗

w(1 − z∗/z∗
C )ẑ, (A4)

where the amplitude of the wall force is chosen in all cases as
a∗

w = 150.0 in reduced units. This value of the a∗
w constant

has been shown to be strong enough so that the particles
cannot penetrate the walls [41]. This wall force becomes iden-
tically equal to zero for distances along the z-axis larger than
z∗

C = 1, and it is added to the other nonbonding, nonelectro-
static forces in Eq. (A1); see Fig. 10. The wall force defined
by Eq. (A4) confines effectively the charged particles along
the z-direction.

2. Coulomb interaction for charge distributions

It was Groot who first proposed to use charge distributions
to deal with the softness of DPD particles, thus avoiding

0 2 4 6 8
0

10

20

30

r */ r *C

 Modified Coulomb interaction
 Modified Coulomb force
 1 / r* potential 

FIG. 11. Coulomb interaction between charge distributions
[solid blue line; see Eq. (A6)] and the electrostatic force derived from
it (dashed red line); see Eq. (A7). The dotted black line represents
the bare electrostatic interaction U (r) ∼ 1/r. The vertical dashed
line represents the distance where the real part of the Ewald sums
is truncated. For these plots, the value of |q∗| = 5 was used. After
González-Melchor et al. [43].

singularities in the Coulomb interaction arising from complete
overlap between particles [42]. Here we use also charge dis-
tributions instead of point charges, but we follow the model
of González-Melchor et al. [43] instead, in which the electro-
statics of the DPD particles is solved with the Ewald sums
technique [44]. The charge distributions are defined as a
Slater-type charge-density function, given by

ρ∗
q∗ (r) = q∗

πλ∗3
e−2r∗/λ∗

(A5)

where λ∗ is the decay length of the charge. When the charge
density in Eq. (5) is integrated over space, one finds that the
total charge in the particle is q∗. In general, the forces be-
tween charge distributions cannot be calculated analytically.
However, for the model given by Eq. (A5) there is an accurate
approximate expression that has been successfully tested in
various applications [56,57]. The approximate Coulomb inter-
action between the charge distributions defined by Eq. (A5) is
[43]

U (r∗) = �

4π

(
q∗

i q∗
j

r∗

)
[1 − (1 + βr∗)e−2βr∗], (A6)

while the force derived from it is given by

−→
F e(r∗) = �

4π

(
q∗

i q∗
j

r∗2

)
[1 − (1 + 2βr∗{1 + βr∗})e−2βr∗ ]̂r,

(A7)

where � = e2

kBT ε0εr r∗
C

and β = r∗
C

λ∗ . The constants ε0 and εr are
the dielectric constants of vacuum and water at room temper-
ature, respectively. As shown in Fig. 11, both the potential
in Eq. (A6) and the force derived from it, Eq. (A7), are well
behaved when the interparticle distance goes to zero.

For distances smaller that the distance at which the mod-
ified Coulomb interaction between charge distributions is
equal to the bare Coulomb interaction between point charges
(r∗/r∗

C = 3, in Fig. 11), the Ewald sums are performed in real
space. For distances larger than that, the sums are performed
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in Fourier space, following the usual procedure [44]. For ad-
ditional details about the application of Ewald sums to charge
distributions in bulk DPD systems, the reader is referred to the
work of González-Melchor et al. [43].

When Ewald sums are applied to confined systems, as is
our case, additional care must be taken because the Fourier
transforms involved cannot be performed straightforwardly
due to the lack of three-dimensional periodicity [58,59]. This
problem can be overcome by applying an additional force
along the z-axis to all the charged particles:

−→
F i (z) = − �

V ∗ q∗
i Mzẑ, (A8)

where

Mz =
N∑

i=1

q∗
i z∗

i . (A9)

In Eq. (A8), V ∗ is the volume of the simulation cell and
Mz is the total dipole moment, see Eq. (A9), which must be
removed out of the cell for each particle. By applying this
additional force to each particle along the z-direction, it can
be shown [59] that the three-dimensional version of the Ewald
sums can be successfully applied to confined DPD particles
with charge distributions. Full details can be found in the work
of Alarcón et al. [59].

