
PHYSICAL REVIEW E 107, 014103 (2023)

Geodesic path for the optimal nonequilibrium transition: Momentum-independent protocol
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Accelerating controlled thermodynamic processes requires an auxiliary Hamiltonian to steer the system into
instantaneous equilibrium states. An extra energy cost is inevitably needed in such finite-time operation. We
recently developed a geodesic approach to minimize such energy cost for the shortcut to isothermal process. The
auxiliary control typically contains momentum-dependent terms, which are hard to be experimentally imple-
mented due to the requirement of constantly monitoring the speed. In this work, we employ a variational auxiliary
control without the momentum-dependent force to approximate the exact control. Following the geometric
approach, we obtain the optimal control protocol with variational minimum energy cost. We demonstrate the
construction of such protocol via an example of Brownian motion with a controllable harmonic potential.
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I. INTRODUCTION

The quest to accelerate a system evolving toward a target
equilibrium state is ubiquitous in various applications [1–8].
In the biological pharmacy, pathogens are expected to evolve
to an optimum state with maximal drug sensitivity [1–4].
Controlling the evolution of pathogens toward the target state
with a considerable rate is critically relevant to confronting
the threat of increasing antibiotic resistance and determining
optimal therapies for infectious disease and cancer. In adia-
batic quantum computation, the solution of the optimization
problem is transformed to the ground state of the problem
Hamiltonian [5–8]. Speeding up the computation requires
steering the system evolving from a trivial ground state to
another nontrivial ground state within finite time. These ex-
amples require tuning the system from one equilibrium state
to another one within finite time.

The scheme of shortcuts to isothermality was developed
as a control strategy to maintain the system in instantaneous
equilibrium states during evolution processes [9–11]. Rele-
vant results have been applied in accelerating state-to-state
transformations [12–15], raising the efficiency of free-energy
landscape reconstruction [16,17], designing the nanosized
heat engine [18–21], and steering biological evolutions [3,4].
Additional energy cost is required due to the irreversibility
in the finite-time driving processes. Much effort has been de-
voted to find the minimum energy requirement in the driving
processes [22–28]. We recently proved that the optimal path
for the shortcut scheme is equivalent to the geodesic path in
the geometric space spanned by control parameters [29]. Such
an equivalence allows us to find the optimal path through
methods developed in geometry.

Implementing such a shortcut scheme remains a challeng-
ing task since the driving force required in the shortcut scheme
is typically momentum-dependent [7,8,15]. One solution is to
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use an approximate scheme [17,30] to replace the exact one.
Such a scheme has been applied in the underdamped case to
obtain a driving force without any momentum terms. The key
idea is to use an approximate auxiliary control without the
momentum-dependent terms.

In this work, we employ the variational method and the ge-
ometric approach to find an experimental protocol with mini-
mum dissipation for realizing the shortcut scheme. In Sec. II,
we briefly introduce the shortcut scheme and the geometric
approach for finding the optimal control protocol with mini-
mum energy cost. In Sec. III, we apply a variational method
to overcome the difficulty of the momentum-dependent terms
in the driving force. As illustrated in Fig. 1, the variational
method is separated into two steps. In step I, a variational
shortcut scheme is used to obtain an approximate auxiliary
control without high-order momentum-dependent terms. In
step II, a gauge transformation scheme is used to remove
the linear momentum-dependent terms and an experimentally
testable protocol is obtained. In Sec. IV, we demonstrate our
protocol through a Brownian particle moving in the harmonic
potential with two controllable parameters. In Sec. V, we
conclude the paper with additional discussions.

II. GEOMETRIC APPROACH AND
THE AUXILIARY HAMILTONIAN

In this section, we briefly review our geodesic approach of
the shortcut to isothermality and show the possible experimen-
tal difficulties to apply the obtained auxiliary Hamiltonian.

Consider a system with the Hamiltonian Ho(�x, �p, �λ) =∑
i p2

i /(2m) + Uo(�x, �λ) immersed in a thermal reservoir
with a constant temperature T . Here �x ≡ (x1, x2, . . . , xN )
are coordinates, �p ≡ (p1, p2, . . . , pN ) are momentum, m
is mass, and �λ(t ) ≡ (λ1, λ2, . . . , λM ) are time-dependent
control parameters. In the shortcut scheme, an auxiliary
Hamiltonian Ha(�x, �p, t ) is added to steer the evolution
of the system along the instantaneous equilibrium states
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FIG. 1. Schematic example of a Brownian particle with the Hamiltonian Ho = p2/(2m) + λx2/2. The dynamical evolution of the system
is governed by the Langevin equation, where γ is the dissipation coefficient. In the shortcut scheme, a momentum-dependent auxiliary control
Ha is added to escort the system distribution in the instantaneous equilibrium distribution Peq. In step I, a variational shortcut scheme is used
to obtain an approximate auxiliary control H∗

a which can keep the system in the approximate equilibrium distribution P∗
eq. In step II, a gauge

transformation scheme is used to obtain a momentum-independent auxiliary control Ua which can maintain the system distribution in PID.

