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Quantum local-equilibrium approach to dissipative hydrodynamics
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The macroscopic hydrodynamic equations are derived for many-body systems in the local-equilibrium ap-
proach, using the Schrödinger picture of quantum mechanics. In this approach, statistical operators are defined
in terms of microscopic densities associated with the fundamentally conserved quantities and other slow modes
possibly emerging from continuous symmetry breaking, as well as macrofields conjugated to these densities.
Functional identities can be deduced, allowing us to identify the reversible and dissipative parts of the mean
current densities, to obtain general equations for the time evolution of the conjugate macrofields, and to establish
the relationship to projection-operator methods. The entropy production is shown to be nonnegative by applying
the Peierls-Bogoliubov inequality to a quantum integral fluctuation theorem. Using the expansion in the gradients
of the conjugate macrofields, the transport coefficients are given by Green-Kubo formulas and the entropy
production rate can be expressed in terms of quantum Einstein-Helfand formulas, implying its nonnegativity
in agreement with the second law of thermodynamics. The results apply to multicomponent fluids and can be
extended to condensed matter phases with broken continuous symmetries.
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I. INTRODUCTION

In fluids, the transport processes due to viscosity, heat con-
duction, and diffusion dissipate energy and produce entropy,
which generates irreversibility at the macroscale. Importantly,
these dissipative effects should be taken into account in the
equations of hydrodynamics, ruling the time evolution of
the locally conserved quantities associated with energy, mo-
mentum, particle numbers, and mass [1]. In the phases of
condensed matter with broken continuous symmetries such
as crystals and liquid crystals, there exist further transport
processes arising from the Nambu-Goldstone modes, which
extend the equations of hydrodynamics [2,3]. A fundamental
issue is to deduce these irreversible properties from the under-
lying microscopic dynamics of particles composing matter.

This issue can be addressed using kinetic theory, which is
developed since Boltzmann’s pioneering work for dilute and
moderately dense classical gases, as well as quantum gases
of bosons and fermions [4–18]. Although very powerful in its
domain of validity, kinetic theory is limited to systems with a
relatively low particle density. For systems with any particle
density, other methods have been proposed for the direct de-
duction of macroscopic hydrodynamics from the microscopic
equations of motion.

At the macroscale, the time evolution of the system may
be supposed to be slow enough for the statistical distribution
to remain close to a local Gibbsian distribution expressed
in terms of spatiotemporal macrofields such as tempera-
ture, chemical potentials, and velocity. This local-equilibrium
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approach has been developed since the late 1950s and early
1960s, in particular by Mori [19,20], McLennan [21–23], and
others [11,16,24–32]. Close to local equilibrium, the transport
coefficients can thus be expressed in the form of Green-Kubo
formulas [33–35]. In the local-equilibrium approach, the en-
tropy can be introduced and the inferred entropy production
plays a key role for identifying the dissipative effects from
the microscopic dynamics up to the macroscale. Furthermore,
the ratio between the exact time-evolved probability distri-
bution and the corresponding local-equilibrium distribution
obeys a so-called integral fluctuation theorem [27,28]. Within
classical microscopic dynamics, the nonnegativity of entropy
production can be deduced from the integral fluctuation the-
orem using Jensen’s inequality [27]. Since the motion of
particles is fundamentally ruled by quantum mechanics, an
important problem is to extend these results to the quantum-
mechanical formulation of condensed matter physics. Some
results have been obtained in the framework of relativistic
quantum field theory using the Heisenberg picture [28,29].
However, the microdynamics of nonrelativistic systems is
often formulated using the Schrödinger picture, which is
closer to classical nonequilibrium statistical mechanics. In this
picture, the local-equilibrium statistical operator should be
defined at the current time rather than at the initial time.

On this basis, we here propose a first-principle derivation
of the hydrodynamic equations in the quantum-mechanical
framework, where the integral fluctuation theorem is obtained
in the Schrödinger picture from a fundamental identity re-
lating the exact statistical operator to the local-equilibrium
one. Thereby, we can deduce the nonnegativity of entropy
production using the Peierls-Bogoliubov inequality [36]. Fur-
thermore, we derive general and exact expressions for the
dissipative part of the mean current densities of the locally
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conserved quantities. Using the expansion in the gradients
of the macrofields, the transport coefficients are shown to
be given by Green-Kubo formulas and we establish the
equivalence between the local-equilibrium approach and the
methods based on projection operators [37–40]. As a conse-
quence of microreversibility, the Onsager-Casimir reciprocal
relations are satisfied. Moreover, we show that, at the leading
order of the gradient expansion, the entropy production rate
is expressed in terms of the symmetric part of the matrix of
transport coefficients. Thereupon, we can prove the nonnega-
tivity of the entropy production rate using the quantum version
of the Einstein-Helfand formulas [41,42]. The results are gen-
eral and they apply mutatis mutandis to fluids and the phases
of condensed matter with broken continuous symmetries.

The paper is organized as follows. In Sec. II we present
the time evolution of the statistical operator and the micro-
scopic densities of the slow modes. The local-equilibrium
statistical operator is introduced in terms of the microscopic
densities and the conjugate fields. The entropy is defined and
functional identities are obtained for the mean values with
respect to the local-equilibrium statistical operator. In Sec. III
the time evolution of the exact statistical operator is related
to the corresponding local-equilibrium statistical operator in
the Schrödinger picture. The quantum integral fluctuation
theorem is obtained and the Peierls-Bogoliubov inequality
is used to deduce the nonnegativity of entropy production.
The nondissipative and dissipative parts of current densities
are identified. In Sec. IV their gradient expansion is carried
out. General equations are obtained for the time evolution
of the conjugate fields and the relationship to projection-
operator methods is established. The transport coefficients
are thus given as the coefficients of linear response with
respect to the affinities, i.e., the gradients of the conjugate
fields. The transport coefficients are expressed in terms of
Green-Kubo formulas. At leading order in the gradient ex-
pansion, the entropy production rate is obtained and shown to
be nonnegative, using quantum-mechanical Einstein-Helfand
formulas. In Sec. V we consider the application of the for-
malism to multicomponent fluids and condensed matter with
broken symmetries. The conclusion is drawn in Sec. VI. In
Appendix A we provide details for the calculations of the
formalism. The details of the derivation are given for multi-
component fluids in Appendix B, where we also show that the
results of kinetic theory are recovered at low particle density.
Appendix C presents an overview of the derivation for the
phases with broken symmetries.

Notations. Latin letters a, b, c, . . . = x, y, z correspond to
spatial coordinates and Greek letters α, β, γ , . . . label the
hydrodynamic variables. Unless explicitly stated, Einstein’s
convention of summation over repeated indices is adopted.
h̄ denotes Planck’s constant, kB Boltzmann’s constant, and
ı = √−1.