3. Simulation details

All the simulations reported here are performed in reduced
units and under canonical ensemble conditions. The time step
chosen to integrate the equation of motion is δt∗ = 0.01;
the volume of the simulation box is L∗

x × L∗
y × L∗

z = 80 ×
80 × 1r∗3

C , except where indicated otherwise; r∗
C = 1 through-

out this work. To express distances r in units of length, one has
to multiply r = r∗rC , with rC = 6.46 Å [60]. The total number
of particles in the systems modeled is in the range from 2 ×
102 up to 3 × 104 DPD spheres in the simulation box. Periodic
boundary conditions are applied along the x- and y-directions
of the simulation box but not along the z-direction because
the system is confined in that direction. The simulations are
carried out using a code developed by the group of one of us
(AGG), which has been benchmarked and thoroughly tested
[60]. The real part of the Ewald sums is cut off at r∗

E = 3.0r∗
C

and α = 0.15 Å−1. The latter is the factor that determines the
contribution in real space of the Ewald sums [44]. The value
for λ∗ in Eq. (A5) is chosen in all cases as λ∗ = 6.95 Å. For the
part of the Coulomb interaction calculated in Fourier space,
a maximum reciprocal vector �kmax = (5, 5, 5) is chosen. The
constants β and � in Eq. (A6) are chosen as β = 0.929 and
� = 13.87, following González-Melchor et al. [43] and Groot
[43], respectively. To confine the charged spheres with the
surfaces, given by Eq. (A4), no periodicity at the boundaries
along the z-direction is applied, therefore the charges are not
replicated along the z-axis.

The lack of periodicity along the z-direction and the im-
penetrable walls avoid the replication of the charges along
the z-axis. To further prove this issue, additional simulations
were carried out for new box sizes, namely L∗

x × L∗
y × L∗

z =

FIG. 12. The translational order parameter 
T as a function of
temperature, normalized by the critical temperature, for a system
of 200 charged spheres in boxes of three thicknesses along the
z-direction. The data labeled “L∗

z = 1.0” (black squares) are taken
from Fig. 1(a). In all cases, the distance between the effective walls
that confine the charged spheres along the z-direction is �z∗ = 1.0;
the rest is vacuum.

80 × 80 × 80 and 80 × 80 × 160. The walls were placed at
the center of the new boxes along the z-axis, with the sepa-
ration between the walls kept always equal to �z∗ = 1.0, to
maintain the system under a quasi-2D geometry. This setup
creates a large vacuum space in either side of the confined
charges, along the z-direction. A system of 200 charged
spheres, each with charge |q∗| = 4, was run in each box, and
the translational order parameter (TOP) was calculated as a
function of temperature for 2 × 106 time steps. The results,
presented in Fig. 12, show that there is virtually no change
in the TOP using boxes with and without explicit vacuum
regions along the z-direction, consistent with the lack of peri-
odic boundary conditions along the z-axis. Following Yeh and
Berkowitz [58], the three-dimensional version of the Ewald
sums is used, with the dipolar correction for confined geom-
etry, see Eq. (A9), properly adapted by Alarcón et al. [59] to
DPD with charge distributions. Up to 20 k vectors were used
to test whether the translational order parameter or the electro-
static interaction depended on them, finding that the results are
essentially independent of the number of k vectors. Thus, to

FIG. 13. Translational order parameter TOP, see Eq. (1), vs tem-
perature, normalized by T ∗

c , for four values of the number density
of charged particles. In all cases, N = 200 and the thickness of the
simulation box is L∗

Z = 1; error bars are smaller than the symbol’s
size. The dashed lines are guides for the eye.
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FIG. 14. Influence of increasing the thickness of the simulation
box along the z-axis, L∗

Z , on the specific heat. Evolution of the
maximum value of the specific heat as a function of box thickness,
normalized by the maximum in C∗

V for the thinnest simulation box,
L∗

Z = 1. In all cases, |q∗| = 4 and ρ∗ = 0.03, and the transverse area
of the box is equal to L∗

X × L∗
Y = 80 × 80r2

C . Dashed lines are only
guides for the eye.

improve the computational speed, we used only five k vectors
in all simulations reported here. The simulations are run for at
least 5 × 106 time steps and up to 4 × 107 time steps, with the
first half used to reach equilibrium and the second half used
for the production phase. Because there are an equal number
of positively and negatively charged particles, the net charge
in the system is always zero.