Peq = exp[β(F − Ho)] in the finite-time interval t ∈ [0, τ ]
with the boundary conditions Ha(0) = Ha(τ ) = 0. Here F ≡
−β−1 ln[

∫∫
d�xd �p exp(−βHo)] is the free energy and β =

1/(kBT ) is the inverse temperature with the Boltzmann
constant kB. The probability distribution of the system’s mi-
crostate P(�x, �p, t ) evolves according to the Kramers equation

∂P

∂t
=
∑

i

[
− ∂

∂xi

(
∂H

∂ pi
P

)

+ ∂

∂ pi

(
∂H

∂xi
P + γ

∂H

∂ pi
P

)
+ γ

β

∂2P

∂ p2
i

]
, (1)

where H ≡ Ho + Ha is the total Hamiltonian, and γ is the
dissipation coefficient. With the instantaneous equilibrium
distribution Peq, we obtain the evolution equation of the aux-
iliary Hamiltonian

∑
i

[
γ

β

∂2Ha

∂ p2
i

− γ pi

m

∂Ha

∂ pi
+ ∂Ha

∂ pi

∂Ho

∂xi
− pi

m

∂Ha

∂xi

]

= dF

dt
− ∂Ho

∂t
. (2)

The auxiliary Hamiltonian is proved to have the form

Ha(�x, �p, t ) = �̇λ · �f (�x, �p, �λ). The boundary conditions for the

auxiliary Hamiltonian Ha(t ) are presented explicitly as �̇λ(0) =
�̇λ(τ ) = 0. The irreversible energy cost Wirr ≡ W − �F in the
shortcut scheme follows as [29]

Wirr =
∑
μν

∫ τ

0
dt λ̇μλ̇νgμν, (3)

where the positive semidefinite metric is gμν =
γ
∑

i〈(∂ fμ/∂ pi )(∂ fν/∂ pi )〉eq with 〈·〉eq = ∫∫ d�xd �p[·]Peq.

Here W ≡ 〈∫ τ

0 dt∂t H〉 is the mean work with 〈·〉 representing
the ensemble average over stochastic trajectories and
�F ≡ F (�λ(τ )) − F (�λ(0)) is the free energy difference.
The metric gμν endows a Riemannian manifold in the space
of thermodynamic equilibrium states marked by the control
parameters �λ. Minimizing the irreversible work in Eq. (3)
is equivalent to finding the geodesic path in the geometric
space with the metric gμν . This property allows us to obtain
the optimal control protocol in the shortcut scheme by using
methods developed in geometry [31].

Generally, the auxiliary Hamiltonians Ha are momentum-
dependent, which are hard to be implemented. For example,
the auxiliary Hamiltonian for a one-dimensional harmonic
system Ho = p2/(2m) + λx2/2 is obtained as [9,29] Ha =
λ̇[(p − γ x)2 + mλx2]/(4γ λ). The quadratic momentum-
dependent term p2 and the linear momentum-dependent term
xp in the auxiliary Hamiltonian are hard to be realized in
experiments due to the requirement of constantly monitoring
the momentum [8].

III. APPROXIMATE SHORTCUT SCHEME

The variational shortcut scheme is an approximation of the
exact shortcut scheme. The auxiliary Hamiltonian Ha in the
exact shortcut scheme is replaced by the approximate auxil-
iary Hamiltonian H∗

a . We define a semi-positive functional as
[17]

G(H∗
a ) =

∫
d�xd �p

[∑
i

(
γ

β

∂2H∗
a

∂ p2
i

− γ pi
∂H∗

a

∂ pi
+ ∂Ho

∂xi

∂H∗
a

∂ pi

−pi
∂H∗

a

∂xi

)
+ ∂Ho

∂t
− dF

dt

]2

e−βHo � 0. (4)
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Finding the exact auxiliary Hamiltonian H∗
a = Ha is equiva-

lent to solving the variational equation [17]

δG(H∗
a )

δH∗
a

= 0. (5)

Instead of finding the exact solution, we use the above varia-
tional equation in Eq. (5) to solve for the possible approximate
Hamiltonian H∗

a by finding the minimum value of G(H∗
a ) in

Eq. (4). With the current variational method, we are able to
neglect the quadratic term p2 and remove the linear term p.
The procedure is divided into two steps to remove the p2 term
with approximation and p terms with gauge transformation,
illustrated in Fig. 1 with the example Hamiltonian. The details
are presented as follows.