II. MICROSCOPIC DYNAMICS
AND STATISTICAL OPERATORS

A. Microscopic densities and time evolution

The hydrodynamic modes, or slow modes, of the system
originate from the fundamental conservation laws (energy,

momentum, particle numbers, and mass) and from the
Nambu-Goldstone modes associated with the breaking of con-
tinuous symmetries. The corresponding microscopic densities
are local observables denoted by ĉα (r), which includes the
densities of energy, momentum, particles, and mass, as well
as the gradients of the order fields generated by symmetry
breaking. The integrals of these densities Ĉα ≡ ∫

ĉα (r) dr are
conserved quantities, such that [Ĉα, Ĥ ] = 0, where Ĥ is the
Hamiltonian operator ruling the time evolution of the many-
body wave function. Here, we assume that the microscopic
dynamics is defined in a domain with periodic boundary con-
ditions, which is convenient to describe bulk phases. In this
regard, the system is isolated.

In the Heisenberg picture, the time evolution of the micro-
scopic densities is given by

ı h̄ ∂t ĉ
α (r, t ) = [ĉα (r, t ), Ĥ ], (1)

leading to the microscopic local conservation equations

∂t ĉα (r, t ) + ∇aĴa
cα (r, t ) = 0, (2)

which define the microscopic current densities Ĵa
cα . The mi-

croscopic densities and current densities are both defined as
Hermitian operators since they are physical observables. In-
troducing the Liouvillian superoperator

L̂Â ≡ 1

ı h̄
[Ĥ, Â] (3)

acting on any operator Â, the densities at time t can be ex-
pressed as

ĉα (r, t ) ≡ e−L̂t ĉα (r) = e
ı
h̄ Ĥt ĉα (r) e− ı

h̄ Ĥt (4)

with similar expressions for the current densities.

B. The exact statistical operator

We consider a statistical ensemble of copies of the system,
which is described by some statistical operator evolving in
time according to

�̂t = eL̂t �̂0 = e− ı
h̄ Ĥt �̂0 e

ı
h̄ Ĥt , (5)

where �̂0 is the statistical operator at initial time. This time
evolution preserves the Hermitian character of the statistical
operator, �̂

†
t = �̂t , as well as its normalization tr �̂t = 1.

The mean values of the microscopic densities can thus be
equivalently expressed as

〈ĉα (r)〉t = tr[ĉα (r) �̂t ] = tr[ĉα (r, t ) �̂0] (6)

with the notation 〈·〉t ≡ tr(· �̂t ). In the Schrödinger picture, the
microscopic densities do not depend on time, but the statistical
operator does. In the Heisenberg picture, the microscopic
densities evolve in time, but the mean value is taken over
the initial statistical operator. The macroscopic equations are
obtained from the ensemble average of Eq. (2) with respect to
the initial statistical operator �̂0, giving

∂t 〈ĉα (r)〉t + ∇a
〈
Ĵa

cα (r)
〉
t = 0. (7)

In the rest of the paper, the formalism is developed in the
Schrödinger picture.
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C. The local-equilibrium statistical operator

The local-equilibrium statistical operator is defined as

�̂leq,λ = e−ς̂ (λ) with ς̂ (λ) ≡ λα ∗ ĉα + 	(λ), (8)

where λ = (λα ) are inhomogeneous fields conjugated to the
densities ĉα , the asterisk ∗ is defined by the integration over
space, f ∗ g ≡ ∫

f (r) g(r) dr, and the normalization condi-
tion for the local-equilibrium statistical operator gives the
Massieu functional 	(λ) = ln[tr exp(−λα ∗ ĉα )]. The mean
densities are given by the functional derivatives of the Massieu
functional with respect to the conjugate fields:

cα (r) ≡ 〈ĉα (r)〉leq,λ = − δ	(λ)

δλα (r)
, (9)

where 〈·〉leq,λ ≡ tr(· �̂leq,λ). Therefore, the Massieu functional
plays the role of generating functional for the statistical mo-
ments of the densities.

In the local-equilibrium approach, the entropy of the sys-
tem is defined in terms of the local-equilibrium statistical
operator (8) according to [11,22–24]

S ≡ −kB tr(�̂ leq,λ ln �̂ leq,λ). (10)

The entropy is the Legendre transform of the Massieu func-
tional [27]

S(c) = kB inf
λ

[λα ∗ cα + 	(λ)], (11)

so that the entropy is a functional of the mean densities
c = (cα ) defined by Eq. (9). As a consequence, the conjugate
fields are given by the functional derivatives of the entropy
functional,

λα (r) = 1

kB

δS(c)

δcα (r)
. (12)

In order to calculate higher functional derivatives, we need
to consider the functional derivative of the local-equilibrium
statistical operator itself:

δ�̂leq,λ

δλα (r)
= −

∫ 1

0
dx e−xς̂ (λ) δĉα (r) exς̂ (λ)�̂leq,λ, (13)

where δĉα ≡ ĉα − 〈ĉα〉leq,λ, as shown in Eqs. (A3) and (A4)
[24,25,30]. In particular, we can define the kernel formed by
the density-density correlation functions as

Cαβ (r, r′) ≡ 〈δĉα (r)|δĉβ (r′)〉λ = Cβα (r′, r) (14)

in terms of the Mori product [2,43]

〈Â|B̂〉λ ≡ tr

[∫ 1

0
dx Â† e−xς̂ (λ)B̂ exς̂ (λ)�̂leq,λ

]
= 〈B̂†|Â†〉λ.

(15)

This kernel and its inverse are thus given by the second func-
tional derivatives as follows:

δcα

δλβ
= − δ2	

δλαδλβ
= −〈δĉα|δĉβ〉λ, (16)

δλβ

δcα
= 1

kB

δ2S

δcαδcβ
= −〈δĉα|δĉβ〉−1

λ . (17)

We note that this kernel characterizes the spatial correlation
functions of the densities in the local equilibrium defined

by the conjugate fields λ. Equilibrium statistical mechanics
shows that these spatial correlation functions are typically
decaying as exp(−r/�)/r, where the correlation length � is
finite away from phase transitions.

The existence of the inverse of the kernel is a condition
allowing us to determine in principle the conjugate fields λ =
(λα ) from the knowledge of the mean densities c = (cα ), in
particular, during the time evolution.

D. Basic assumptions and consequences

The formalism of the local-equilibrium approach is based
on the requirements that, at every time, the mean densities (6)
calculated with the exact statistical operator (5) are equal to
the mean densities (9) with respect to the local-equilibrium
statistical operator for the time-evolved conjugate fields λt :

cα (r, t ) ≡ 〈ĉα (r)〉t = 〈ĉα (r)〉leq,λt . (18)

At any time t , the conjugate fields λt can thus be related to the
mean densities by Eq. (12) by supposing the existence of the
inverse kernel (17).

Since the initial statistical operator is free to take arbitrary
values compatible with the initial densities, we may assume
that the system is initially described by the local-equilibrium
statistical operator �̂0 = �̂leq,λ0 associated with the conjugate
fields λ0 corresponding to the initial densities, so that Eq. (5)
now reads

�̂t = eL̂t �̂leq,λ0 = e− ı
h̄ Ĥt �̂leq,λ0 e

ı
h̄ Ĥt . (19)

In general, we note that �̂t �= �̂leq,λt for t �= 0, because the
equalities (18) are formulated in a functional space typically
much smaller than the space of statistical operators, if we
consider many-body quantum systems.