4. Additional results and discussion

Figure 13 shows the dependence of the TOP on tempera-
ture for increasing values of the number density of charged
spheres for |q∗| = 5. The TOP reaches a maximum close to
T ∗

c , signaling an ordering of the charged spheres, decaying
sharply at T > T ∗

c , as expected for a phase transition. It also
exhibits a monotonic decrease with increasing number den-
sity, yet T ∗

c does not change, being determined by the charge,
which is constant in Fig. 13. This is the case because the
densities are low, which makes the dielectric constant ε = 1,
and T ∗

c becomes density-independent [16].
The total internal energy, U ∗, is calculated as well at

each temperature modeled, and from it the specific heat is
obtained as usual, C∗

V = (1/Nq∗2)∂U ∗/∂T ∗. The derivative

FIG. 16. Comparison of the translational order parameter (blue
squares, right axis) with the electrical current along the x-axis (red
circles, left axis) as the temperature is raised. The data correspond
to a system of particles with charge |q∗| = 5, number density ρ∗ =
0.03, and simulation box volume L∗

x × L∗
y × L∗

z = 80 × 80 × 1r∗3
C .

The electric field applied along the x-direction is E∗
x = 0.02. The

electric current data are taken from Fig. 7.

is evaluated numerically via finite differences of the internal
energy. The results of varying the box thickness are shown
in Fig. 13. The specific heat is found to decrease as the box
thickness is increased, reaching a plateau for L∗

Z � 3, which
can be considered as the “critical thickness,” i.e., when the
system ceases to be quasi-two-dimensional. As expected, both
structural (Fig. 13) and thermodynamic (Fig. 14) properties
show that the phase transition tends to disappear as the system
becomes more 3D.

In Fig. 15 we compare qualitatively our predictions for the
specific heat with those obtained by other workers for 2D
disks, as we did for the spatial correlations below and above
T ∗

C (see Fig. 4). In Fig. 15(a) one can find our predictions
for the specific heat as a function of temperature for three
values of the magnitude of the electric charge on the spheres.
Figure 15(b) shows the specific-heat data obtained for disks
where the positively charged ones are fixed on a hexagonal
lattice [15] for different densities. The lines in both panels of
Fig. 15 were obtained from numerical differentiation of the
internal energy data. The three curves in Fig. 15(b) correspond
to different isochores, where decreasing σ is equivalent to in-
creasing the charge q∗ in Fig. 15(a). Once again it is found that
our predictions for charged spheres in quasi-2D conditions
reproduce qualitatively the physics of charged disks.

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20 (a)

C
 * V

T *

|q*| = 4
|q*| = 5
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FIG. 15. Specific heat as a function of temperature for (a) charged spheres and (b) charged disks [15]. The data in (a) are reported for three
values of the charges on the spheres while keeping the concentration constant at ρ∗ = 0.03, with the volume of the simulation box given by
L∗

X × L∗
Y × L∗

Z = 80 × 80 × 1r3
C . The curves in (b) are taken from Clerouin et al. [15] for strictly 2D disks. See the text for details.
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When a weak external electric field is applied to the system
of charged spheres confined to move on a quasi-2D environ-
ment, a phase transition can still be found, as demonstrated
by the value of the TOP; see the blue squares in Fig. 16.
The temperature at which the transition occurs is raised with
respect to the case when the system is in equilibrium [when no
external field is applied; see Fig. 1(a)]. The system undergoes

a transition from a low-temperature dielectric phase to a high-
temperature, electrically conducting phase, as in the strictly
2D case [8].

The application of a weak electric field yields no current
in the low-temperature phase, where the order parameter is
close to 1, while a conducting phase is obtained in the high-
temperature phase, with vanishing order parameter.
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