Step I. Approximate auxiliary control without the quadrati
c term p2. The first task is to remove the quadratic term p2, by
assuming the form of the auxiliary Hamiltonian

H∗
a =

∑
μi

λ̇μBμ(�λ)xi pi +
∑
μi

λ̇μCμi(�λ)pi +
∑

μ

λ̇μDμ(�x, �λ),

(6)

where �B(�λ), C(�λ), and �D(�x, �λ) are functions determined by
the variational equation (5). Such approximation is valid for
the case where the kinetic energy is negligible in the total
energy. We illustrate how such approximation works with an
example in Appendix A.

With such approximation, a distribution P∗
eq is reached as

an approximation of the instantaneous equilibrium distribu-
tion Peq with the variational shortcut scheme under the total
Hamiltonian H∗ = Ho + H∗

a , i.e., P∗
eq ≈ Peq. The mean work

in the variational shortcut scheme follows as

W =
〈 ∫ τ

0
dt

∂Ho

∂t

〉∗
eq

+
〈 ∫ τ

0
dt

∂H∗
a

∂t

〉∗
eq

≈ �F ∗ + γ
∑

i

∫ τ

0
dt
∫∫

d�xd �p
(

∂H∗
a

∂ pi

)2

P∗
eq, (7)

where 〈·〉∗eq = ∫∫ d�xd �p[·]P∗
eq. The free energy difference

�F ∗ = 〈∫ τ

0 dt∂t Ho〉∗eq is treated as an approximation to the
free energy difference �F with high precision [17]. The
additional energy cost of the variational shortcut scheme is
evaluated by the irreversible work as

Wirr ≡ W − �F ≈ γ
∑
μνi

∫ τ

0
dt λ̇μλ̇ν

〈
∂ f ∗

μ

∂ pi

∂ f ∗
ν

∂ pi

〉∗
eq

, (8)

where H∗
a = �̇λ · �f ∗ with �f ∗ representing an approximation to

the function �f in Eq. (2). With a rescaling of the time s = t/τ,
the irreversible work in Eq. (8) is proved to follow the 1/τ

scaling which has been widely investigated in finite-time stud-
ies [20,32–41]. With the definition of a positive semidefinite
metric

g∗
μν = γ

∑
i

〈
∂ f ∗

μ

∂ pi

∂ f ∗
ν

∂ pi

〉∗
eq

, (9)

we can construct a Riemannian manifold on the space of
the control parameters. The shortest curve connecting two
equilibrium states is described through the thermodynamic

length [28,33,42–44] L = ∫ τ

0 dt
√

λ̇μλ̇νg∗
μν which gives a

lower bound for the irreversible work Wirr as [42]

Wirr �
L2

τ
. (10)

Given boundary conditions �λ(0) and �λ(τ ), the lower bound in
Eq. (10) is reached by the optimal control scheme obtained by
solving the geodesic equation

λ̈μ +
∑
νκ

�μ
νκ λ̇ν λ̇κ = 0, (11)

where �μ
νκ ≡∑ι(g

∗−1)ιμ(∂λκ
g∗

ιν + ∂λν
g∗

ικ − ∂λι
g∗

νκ )/2 is the
Christoffel symbol.

Step II. Equivalent process without the linear term p.
The higher-order terms of the momentum in Eq. (6) are
removed for the experimental feasibility. In the variational
shortcut scheme, the dynamical evolution of the system with
the Hamiltonian H = Ho + H∗

a is governed by the Langevin
equation,

ẋi = pi

m
+
∑

μ

λ̇μBμxi +
∑

μ

λ̇μCμi,

ṗi = −∂Uo

∂xi
−
∑

μ

λ̇μBμ pi −
∑

μ

λ̇μ

∂Dμ

∂xi
− γ ẋi + ξi(t ),

(12)

where �ξ ≡ (ξ1, ξ2, . . . , ξN ) are the Gaussian white noise.
During the evolution process described by Eq. (12), the dis-
tribution of the system always stays in the instantaneous
equilibrium distribution

P∗
eq(�x, �p, �λ) = exp

{
β

[
F (�λ) −

∑
i

p2
i

/
(2m) − Uo(�x, �λ)

]}
.