The expression (19) has several important consequences.
Since the normalization condition tr �̂t = 1 is always satis-
fied, the property (d/dt ) tr �̂t |t=0 = 0 leads to the following
functional identity [26,27]:

∇aλα ∗ 〈
Ĵa

cα

〉
leq,λ

= 0, (20)

which holds for any conjugate field λα , as explained in
Eq. (A7). Now, the variation of the identity (20) with respect
to λα gives another functional identity, which reads

∇a
〈
Ĵa

cα (r)
〉
leq,λ

= −
∫

dr′ 〈δĉα (r)
∣∣δĴa

cβ (r′)
〉
λ
∇′aλβ (r′) (21)

in terms of the Mori product (15) as shown with Eq. (A9).
These functional identities play an important role in the fol-
lowing.

III. ENTROPY PRODUCTION AND CURRENT DENSITIES

A. Quantum integral fluctuation theorem

At any time t , the entropy (10) can be expressed as

St = kB
[
λα

t ∗ cα
t + 	(λt )

] = −kB tr(�̂t ln �̂ leq,λt ) (22)

by using the definition (8) of the local-equilibrium statis-
tical operator and the requirements (18) with the notation
cα

t (r) = cα (r, t ) [19,20]. Furthermore, we note that the ini-
tial value of the entropy is given by the von Neumann
formula, not only for the initial statistical operator, but
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also for the exact statistical operator at any time, since the
von Neumann formula gives a time-independent value: S0 =
−kB tr(�̂0 ln �̂0) = −kB tr(�̂t ln �̂t ).

Using the Liouvillian superoperator (3), the time evolution
of the exact statistical operator thus reads

�̂t = eL̂t �̂leq,λ0 = exp
[−λα

0 ∗ ĉα
−t − 	(λ0)

]
= exp[−ς̂ (λt ) + �̂t ] (23)

in terms of the operator

�̂t ≡
∫ t

0
dτ ∂τ

[
λα

τ ∗ ĉα
τ−t + 	(λτ )

]
(24)

=
∫ t

0
dτ

(
∂τλ

α
τ ∗ δĉα

τ−t + ∇aλα
τ ∗ δĴa

cα,τ−t

)
, (25)

where the last expression is calculated in Eq. (A11) with

δĉα
τ−t ≡ ĉα

τ−t − 〈ĉα〉leq,λτ
, (26)

δĴa
cα,τ−t ≡ Ĵa

cα,τ−t − 〈
Ĵa

cα

〉
leq,λτ

. (27)

We note the crucial role of the operator �̂t , which is a central
quantity in the formalism. Indeed, its mean value with respect
to the exact statistical operator �̂t is related to the entropy
difference between the initial time t = 0 and the current time
t according to

〈�̂t 〉t = tr(ρ̂t ln ρ̂t ) − tr(ρ̂leq,λt ln ρ̂leq,λt ) = 1

kB
(St − S0),

(28)
as proved in Eq. (A12).

Most remarkably, the exact statistical operator can be
related to the local-equilibrium statistical operator by the fol-
lowing identity:

�̂t = �̂t �̂leq,λt , (29)

where

�̂t ≡ �̂t �̂−1
leq,λt

= e−ς̂ (λt )+�̂t eς̂ (λt )

= 1 +
∫ 1

0
dx ex[−ς̂ (λt )+�̂t ] �̂t exς̂ (λt ), (30)

as Eq. (A15) shows. Therefore, the ensemble average of any
operator Â can be expressed at any time in terms of an
ensemble average with respect to the corresponding local-
equilibrium statistical operator, providing the inclusion of the
operator �̂t as follows:

〈Â〉t = 〈Â �̂t 〉leq,λt , (31)

which is a further fundamental identity of the formalism.
Next, the choice Â = �̂−1

t in Eq. (31) gives a quantum version
of the integral fluctuation theorem

〈e−ς̂ (λt ) eς̂ (λt )−�̂t 〉t = 1. (32)

Now, we have the Peierls-Bogoliubov inequality [36]

〈e−ς̂ (λt ) eς̂ (λt )−�̂t 〉t � e−〈�̂t 〉t , (33)

which is obtained with Eqs. (A16)–(A19). By combining the
quantum integral fluctuation theorem (32) with the Peierls-
Bogoliubov inequality (33), we deduce that 〈�̂t 〉t � 0. As a

consequence of Eq. (28), we thus obtain the inequality

St − S0 = kB〈�̂t 〉t � 0. (34)

Since the system is here assumed to be isolated, this inequality
can be interpreted as the nonnegativity of the entropy produc-
tion during the time interval [0, t] with t � 0.

B. Reversible and dissipative current densities

The time derivative of the entropy (10) is given by

1

kB

dS

dt
= ∇aλα

t ∗ 〈
Ĵa

cα

〉
t , (35)

as shown in Eq. (A20). The mean values of the current densi-
ties can always be decomposed as〈

Ĵa
cα (r)

〉
t = J̄a

cα (r, t ) + J a
cα (r, t ), (36)

where

J̄a
cα (r, t ) ≡ 〈

Ĵa
cα (r)

〉
leq,λt

and (37)

J a
cα (r, t ) ≡ 〈

δĴa
cα (r)

〉
t = 〈

δĴa
cα (r) (�̂t − 1)

〉
leq,λt

(38)

with δĴa
cα (r) ≡ Ĵa

cα (r) − 〈Ĵa
cα (r)〉leq,λt , since 〈δĴa

cα (r)〉t =
〈δĴa

cα (r) �̂t 〉leq,λt by Eq. (31) and 〈δĴa
cα (r)〉leq,λt = 0.

Because of the identity (20), we have that ∇aλα ∗ J̄a
cα = 0,

so that the time derivative of the entropy reduces to

1

kB

dS

dt
= ∇aλα

t ∗ J a
cα (t ). (39)

Combining with the inequality (34), we have that

�St = St − S0 = kB

∫ t

0
∇aλα

τ ∗ J a
cα (τ ) dτ � 0, (40)

which is the entropy production during the time interval [0, t],
if the system is isolated. Accordingly, the part (37) of the
mean current density (36) preserves the entropy and can be
interpreted as the reversible or dissipativeless part of the cor-
responding current density. The dissipative part of the mean
current density is thus given by Eq. (38). Therefore, the iden-
tity (20) of the formalism leads to the identification of the
reversible and dissipative parts of the current densities.

According to Eq. (30), the dissipative part of the current
densities defined in Eq. (38) becomes a function of �̂t and
is given by an ensemble average with respect to the local-
equilibrium statistical operator:

J a
cα (r, t ) =

〈
δĴa

cα (r)
∫ 1

0
dx ex[−ς̂ (λt )+�̂t ]�̂t exς̂ (λt )

〉
leq,λt

. (41)

The macroscopic local conservation equations can thus be
written as

∂t cα + ∇a
(
J̄a

cα + J a
cα

) = 0 (42)

in terms of the reversible and dissipative parts of the current
densities given by Eqs. (37) and (41), which is a general and
exact result of the formalism.