(13)

With a gauge transformation [17,30] pi → pi +
m
∑

μ λ̇μBμxi + m
∑

μ λ̇μCμi, we can obtain an equivalent
process controlled by the original Hamiltonian Ho and the
auxiliary force �F a

ẋi = pi

m
, ṗi = −∂Uo

∂xi
+ F a

i − γ ẋi + ξi(t ), (14)

where the auxiliary force is explicitly presented as

F a
i = −

∑
μ

λ̇μ

∂Dμ

∂xi
+ m

∑
μ

λ̈μBμxi + m
∑
μν

λ̇μλ̇ν

∂Bμ

∂λν

xi

+ m
∑
μν

λ̇μλ̇νBμBνxi + m
∑
μν

λ̇μλ̇νBμCνi

+ m
∑

μ

λ̈μCμi + m
∑
μν

λ̇μλ̇ν

∂Cμi

∂λν

. (15)

The distribution of the system in the process described by
Eq. (14) keeps in an instantaneous distribution with the fixed
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pattern

PID(�x, �p, �λ) = exp

⎧⎨
⎩β

⎡
⎣F (�λ) −

∑
i

⎛
⎝pi − m

∑
μ

λ̇μBμxi

− m
∑

μ

λ̇μCμi

⎞
⎠

2/
(2m) − Uo(�x, �λ)

⎤
⎥⎦
⎫⎪⎬
⎪⎭. (16)

As shown in Fig. 2, with the boundary condition �̇λ(0) =
�̇λ(τ ) = 0, the instantaneous distribution PID(�x, �p, �λ) in
Eq. (16) returns to the instantaneous equilibrium distribution
P∗

eq(�x, �p, �λ) in Eq. (13) at t = 0 and τ. It means that the
system following the Langevin equation (14) can evolve from
an initial equilibrium state to another target equilibrium state.
The operation of gauge transformation does not change the
irreversible work in Eq. (8). Therefore, the optimal control
from the geodesic equation (11) applies equally to the process
described by the Langevin equation (14). For the optimized
protocol in the shortcut scheme, the boundary condition for
�̇λ(t ) is usually realized as discrete jumps at the beginning
and end of the auxiliary force [29]. In the gauge transfor-
mation scheme, the system distribution in Eq. (16) explicitly

depends on �̇λ(t ). And there is a mismatching between the
initial equilibrium state P∗

eq(�x, �p, �λ(0)) and the system distri-

bution PID(�x, �p, �λ(0)), which can be offset for systems with
weak inertial effect. We illustrate this claim in the following
example.

The steps to derive the experimentally testable protocol
with minimum energy cost are shown in Fig. 1. In step I,
we solve for the best possible auxiliary Hamiltonian H∗

a in
Eq. (5) by using the variational shortcut scheme. The geomet-
ric approach is then applied to minimize the irreversible work
Wirr in Eq. (8) and obtain the optimal protocol. In step II, the
gauge transformation scheme with the operation in Eq. (14) is
carried out to obtain the final experimentally testable protocol
with minimum energy cost.

FIG. 2. Schematic of processes controlled by the variational
shortcut scheme and the gauge transformation scheme. The system
distribution of the variational shortcut scheme stays in instantaneous
equilibrium P∗

eq(x, t ) during the evolution process while the instan-
taneous distribution of the gauge transformation scheme PID(x, t )
deviates from the equilibrium distribution P∗

eq(x, t ) for intermediate
times (0 < t < τ ). P∗

eq(x, t ) and PID(x, t ) respectively represent the
distribution of P∗

eq(x, p, t ) and PID(x, p, t ) with fixed momentum p.

IV. APPLICATION

To demonstrate our strategy, we consider the Brownian
motion in the harmonic potential with two controllable pa-
rameters �λ = (λ1, λ2) with the Hamiltonian as

Ho = p2

2m
+ λ1

2
x2 − λ2x. (17)

In the shortcut scheme [9,29], the exact auxiliary Hamiltonian
takes the form Ha(x, p, t ) =∑2

μ=1 λ̇μ fμ(x, p, λ1, λ2) where

f1 = (p − γ x)2 + mλ1x2

4γ λ1
− λ2 p

2λ2
1

+
(

γ λ2

2λ2
1

− mλ2

2γ λ1

)
x,

f2 = p

λ1
− γ x

λ1
. (18)

With the application of the geometric approach proposed in
Ref. [29], the geodesic (optimal) protocol with minimum en-
ergy cost can be obtained as

λ̇1 = w

τ

√
λ3

1

λ1 + γ 2/m
,

λ2

λ1
= a

t

τ
+ b, (19)

where w = −{2
√

1 + γ 2/(mλ1) + ln[
√

1 + γ 2/(mλ1) − 1] −
ln[
√

1+γ 2/(mλ1)+1]} |λ1(τ )
λ1(0) , a = [λ2(τ )λ1(0)−λ2(0)λ1(τ )]/

[λ1(τ )λ1(0)], and b = λ2(0)/λ1(0) are constants. Here
�λ(0) = (λ1(0), λ2(0)) and �λ(τ ) = (λ1(τ ), λ2(τ )) are bound-
ary conditions. The momentum-dependent terms in Eq. (18)
hinder the implementation of the shortcut scheme in
experiments.