In nonrelativistic systems, Galilean invariance can be used
to express the reversible part (37) of the mean current densities
in terms of the velocity field, which is defined as the velocity
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of the mass center for each element of the continuous medium
of interest:

va(r, t ) ≡ 〈ĝa(r)〉t

〈ρ̂(r)〉t
, (43)

where ρ̂ and ĝa denote the microscopic densities of mass
and linear momentum, respectively. These quantities obey the
local conversation equation

∂t ρ̂ + ∇aĝa = 0, (44)

so that the corresponding macroscopic equation is the conti-
nuity equation

∂t ρ + ∇a(ρ va) = 0, (45)

where ρ(r, t ) ≡ 〈ρ̂(r)〉t . As a direct consequence, the mean
current density of mass is entirely given by its reversible part
J̄a
ρ = ρ va, while its dissipative part is equal to zero J a

ρ = 0.
Since the mass density is the sum over the particle species 1 �
k � ν of the particle densities n̂k multiplied by their mass mk ,
ρ̂ = ∑

k mkn̂k , the latter relation implies that
∑

k mkJ a
nk

= 0
for the dissipative parts of the particle current densities. There-
fore, the local conservation of mass is a constraint eliminating
one dissipative current density in the system.

The reversible parts of the other current densities can also
be expressed in terms of the velocity field (43), as explained
for multicomponent fluids in Appendix B.

We note that the nonnegativity of the entropy production
(40) does not imply the inequality dS/dt � 0 [24], so that
further assumptions are required before dS/dt might be inter-
preted as the entropy production rate, as discussed in Sec. IV.

IV. GRADIENT EXPANSION

The calculation of the mean current densities (36) is
achieved by using an expansion in the gradients of the
macrofields cα and λα . For continuous media under typical
macroscopic nonequilibrium conditions, these gradients have
a spatial scale much larger than the characteristic length of
the spatial correlations among the particles. Under such con-
ditions, the macroscopic movements can be described with
the leading terms of the gradient expansion in the continuous
medium of interest. Usually, the reversible part (37) of the
mean current densities may depend linearly or nonlinearly
on the macrofields, but does not depend on their gradients,
while their dissipative part (38) is typically linear in their
gradients. In this respect, the dissipative current densities are
proportional to the gradients with linear response coefficients
defining the transport coefficients. At leading order of the gra-
dient expansion, the time derivative of the entropy (39) is thus
given by a quadratic form of the gradients. In this section, we
present the derivation of these results, applicable to systems
with modes originating from the fundamental conservation
laws and the breaking of continuous symmetries.

A. Local thermodynamics

The first step is the identification of the conjugate fields
λα . For this purpose, the entropy functional (11) should be

expressed as

S(c) =
∫

s(c) dr + O(∇2) (46)

in terms of the entropy density s(c) obeying the local Gibbs
relation, ds = kB λαdcα , and corrections O(∇2) including
terms like (∇acα )2, which are negligible at the macroscale
in systems away from phase transitions [27,44,45]. This
thermodynamic quantity can be calculated using equilibrium
statistical mechanics and assuming that local equilibrium
holds in every volume element of the continuous medium. As
a consequence of Eq. (12), the conjugate fields are given by
λα = k−1

B (∂s/∂cα ) + O(∇2) up to possible corrections going
as the square of the gradients.

According to the identity (20), the reversible part of the
current densities (37) does not contribute to the time deriva-
tive of the entropy (39), so that entropy is preserved by
the macroscopic hydrodynamic equations truncated to the re-
versible parts of the current densities. These are the Eulerian
hydrodynamic equations, which thus describe adiabatic (i.e.,
dissipativeless) processes in the continuous medium. As ex-
plained in Sec. III B, the reversible part of the current densities
can be expressed in terms of the velocity field defined by
Eq. (43), as well as thermodynamic quantities such as the
hydrostatic pressure and the heat capacity, which are defined
using local thermodynamics and the entropy density intro-
duced in Eq. (46).

B. Dissipative current densities at leading order

We proceed with the calculation of the dissipative current
densities (41) at leading order in the gradient expansion. From
Eq. (25), we have �̂t ∼ O(∇), so that the dissipative current
densities become

J a
cα (r, t ) =

〈
δĴa

cα (r)
∫ 1

0
dx e−xς̂ (λt ) �̂t exς̂ (λt )

〉
leq,λt

+ O
(
�̂2

t

)
= 〈

δĴa
cα (r)

∣∣�̂t
〉
λt

+ O
(
�̂2

t

)
(47)

with the Mori product (15).
In order to obtain the dissipative current densities, we must

evaluate �̂t at leading order in the gradients. With this aim, we
consider its expression (25). The first terms in the integrand
∂τλ

α
τ ∗ δĉα can be obtained starting from the dissipativeless

Eulerian hydrodynamic equations for the mean densities cα ,
since the conjugate fields λα are functions of these densities
within the framework of local thermodynamics [27,31].

Remarkably, the dissipativeless equations for the conjugate
fields λα can also be obtained in terms of a projection op-
erator by using the functional identities (20) and (21) of the
formalism. Indeed, the time derivatives of the conjugate fields
are first given by ∂tλ

α = (δλα/δcβ ) ∗ ∂t cβ . Using the second
functional derivatives (17) and the macroscopic equations (7),
we thus have

∂tλ
α
t (r) =

∫
dr′ 〈δĉα (r)

∣∣δĉβ (r′)
〉−1

λt
∇′a〈Ĵa

cβ (r′)
〉
t
. (48)
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Decomposing the mean current densities according to Eq. (36)
and using the functional identity (21) for ∇′aJ̄a

cβ give

∂τλ
α
τ ∗ δĉα = −

∫∫∫
dr dr′ dr′′ δĉα (r) 〈δĉα (r)|δĉβ (r′)〉−1

λτ

× 〈
δĉβ (r′)

∣∣δĴa
cγ (r′′)

〉
λτ

∇′′aλγ
τ (r′′)

+
∫∫

dr dr′ δĉα (r) 〈δĉα (r)|δĉβ (r′)〉−1
λτ

× ∇′aJ a
cβ (r′, τ ). (49)

The first term can be expressed in terms of the projection
operator defined as

P̂λX̂ ≡ δĉα ∗ δ

δcα
〈X̂ 〉leq,λ

=
∫∫

dr dr′ δĉα (r) 〈δĉα (r)|δĉβ (r′)〉−1
λ 〈δĉβ (r′)|X̂ 〉λ

(50)

for an arbitrary operator X̂ , as shown in Eq. (A24). Since
J a

cβ ∼ O(�̂t ) and �̂t ∼ O(∇), the second term of Eq. (49) is
of higher order in the gradient expansion and can be neglected
at leading order of the expansion, so that

∂τλ
α
τ ∗ δĉα = −∇aλα

τ ∗ P̂λτ
δĴa

cα + O(∇2). (51)

The equivalence of this approach with the methods based
on projection operators [37–40] is therefore established. This
equivalence also holds for classical systems. We stress that the
matrix elements 〈δĉα (r)|δĉβ (r′)〉λτ

and 〈δĉα (r)|δĴa
cβ (r′)〉λτ

are
the central building blocks of the approach based on projec-
tion operators. These matrix elements can be directly obtained
from the reversible current densities and the dissipativeless
equations for the conjugate fields λα by using Eqs. (21)
and (48).

Substituting the result (51) into the integrand of �̂t , the
latter is expressed as

�̂t =
∫ t

0
dτ Aa

cα (τ ) ∗ δĴ ′a
cα (τ − t ) + O(∇2), (52)

where the gradients of the conjugate fields define thermody-
namic forces or affinities corresponding to the densities cα

Aa
cα ≡ ∇aλα, (53)

and the prime current densities are defined as

δĴ ′a
cα ≡ δĴa

cα − P̂λτ
δĴa

cα . (54)

We note that the projection operator (50) satisfies the property
〈P̂λX̂ 〉t = 0, because 〈δĉα〉t = 0. Consequently, the dissipa-
tive part (38) of the current densities can be written as
J a

cα (r, t ) ≡ 〈δĴa
cα (r)〉t = 〈δĴ ′a

cα (r)〉t , so that δĴa
cα can be re-

placed by δĴ ′a
cα in Eqs. (38), (41), and (47) [28,29].

The dissipative current densities are finally obtained as

J a
cα (r, t ) =

∫ t

0
dτ

∫
dr′〈δĴ ′a

cα (r)
∣∣δĴ ′b

cβ (r′, τ − t )
〉
λt

× Ab
cβ (r′, τ ) + O(∇2) (55)

with the Mori product (15).

C. Green-Kubo formulas

The current correlation functions appearing in the inte-
grand of Eq. (55) are decaying to zero on the spatiotemporal
scales that characterize the structure and dynamics of the
phase of interest. The macrofields are assumed to vary in
space and time over scales that are larger than the correlation
time and the correlation length of the current correlation func-
tions. Accordingly, the affinities Ab

cβ (r′, τ ) can be replaced by
Ab

cβ (r, t ) in Eq. (55).
As a further consequence, the conjugate fields λα

τ may be
supposed to be quasi uniform on the scales of the current
correlation functions. Under such circumstances, the local-
equilibrium statistical operator �̂leq,λτ

can be replaced by the
equilibrium grand canonical statistical operator

�̂eq = e−ς̂ (λeq ) = e−(kBT )−1(Ĥ−∑c
k=1 μk0N̂k )−	eq , (56)

where Nk is the number of particles of species k in the system
and μk0 is the corresponding chemical potential in the frame
at rest with the system. This equilibrium statistical opera-
tor commutes with the Hamiltonian operator [Ĥ , �̂eq] = 0,
because the particle number operators do so, [Ĥ , N̂k] = 0.
Therefore, the equilibrium statistical operator is time invari-
ant, so that the equilibrium statistical properties are stationary
and the current correlation functions can be transformed as〈
δĴ ′a

cα (r, 0)
∣∣δĴ ′b

cβ (r′, τ − t )
〉
λeq

= 〈
δĴ ′a

cα (r, t − τ )
∣∣δĴ ′b

cβ (r′, 0)
〉
λeq

.

(57)

Over spatial scales much larger than the distance be-
tween the particles, the material properties can be defined
by averaging over space. The microscopic global currents are
introduced as

δĴ a
cα (t ) ≡

∫
V

δĴa
cα (r, t ) dr (58)

for the unprime and prime quantities.
Putting everything together, the dissipative current densi-

ties become

J a
cα (r, t ) � 1

V

∫ ∞

0
dτ

〈
δĴ ′a

cα (τ )
∣∣δĴ ′b

cβ (0)
〉
λeq
Ab

cβ (r, t ). (59)

In the canonical equilibrium ensemble, where the particle
numbers {Nk} take given and fixed values, the dissipative
current densities can thus be expressed at leading order as

J a
cα (r, t ) = Lab

αβ Ab
cβ (r, t ) (60)

in terms of the linear response coefficients given by the Green-
Kubo formulas

Lab
αβ ≡ kBT

V

∫ ∞

0
dτ

∫ (kBT )−1

0
dϑ

〈
δĴ ′a

cα (τ )δĴ ′b
cβ (ı h̄ϑ )

〉
eq , (61)

where δĴ ′a
cα (t ) = e

ı
h̄ Ĥt δĴ ′a

cα (0) e− ı
h̄ Ĥt for t = τ and t = ı h̄ϑ

with ϑ ≡ (kBT )−1x. The limit of infinite volume V should be
taken to obtain the transport coefficients as properties holding
at the macroscale.

Since the Hamiltonian ruling the microscopic dynamics
has the time-reversal symmetry, the Onsager-Casimir recip-
rocal relations are satisfied:

Lab
αβ = εα εβ Lba

βα, (62)
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where εα = ±1 is the parity of δĴ ′a
cα under time reversal (and

there is no Einstein’s summation for these parities). The rela-
tions (62) are proved by Eqs. (A25)–(A29).

In the classical limit where the thermal de Broglie wave
length of the particles is significantly smaller than the mean
distance between neighboring particles, the Green-Kubo for-
mulas (61) take their classical form,

lim
h̄→0

Lab
αβ = 1

V

∫ ∞

0
dτ

〈
δĴ ′a

cα (τ ) δĴ ′b
cβ (0)

〉
eq , (63)

as expected.
For classical systems, the transport coefficients can thus

be computed with the Green-Kubo formulas (63) by solv-
ing Newton’s equations of microscopic motion according
to molecular dynamics methods [46]. Instead, for quantum
systems, the evaluation of transport coefficients with the
Green-Kubo formulas (61) requires quantum dynamics sim-
ulation methods, e.g., as discussed in Ref. [47].

For classical systems, the Green-Kubo formulas are known
to give the same expressions for transport coefficients as those
obtained using the kinetic approach [12,48]. For quantum
systems, the link to kinetic theory is established by consid-
ering the Wigner transform of the operators, the quantum
BBGKY hierarchy, and approximation schemes, e.g., in the
weak-coupling limit or the low-density limit [12,49]. At low
particle density, the time evolution is approximately ruled by
a kinetic equation for the one-particle distribution function,
which can be linearized around equilibrium to calculate the
values of the transport coefficients, so that the results of ki-
netic theory are recovered in this case [7,12–14].

D. Entropy production rate

At leading order of the gradient expansion, the dissipative
current densities are linear functions of the affinities, so that
the time derivative of the entropy is a quadratic form of the
affinities. Consequently, the antisymmetric part of the matrix
of linear response coefficients (61) does not contribute to the
time derivative of the entropy, which is solely given in terms
of its symmetric part

Lab S
αβ ≡ 1

2

(
Lab

αβ + Lba
βα

)
. (64)

Using Eqs. (60), and (64), the time derivative (39) for the
entropy can thus be written as

1

kB

dS

dt
= Lab S

αβ Aa
cα (t ) ∗ Ab

cβ (t ). (65)

Because of the Onsager-Casimir reciprocal relations (62),
the symmetric part (64) can be expressed as

Lab S
αβ ≡ 1

2 (1 + εα εβ )Lab
αβ, (66)

showing that the transport coefficients coupling processes
with opposite parities under time reversal do not contribute
to the time derivative of the entropy (65).