We assume that the approximate auxiliary Hamiltonian
takes the form

H∗
a = a1(t )px + a2(t )p + a3(t )x2 + a4(t )x, (20)

where a1(t ), a2(t ), a3(t ), and a4(t ) are coefficients to be
determined. And the variational functional in Eq. (4) follows
as

G =
∫∫

dxd p

{
[a1 p2 + (γ a1 + 2a3)xp + (γ a2 + a4)p

−m(a1x + a2)(λ1x − λ2)]2 + 2

β
(a1x + a2)(λ̇1x − λ̇2)

}

× exp

[
−β

(
p2

2m
+ λ1

2
x2 − λ2x

)]
. (21)

The best possible auxiliary Hamiltonian H∗
a is obtained by

minimizing the variational functional G over the parameters
a1(t ), a2(t ), a3(t ), and a4(t ) as

H∗
a = λ̇1

(
− px

4λ1
− 3λ2 p

4λ2
1

+ γ x2

8λ1
+ 3γ λ2x

4λ2
1

)

+ λ̇2

(
p

λ1
− γ x

λ1

)
. (22)

Detailed calculations are presented in Appendix A.
We then apply the geometric approach to derive the opti-

mal protocol with minimum energy cost. With the auxiliary
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FIG. 3. Geodesic protocols for the exact shortcut scheme and
the variational shortcut scheme. We have set the parameters as m =
0.01, γ = 1, and kBT = 1. The protocols change from �λ(0) = (1, 1)
to �λ(τ ) = (16, 2). The solid lines are the geodesic protocol �λe(t )
for the exact shortcut scheme in Eq. (19) and the dashed lines are
the geodesic protocol �λa (t ) for the variational shortcut scheme in
Eq. (25). The geodesic protocol for the variational shortcut scheme
(dashed lines) keeps close to the one for the exact shortcut scheme
(solid lines).

Hamiltonian in Eq. (22), the geometric metric in Eq. (9) fol-
lows as

g =
⎛
⎝ γ

16βλ3
1
+ γ λ2

2

λ4
1

− γ λ2

λ3
1

− γ λ2

λ3
1

γ

λ2
1

⎞
⎠. (23)

The geodesic equation with the metric in Eq. (23) takes the
form

λ̈1 − 3λ̇2
1

2λ1
= 0,

λ̈2 − 2λ̇1λ̇2

λ1
+ λ̇2

1λ2

2λ2
1

= 0. (24)

The solution for Eq. (24) is analytically obtained as

λ1(t ) = 1[(
λ

− 1
2

1 (τ ) − λ
− 1

2
1 (0)

)
t
τ

+ λ
− 1

2
1 (0)

]2 ,

λ2(t ) =

(
λ2(τ )
λ1(τ ) − λ2(0)

λ1(0)

)
t
τ

+ λ2(0)
λ1(0)[(

λ
− 1

2
1 (τ ) − λ

− 1
2

1 (0)

)
t
τ

+ λ
− 1

2
1 (0)

]2 . (25)

In Fig. 3, we compare geodesic protocols for the exact
shortcut scheme and the variational shortcut scheme. The
parameters are chosen as �λ(0) = (1, 1), �λ(τ ) = (16, 2), m =
0.01, γ = 1, and kBT = 1. The geodesic protocol for the
variational shortcut scheme �λa(t ) (dashed lines) is in close
proximity to the one for the exact shortcut scheme �λe(t ) (solid
lines), which supports our claim that the variational shortcut
scheme can approximately reproduce the results of the exact
shortcut scheme.

Note that there are still linear terms of the momentum
in Eq. (22). In the second step, we remove the remaining

momentum-dependent terms by using the gauge transfor-
mation scheme. The Langevin equation for the variational
shortcut scheme with the Hamiltonian H = Ho + H∗

a follows
as

ẋ = p

m
− λ̇1x

4λ1
− 3λ̇1λ2

4λ2
1

+ λ̇2

λ1
,

ṗ = − λ1x + λ2 + λ̇1 p

4λ1
− γ λ̇1x

4λ1
− 3γ λ̇1λ2

4λ2
1

+ γ λ̇2

λ1
− γ ẋ + ξ (t ). (26)

With the gauge transformation

p → p − mλ̇1x

4λ1
− 3mλ̇1λ2

4λ2
1

+ mλ̇2

λ1
, (27)

the Langevin equation (26) is transformed into

ẋ = p, ṗ = −λ1x + λ2 + Fa − γ p + ξ (t ), (28)

where the auxiliary force follows as

Fa ≡
(

5mλ̇2
1

16λ2
1

− γ λ̇1

4λ1
− mλ̈1

4λ1

)
x − 3γ λ̇1λ2

4λ2
1

+ γ λ̇2

λ1

+27mλ̇2
1λ2

16λ3
1

− 2mλ̇1λ̇2

λ2
1

− 3mλ̈1λ2

4λ2
1

+ mλ̈2

λ1
. (29)

In the dynamics governed by the transformed Langevin equa-
tion (28), there is no momentum-dependent term in the driving
force. The auxiliary potential corresponding to the driving
force in Eq. (29) is obtained as

Ua = mλ̈1

8λ1
x2 + γ λ̇1

8λ1
x2 − 5mλ̇2

1

32λ2
1

x2 − mλ̈2

λ1
x − 27mλ̇2

1λ2

16λ3
1

x

+2mλ̇1λ̇2

λ2
1

x + 3mλ̈1λ2

4λ2
1

x − γ λ̇2

λ1
x + 3γ λ̇1λ2

4λ2
1

x. (30)

The system can be approximately transformed from an initial
equilibrium state to another one within finite time. During the
intermediate driving process, the system follows the instanta-
neous distribution

PID(x, p, �λ) = exp

{
β

[
F (�λ) − 1

2m

(
p + mλ̇1

4λ1
x

+3mλ̇1λ2

4λ2
1

− mλ̇2

λ1

)2

− Uo(x, �λ)

]}
, (31)

which is an approximation to the instantaneous equilibrium
states Peq.

To validate the variational shortcut scheme and the
gauge transformation scheme, we compare the distributions
P∗

eq(x, p, �λ) and PID(x, p, �λ) with that of the exact shortcut

scheme Peq(x, p, �λ). The variational shortcut scheme and the
gauge transformation scheme are respectively implemented
through the Hamiltonian Ho + H∗

a and Ho + Ua while the
exact shortcut scheme is realized through the Hamiltonian
Ho + Ha. The distance between the instantaneous equilib-
rium distribution Peq and the distribution in the variational
shortcut scheme P = P∗

eq or the distribution in the gauge
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FIG. 4. Distance D(P||Peq ) between the instantaneous equilib-
rium distribution Peq and the distribution in the variational shortcut
scheme P = P∗

eq or the distribution in the gauge transformation
scheme P = PID. The gauge transformation scheme (red triangles),
the variational shortcut scheme (green circles), and the exact shortcut
scheme (blue squares) are implemented through the Hamiltonian
Ho + Ua, Ho + H∗

a , and Ho + Ha, respectively. The distance is evalu-
ated by using the Jensen-Shannon divergence [45–48]. The protocol
�λe(t ) in Eq. (19) is chosen to realize different schemes for fair
comparison.

transformation scheme P = PID are evaluated through the
Jensen-Shannon divergence [45–48]

D(P||Peq ) = 1

2

∫
d�xd �p

(
P ln

2P

P + Peq
+ Peq ln

2Peq

P + Peq

)
.

(32)

We plot the Jensen-Shannon divergence D(P||Peq ) as a
function of evolution time t in Fig. 4. The protocol �λe(t ) in
Eq. (19) is used to realize different driving schemes. Red
triangles, green circles, and blue squares respectively rep-
resent the distance from the equilibrium distribution to the
distribution of the gauge transformation scheme (Ho + Ua ),
the variational shortcut scheme (Ho + H∗

a ), and the exact
shortcut scheme (Ho + Ha ). The distribution of the exact
shortcut scheme closely follows the instantaneous equilibrium
distribution while the distribution of the variational shortcut
scheme initially drives the system away from equilibrium
and then gradually back to the final equilibrium state. Com-
pared with the variational shortcut scheme, the distribution
of the gauge transformation scheme further departs from the
instantaneous equilibrium distribution but still returns to the
target equilibrium state approximately. These results therefore
demonstrate that the gauge transformation scheme can recon-
cile the experimental feasibility and the target of transforming
the system to the final equilibrium state with high precision.

We also compare the irreversible work Wirr = W − �F
for different driving schemes. In the gauge transformation
scheme, the variational shortcut scheme, and the exact short-
cut scheme, the total Hamiltonian H takes the form as Ho +
Ua, Ho + H∗

a , and Ho + Ha, respectively. The exact shortcut
scheme is carried out through the geodesic protocol �λe(t ) in
Eq. (19) while the variational shortcut scheme and the gauge
transformation scheme are carried out through the geodesic

0 2 4 6 8 10
0

0.5

1

1.5

0 3 5 8 10

-0.03

-0.02

-0.01

0

0.01

FIG. 5. The irreversible work for the gauge transformation
scheme (red triangles), the variational shortcut scheme (green cir-
cles), and the exact shortcut scheme (blue squares) with different
durations τ . The mean work are obtained from 105 stochastic tra-
jectories. The irreversible work of the gauge transformation scheme
and the variational shortcut scheme coincide well, which demon-
strates that the gauge transformation scheme works. The protocol
�λe(t ) in Eq. (19) is used to perform the exact shortcut scheme
while the protocol �λa (t ) in Eq. (25) is used to realize the variational
shortcut scheme and the gauge transformation scheme. The inset
shows the difference of the irreversible work �Wirr between the exact
shortcut scheme and the gauge transformation scheme for different
durations τ .