Now, if we introduce the Helfand moments [42] as

Ĥ′a
cα (t, ϑ ) ≡

∫ t+ı h̄ϑ/2

ı h̄ϑ/2
δĴ ′a

cα (τ ) dτ, (67)

the symmetrized transport coefficients (64) can be equiva-
lently obtained using the Einstein-Helfand formulas

Lab S
αβ = kBT

∫ (kBT )−1

0
ϒab

αβ (ϑ ) dϑ (68)

with

ϒab
αβ (ϑ ) ≡ lim

t→∞
1

2tV

〈
Ĥ′a†

cα (t, ϑ ) Ĥ′b
cβ (t, ϑ )

〉
eq , (69)

as shown with Eq. (A31). Since Eq. (69) defines a nonnegative
quadratic form, the symmetric matrix (64) has the same prop-
erty, (Lab S

αβ ) � 0, which proves the nonnegativity of Eq. (65):
dS/dt � 0. Therefore, the time derivative of the entropy can
be interpreted as the entropy production rate at leading order
of the gradient expansion in agreement with the second law of
thermodynamics.

We note that phenomenological considerations might re-
sult into different choices for the affinities [1]. In particular,
the phenomenological affinities Aa

cα,ph are usually related by
linear transformations to the affinities (53) that we have here
defined as the gradients of the conjugate fields:

Aa
cα = Mab

αβ Ab
cβ ,ph. (70)

The corresponding phenomenological dissipative current den-
sities are thus given by

J b
cβ ,ph = J a

cα Mab
αβ, (71)

so that the entropy production rate has the same quadratic
form as in Eq. (65), but with the phenomenological coeffi-
cients

Lab
αβ,ph = La′b′

α′β ′ Ma′a
α′α Mb′b

β ′β. (72)

V. APPLICATIONS

The previous results apply after identifying the micro-
scopic densities of the slow modes in the system of interest.

A. Multicomponent fluids

In nonreactive multicomponent fluids, the slow modes are
associated with the fundamental conservation laws of en-
ergy, linear momentum, and particle numbers for the different
particle species composing the system. Accordingly, the mi-
croscopic densities are given by

ĉα = (ê, ĝa, n̂k ), (73)

where ê is the energy density, ĝa with a = x, y, z are the
three Cartesian components of linear momentum, and n̂k with
1 � k � ν are the particle densities for the ν particle species
in the system [50]. These densities obey the local conservation
equations (2) with the corresponding microscopic current den-
sities, which can be deduced from the Hamiltonian operator of
the system according to Eq. (1). The details of the calculations
are presented in Appendix B. The local-equilibrium statistical
operator can thus be defined by Eq. (8) with the microscopic
densities (73) and the conjugate fields λα = (λe, λga , λnk ).

In multicomponent fluids, the transport properties are the
shear and bulk viscosities, the heat conductivity, and the
diffusion and thermodiffusion coefficients. All these coef-
ficients are explicitly calculated in Appendix B using the
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local-equilibrium approach and they are given by the quantum
Green-Kubo formulas (B53)–(B57). The thermodiffusion and
cross-diffusion coefficients obey Onsager-Casimir reciprocal
relations (62) with εαεβ = 1, so that the matrix of trans-
port coefficients is symmetric Lab

αβ = Lab S
αβ . Therefore, the

Green-Kubo formulas (61) are equivalent to Einstein-Helfand
formulas (68) and all the aforementioned transport properties
contribute to the entropy production rate (65). Moreover, the
results of kinetic theory are recovered at low particle density,
as shown in Appendix B for the case of one-component fluids.

B. Phases with broken continuous symmetries

In condensed matter with broken continuous symmetries,
the slow modes include not only the modes associated with
the fundamentally conserved quantities, but also the Nambu-
Goldstone modes emerging from symmetry breaking. The
number of these extra modes is equal to the number of
continuous symmetries that are broken. In liquid crystals,
rotational symmetries can be broken [2,3]. In crystals, where
the symmetries under three-dimensional spatial translations
are also broken, there are three Nambu-Goldstone modes
emerging from the crystalline long-range order. Such an order
is described by some microscopic order field x̂σ (r), given
for instance by the displacement vector in crystals [31,32,
51–54]. Its gradient ûaσ ≡ ∇ax̂σ obeys a local conservation
equation such as Eq. (2) and may thus be considered on
the same footing as the microscopic densities of the fun-
damentally conserved quantities. In crystals with a single
particle species, the local-equilibrium statistical operator (8)
can therefore be defined with the following microscopic den-
sities:

ĉα = (ê, ĝa, ρ̂, ûaσ ), (74)

where ρ̂ is the mass density and ûaσ are the gradients
of the order fields, and with the conjugate fields λα =
(λe, λga , λρ, λuaσ ). More details are given in Appendix C.

As for fluids, the quantum-mechanical calculation of the
transport properties can be achieved alike to the classical cal-
culation. As a consequence of continuous symmetry breaking,
the transport properties include further coefficients result-
ing from the emerging order fields and the anisotropy of
the medium. The transport coefficients are now given by
the quantum version (61) of the Green-Kubo formulas. In
centrosymmetric phases, the matrix of transport coefficients
is symmetric and the Green-Kubo formulas are equivalent
to Einstein-Helfand formulas. Otherwise, transport processes
with εαεβ = −1 could be coupled together, giving antisym-
metric matrix elements, which do not contribute to the entropy
production rate [31,32,53].

VI. CONCLUSION

In this paper, we have carried out the quantum-mechanical
derivation of the macroscopic hydrodynamic equations in the
local-equilibrium approach for phases of matter without and
with broken continuous symmetries. The statistical operator
of the local-equilibrium approach is constructed using the
microscopic densities and conjugate fields associated with the
slow modes in the system.

The derivation is performed in the Schrödinger picture of
quantum mechanics. For this purpose, we have obtained func-
tional identities and, in particular, Eq. (21) deduced from the
variation of Eq. (20) with respect to the conjugate fields. The
functional identity (21) allows us to obtain a general form for
the time evolution of the conjugate fields in the Schrödinger
picture and to show the equivalence of the local-equilibrium
approach with projection-operator methods [37–40].

The quantum integral fluctuation theorem (32) is estab-
lished, from which we deduce the nonnegativity of the entropy
production, using the Peierls-Bogoliubov inequality (33).
With the transformation (29)–(30) relating the exact to the
local-equilibrium statistical operator, the mean current den-
sities can be decomposed into their reversible and dissipative
parts according to Eqs. (37) and (38). In this way, we obtain
the general and exact form (41) of their dissipative part. Next,
the dissipative current densities can be expanded in powers of
the affinities defined as the gradients of the conjugate fields.
The transport coefficients are thus identified as the linear
response coefficients of the dissipative current densities with
respect to the affinities. The transport properties are given
by the Green-Kubo formulas (61) in terms of the quantum-
mechanical microscopic dynamics. In fluids at low particle
density, the known values for the transport coefficients are
shown to be recovered from these formulas. At leading order
of the gradient expansion, the time derivative of the entropy is
the quadratic form (65) of the affinities based on the symmet-
ric part of the matrix of transport coefficients. This symmetric
part can be expressed by the Einstein-Helfand formulas (68)
with (69), proving the nonnegativity of the quadratic form. For
quantum systems, the time derivative of the entropy may thus
be identified with the entropy production rate of nonequilib-
rium thermodynamics [1].