protocol �λa(t ) in Eq. (25). Figure 5 shows the irreversible
work of the gauge transformation scheme (red triangles),
the variational shortcut scheme (green circles), and the exact
shortcut scheme (blue squares) for different durations τ. The
mean work is an average over 105 stochastic trajectories.
The irreversible work of the gauge transformation scheme
coincides well with that of the variational shortcut scheme
for different driving durations τ , which demonstrates that the
gauge transformation scheme can also reproduce the energetic
cost of the variational shortcut scheme well. The irreversible
work of the exact shortcut scheme is smaller than that of the
gauge transformation scheme in short driving processes and
gradually coincides later as the duration increases. This shows
that the energy cost of the gauge transformation scheme can
keep pace with that of the exact shortcut scheme while ap-
proximately transforming the system to the target equilibrium
state with high precision.

V. CONCLUSION AND DISCUSSION

In conclusion, we have presented a momentum-
independent driving scheme to approximately transform
the system from an initial equilibrium state to another
target equilibrium state. The momentum-dependent terms in
the auxiliary Hamiltonian have been removed through the
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variational method and the gauge transformation. A geometric
approach has been applied to minimize the energy cost of
the driving scheme. The optimal protocol with minimum
energy cost is obtained by solving the geodesic equation with
methods developed in Riemannian geometry. We have tested
our driving strategy by using a Brownian particle system with
two controllable parameters. The simulation results prove
that our scheme can achieve the task of rapidly driving the
system to the target equilibrium state with high precision
while reconciling the experimental feasibility. Our scheme
should offer an experimentally testable control protocol with
minimum energy cost for approximately realizing the shortcut
scheme.

The gauge transformation scheme and the variational
shortcut scheme are approximate shortcut schemes. The re-
maining distance between the final distribution of the approx-
imate shortcut scheme and the target equilibrium distribution
can be replenished through a short relaxation. Such a deviation
is caused by the absence of the high-order momentum-
dependent terms in the variational shortcut scheme. The
momentum-dependent terms will play an important role in
the dynamical evolution if the inertial effect is significantly
obvious. Therefore, the deviation could be reduced if the
inertial effect is weakened. The operation of changing vari-
ables to remove momentum-dependent terms in the gauge
transformation scheme is similar to the fast-forward scheme
in the field of shortcuts to adiabaticity [7,8,10,30,49–55].
Our operation is implemented for systems following the
stochastic dynamics.

The geometric approach has been applied to the un-
derdamped system controlled by the shortcut scheme. For
overdamped systems, the energy cost of the process controlled
by the shortcut scheme is proved to be semidefinite positive
[9]. The geometric approach is still valid to obtain the opti-
mal protocol with minimum energy cost. The details will be
presented in future papers.

In the underdamped case, the controlled Brownian mo-
tion has been investigated in different experimental platforms
[56–60]. The driving force of our approximate shortcut
scheme in Eq. (30) only depends on the position of the system.
It is promising to test our approximate shortcut scheme in
experiments.
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APPENDIX A: ILLUSTRATION OF HOW
THE APPROXIMATION OF THE VARIATIONAL

SHORTCUT SCHEME WORKS

We illustrate how the approximation of the variational
shortcut scheme works with an example of a Brownian par-
ticle moving in the harmonic potential with the Hamiltonian
Ho = p2/(2m) + λ(t )x2/2, where λ(t ) is the control parame-
ter. In the shortcut scheme, the auxiliary Hamiltonian follows

as [9]

Ha = λ̇

4γ λ
[(p − γ x)2 + mλx2]. (A1)

To evaluate the contribution of each momentum-dependent
term to the shortcut scheme, we introduce the characteristic
length lc ≡ (kBT/λ(0))1/2, the characteristic time τ1 = m/γ

and τ2 = γ /λ(0) to rescale the Hamiltonian. The dimen-
sionless coordinate, momentum, time, and control protocol
are defined as x̃ ≡ x/lc, p̃ ≡ pτ2/(mlc), s ≡ t/τ2, and λ̃ ≡
λ/λ(0). The dimensionless Hamiltonians are then obtained as

H̃o ≡ Ho

kBT
= α

p̃2

2
+ 1

2
λ̃x̃2, (A2)

and

H̃a ≡ Ha

kBT
= λ̃′

4λ̃

[
α2

(
p̃ − x̃

α

)2

+ αλ̃x̃2

]

= α2 λ̃′ p̃2

4λ̃
− α

λ̃′x̃ p̃

2λ̃
+ α

λ̃′x̃2

4
+ λ̃′x̃2

4λ̃
, (A3)

where λ̃′ ≡ dλ̃/ds and α ≡ mλ(0)/γ 2. Note that there are
different orders of α in the above expressions of H̃o and H̃a. If
we assume that α � 1, the second-order term of α in Eq. (A3),
i.e., the p̃2 term in H̃a can be neglected, which means that
the approximation of the variational shortcut scheme is valid.
The dimensionless parameter α is small if the mass m or the
stiffness coefficient λ(0) is small compared to the dissipation
coefficient γ .

APPENDIX B: THE APPROXIMATE
AUXILIARY HAMILTONIAN

We start from the functional in Eq. (21). With the min-
imization of parameters a1(t ), a2(t ), a3(t ), and a4(t ), we
obtain a set of equations:

3a1 + γ β[(γ a1 + 2a3)x̄2 + (γ a2 + a4)x̄]

+ λ1β(a1x̄2 + a2x̄) + λ̇1β x̄2 − λ̇2β x̄ = 0,

γ a2 + a4 + (γ a1 + 2a3)x̄ + λ1(a1x̄ + a2) + λ̇1x̄ − λ̇2 = 0,

(γ a1 + 2a3)x̄2 + (γ a2 + a4)x̄ = 0,

(γ a1 + 2a3)x̄ + γ a2 + a4 = 0, (B1)

where x̄n ≡ ∫∞
−∞ xn exp[−β(λ1x2/2 − λ2x)]dx/∫∞

−∞ exp[−β(λ1x2/2 − λ2x)]dx with n = 1, 2, . . . . We can

analytically obtain that x̄ = λ2/λ1, x̄2 = 1/(βλ1) + λ2
2/λ

2
1,

x̄3 = 3λ2/(βλ2
1) + λ3

2/λ
3
1, and x̄4 = 3/(β2λ2

1) + 6λ2
2/(βλ3

1) +
λ4

2/λ
4
1. The integral over p has been calculated in Eq. (B1).

The solution of Eq. (B1) is obtained as

a1(t ) = − λ̇1

4λ1
, a2(t ) = λ̇2

λ1
− 3λ̇1λ2

4λ2
1

,

a3(t ) = γ λ̇1

8λ1
, a4(t ) = 3γ λ̇1λ2

4λ2
1

− γ λ̇2

λ1
. (B2)

Then we derive the approximate auxiliary Hamiltonian in
Eq. (22) according to Eq. (20).
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APPENDIX C: THE STOCHASTIC SIMULATION

The dynamical evolution of the Brownian particle system
is described by the Langevin equation

ẋ = ∂H

∂ p
, ṗ = −∂H

∂x
− γ

∂H

∂ p
+ ξ (t ), (C1)

where H is the total Hamiltonian and ξ (t ) is the standard
Gaussian white noise satisfying 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =
2γ kBT δ(t − t ′). We introduce the characteristic length lc ≡
(kBT/λ1(0))1/2, the characteristic time τ1 = m/γ and τ2 =
γ /λ1(0). Then the dimensionless coordinate, momentum,
time, and control protocol can be defined as x̃ ≡ x/lc, p̃ ≡
pτ2/(mlc), s ≡ t/τ2, λ̃1 ≡ λ1/λ1(0), and λ̃2 ≡ λ2/(λ1(0)lc).
The dimensionless Langevin equation follows as

x̃′ = 1

α

∂H̃

∂ p̃
, p̃′ = − 1

α

∂H̃

∂ x̃
− 1

α2

∂H̃

∂ p̃
+

√
2ζ (s)/α, (C2)

where τ̃ ≡ τ/τ2 and α ≡ τ1/τ2. The prime represents
the derivative with respect to the dimensionless time s.

ζ (s) is a Gaussian white noise satisfying 〈ζ (s)〉 = 0 and
〈ζ (s1)ζ (s2)〉 = δ(s1 − s2). The Euler algorithm is used to
solve the Langevin equation as

x̃(s + δs) = x̃(s) + 1

α

∂H̃

∂ p̃
δs,

p̃(s + δs) = p̃(s) − 1

α

∂H̃

∂ x̃
δs − 1

α2

∂H̃

∂ p̃
δs +

√
2δsθ (s)/α,

(C3)

where δs is the time step and θ (s) is a random number fol-
lowing the Gaussian distribution with zero mean and unit
variance. The work of the stochastic trajectories follows as

w̃ ≡ w

kBT
=
∫ 1

0

∂H̃

∂s
ds ≈

∑ ∂H̃

∂s
δs. (C4)

In simulations, we set the boundary conditions as �λ(0) =
(1, 1) and �λ(τ ) = (16, 2). The parameters are chosen as
kBT = 1, γ = 1, and m = 0.01. The mean work is the ensem-
ble average over the work of 105 stochastic trajectories.
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