We emphasize that, although the dissipative part of the
current densities linearly depends on the affinities (53) (i.e.,
the gradients of the conjugate fields λα), the reversible part of
the current densities are given by nonlinear functions of the
macrofields cα and λα , so that the macroscopic hydrodynamic
equations we obtain are in general nonlinear partial differ-
ential equations. We note that the gradient expansion could
in principle also provide the nonlinear response properties
beyond the linear ones, if this was needed to describe the
system of interest.

The results are established for systems ruled by quantum
mechanics, and they apply not only to fluids, but also to
condensed matter phases with broken continuous symmetries.
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APPENDIX A: FORMALISM CALCULATIONS

In this Appendix, we explicitly derive several equa-
tions given in the main text.
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a. The functional derivative (13). For two possibly non-
commuting operators Â and B̂, we have the identity

ex(Â+B̂) = exÂ +
∫ x

0
dx′ex′(Â+B̂) B̂ e(x−x′ )Â, (A1)

which is given for example in Ref. [24]. The identity can
be proved by considering the derivative of ex(Â+B̂)e−xÂ with
respect to x. From Eq. (A1), the variation of the operator exÂ

can be written as

δ exÂ ≡ ex(Â+δÂ) − exÂ

=
∫ x

0
dx′ ex′Â (δÂ) e(x−x′ )Â. (A2)

The variation of the local-equilibrium statistical operator (8)
is thus given by

δ�̂leq,λ = −
∫ 1

0
dx e−xς̂ (λ) δς̂ (λ) exς̂ (λ)�̂leq,λ (A3)

with

δς̂ (λ) = δλα ∗ ĉα + δ	(λ) = δλα ∗ δĉα, (A4)

using Eq. (9) and δĉα ≡ ĉα − 〈ĉα〉leq,λ, whereupon we obtain
Eq. (13). As a consequence, for any operator X̂ , we have

δ〈X̂ 〉leq,λ = tr[X̂ (δ�̂leq,λ)]

= −tr

[
X̂

∫ 1

0
dx e−xς̂ (λ) δλα ∗ δĉα exς̂ (λ)�̂leq,λ

]
= −

∫
dr 〈δX̂ †|δĉα (r)〉λ δλα (r), (A5)

using 〈δĉα〉leq,λ = 0 to replace X̂ by δX̂ ≡ X̂ − 〈X̂ 〉leq,λ and
the Mori product (15), so that

δ〈X̂ 〉leq,λ

δλα (r)
= −〈δX̂ †|δĉα (r)〉λ = −〈δĉα (r)|δX̂ 〉λ, (A6)

because δĉα = δĉα†.
b. The functional identity (20). The result follows from

(d/dt ) tr �̂t |t=0 = 0 and

d

dt
tr�̂t

∣∣∣∣
t=0

= d

dt
tr(eL̂t �̂leq,λ0 )

∣∣∣∣
t=0

= d

dt
tr exp

[−λα
0 ∗ ĉα

−t − 	(λ0)
]∣∣

t=0

= −tr
[
λα

0 ∗ ∂t
(
ĉα
−t

)
�̂t

]∣∣
t=0

= −tr
[
λα

0 ∗ ∇aĴa
cα,−t �̂t

]∣∣
t=0

= ∇aλα
0 ∗ 〈

Ĵa
cα

〉
leq,λ0

, (A7)

using �̂0 = �̂leq,λ0 and setting λ = λ0.
c. The functional identity (21). Since the identity (20) can

be expressed as

λα ∗ ∇a
〈
Ĵa

cα

〉
leq,λ

= 0, (A8)

its variation with respect to λα gives

δ

δλα (r)

[∫
dr′λβ (r′)∇′a〈Ĵa

cβ (r′)
〉
leq,λ

]
= ∇a

〈
Ĵa

cα (r)
〉
leq,λ

−
∫

dr′ λβ (r′) ∇′a〈δĉα (r)
∣∣δĴa

cβ (r′)
〉
λ

= 0, (A9)

where we have used

δ
(
λβ ∗ ∇a

〈
Ĵa

cβ

〉
leq,λ

) = δλβ ∗ ∇a
〈
Ĵa

cβ

〉
leq,λ

+ λβ ∗ ∇aδ
〈
Ĵa

cβ

〉
leq,λ

(A10)

and Eq. (A6) with X̂ = Ĵa
cβ . Hence, we find the functional

identity (21).
d. The operator (24). From its definition, we get

�̂t =
∫ t

0
dτ

[
∂τλ

α
τ ∗ ĉα

τ−t + λα
τ ∗ ∂τ ĉα

τ−t + ∂τλ
α
τ ∗ δ	(λτ )

δλα
τ

]
=

∫ t

0
dτ

[
∂τλ

α
τ ∗ (

ĉα
τ−t − 〈ĉα〉leq,λτ

) − λα
τ ∗ ∇aĴa

cα,τ−t

]
=

∫ t

0
dτ

[
∂τλ

α
τ ∗ (

ĉα
τ−t − 〈ĉα〉leq,λτ

)
+ ∇aλα

τ ∗ (
Ĵa

cα,τ−t − 〈Ĵa
cα 〉leq,λτ

)]
, (A11)

using Eqs. (2) and (9), and the first identity (20) to include
〈Ĵa

cα 〉leq,λτ
. We thus obtain the result (25) with the definitions

(26) and (27).
e. The mean value (28) of the operator �̂t . Since �̂t =

ln(�̂t/�̂leq,λt ) according to Eqs. (8) and (23), we have that

〈�̂t 〉t = tr(�̂t ln �̂t ) − tr(�̂t ln �̂leq,λt )

= tr(�̂t ln �̂t ) − tr(�̂leq,λt ln �̂leq,λt )

= 1

kB
(−S0 + St ), (A12)

because of the requirements (18), the definition (10) for the
entropy St = −kBtr(�̂leq,λt ln �̂leq,λt ), and the von Neumann
entropy S0 = −kBtr(�̂t ln �̂t ), which is invariant under time
evolution. Defining the relative entropy between two statis-
tical operators �̂ and �̂′ as

D(�̂‖�̂′) ≡ tr(�̂ ln �̂) − tr(�̂ ln �̂′) � 0, (A13)

we find that

〈�̂t 〉t = D(�̂t‖�̂leq,λt ) � 0. (A14)

f. The operator (30). Setting Â = −ς̂ (λt ), B̂ = �̂t , and
x = 1 in Eq. (A1), we obtain

�̂t = e−ς̂ (λt ) +
∫ 1

0
dx ex[−ς̂ (λt )+�̂t ] �̂t exς̂ (λt ) e−ς̂ (λt )

= �̂t �̂leq,λt (A15)

with the local-equilibrium statistical operator (8) and the op-
erator �̂t defined by Eq. (30).

g. The inequality (33). The Peierls-Bogoliubov inequality
is given by Eq. (1.43) of Ref. [36]:

tr eÂ+B̂ � tr eÂ+〈B̂〉 with 〈B̂〉 = tr (B̂ eÂ)

tr eÂ
. (A16)
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Taking

Â + B̂ = −ς̂ (λt ), Â = −ς̂ (λt ) + �̂t , and B̂ = −�̂t ,

(A17)
writing

tr eÂ+B̂ = tr (eÂ eÂ+B̂ e−Â) (A18)

with the cyclic property of the trace, and using
tr eÂ+〈B̂〉 = e〈B̂〉 tr eÂ and the normalization condition
tr eÂ = tr e−ς̂ (λt )+�̂t = tr �̂t = 1, the Peierls-Bogoliubov
inequality implies that

tr [e−ς̂ (λt )+�̂t e−ς̂ (λt ) eς̂ (λt )−�̂t ] � e−〈�̂t 〉t (A19)

or, equivalently, the expression (33), which is the quan-
tum version of classical Jensen’s inequality 〈ex〉 � e〈x〉
with x = −�t .

h. The entropy time derivative (35). Starting from the en-
tropy (11), we obtain

1

kB

dS

dt
= d

dt

[
λα

t ∗ 〈ĉα〉leq,λt + 	(λt )
]

= ∂tλ
α
t ∗ 〈ĉα〉leq,λt + λα

t ∗ ∂t 〈ĉα〉t + ∂tλ
α
t ∗ δ	(λt )

δλα
t

= −λα
t ∗ ∇a

〈
Ĵa

cα

〉
t = ∇aλα

t ∗ 〈
Ĵa

cα

〉
t , (A20)

using 〈ĉα〉leq,λt = 〈ĉα〉t and Eq. (9).
i. Equation (48) for the conjugate fields. With the require-

ments 〈ĉα (r)〉t = 〈ĉα (r)〉leq,λt and Eq. (A5) with δ replaced by
∂t and X̂ by ĉα , the time derivatives of the mean densities can
be expressed as

∂t 〈ĉα (r)〉leq,λt = tr[(∂t �̂leq,λt ) ĉα (r)]

= −
∫

dr′ 〈δĉα (r)|δĉβ (r′)〉λt ∂tλ
β
t (r′). (A21)

Multiplying by 〈δĉγ (r′′)|δĉα (r)〉−1
λt

on the left, integrating
over dr, and using Eq. (7) give the result:

∂tλ
α
t (r) = −

∫
dr′ 〈δĉα (r)|δĉβ (r′)〉−1

λt
∂t 〈ĉβ (r′)〉leq,λt

= −
∫

dr′ 〈δĉα (r)|δĉβ (r′)〉−1
λt

∂t 〈ĉβ (r′)〉t

=
∫

dr′ 〈δĉα (r)|δĉβ (r′)〉−1
λt

∇′a〈Ĵa
cβ (r′)

〉
t . (A22)

j. Equation (51) introducing the projection operator. Using
the decomposition (36), we then have

∂tλ
α
t ∗ δĉα=

∫∫
dr dr′δĉα (r)〈δĉα (r)|δĉβ (r′)〉−1

λt
∇′a〈Ĵa

cβ (r′)
〉
t

=
∫∫

dr dr′ δĉα (r) 〈δĉα (r)|δĉβ (r′)〉−1
λt

× [∇′aJ̄a
cβ (r′, t ) + ∇′aJ a

cβ (r′, t )
]
. (A23)

Next, the functional identity (21) gives Eq. (49), which be-
comes

∂τλ
α
τ ∗ δĉα = −

∫∫∫
dr dr′ dr′′ δĉα (r) 〈δĉα (r)|δĉβ (r′)〉−1

λτ

× 〈
δĉβ (r′)|δĴa

cγ (r′′)
〉
λτ

∇′′aλγ
τ (r′′) + O(∇2)

= −
∫∫∫

dr dr′ dr′′ δĉα (r)
δλβ (r′)
δcα (r)

δ
〈
Ĵa

cγ (r′′)
〉
λτ

δλβ (r′)

× ∇′′aλγ
τ (r′′) + O(∇2)

= −δĉα ∗
δ
〈
Ĵa

cβ

〉
λτ

δcα
∗ ∇aλβ

τ + O(∇2)

= −∇aλα
τ ∗ P̂λτ

δĴa
cα + O(∇2), (A24)

using Eqs. (17) and (A6) with X̂ = Ĵa
cγ , and, finally, the projec-

tor operator P̂λ defined in Eq. (50). We note that the property
P̂2

λ X̂ = P̂λX̂ can be inferred from the definition (50) of P̂λ.
k. The Onsager-Casimir reciprocal relations (62). The

time-dependent response functions defined as

φab
αβ (t ) ≡ kBT

V

∫ (kBT )−1

0

〈
δĴ ′a

cα (t ) δĴ ′b
cβ (ı h̄ϑ )

〉
eq dϑ (A25)

have the following general property:

φab
αβ (t ) = φba

βα (−t ), (A26)

which is proved with the change of integration variable ϑ ′ =
(kBT )−1 − ϑ [35].

Moreover, the microdynamics is symmetric under the an-
tiunitary time-reversal transformation �̂ such that

�̂ ı �̂−1 = −ı, �̂ Ĥ �̂−1 = Ĥ , �̂ δĴ ′a
cα �̂

−1 = εα δĴ ′a
cα

(A27)

with εα = ±1. Consequently, the response functions (A25)
satisfy

φab
αβ (t ) = εα εβ φab

αβ (−t ). (A28)

Since the linear response coefficients are given by integrating
the response functions over time according to the Green-Kubo
formulas (61)

Lab
αβ =

∫ ∞

0
φab

αβ (t ) dt, (A29)

Eq. (A28) combined with Eq. (A26) implies the Onsager-
Casimir reciprocal relations (62).

l. Einstein-Helfand formulas (68). For the response func-
tions (A25), we have the following identity:∫ t

0
dt ′

∫ t

0
dt ′′ φab

αβ (t ′ − t ′′) =
∫ +t

−t
dτ (t − |τ |)φab

αβ (τ ),

(A30)

which is obtained with the changes of integration variables
τ = t ′ − t ′′ and T = (t ′ + t ′′)/2, such that dt ′dt ′′ = dτdT . In
the limit t → ∞ and using Eq. (A26), we thus have

lim
t→∞

1

2t

∫ t

0
dt ′

∫ t

0
dt ′′ φab

αβ (t ′ − t ′′) = 1

2

∫ +∞

−∞
φab

αβ (t )dt

= Lab S
αβ , (A31)

giving the symmetrized transport coefficients (64). Inserting
the expressions (A25) for the response functions, we obtain
the Einstein-Helfand formulas (68)–(69) for the symmetrized
transport coefficients in terms of the quantum-mechanical ver-
sions (67) for the Helfand moments, which have the following
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more explicit forms:

Ĥ′a
cα (t, ϑ ) =

∫ t

0
e

ı
h̄ Ĥτ e− ϑ

2 Ĥ δĴ ′a
cα e

ϑ
2 Ĥ e− ı

h̄ Ĥτ dτ, (A32)

so that the adjoint operators are given by

Ĥ′a†
cα (t, ϑ ) =

∫ t

0
e

ı
h̄ Ĥτ e

ϑ
2 Ĥ δĴ ′a

cα e− ϑ
2 Ĥ e− ı

h̄ Ĥτ dτ, (A33)

since the operators δĴ ′a
cα are self-adjoint.

APPENDIX B: MULTICOMPONENT FLUIDS

a. Hamiltonian dynamics. We consider a nonreactive mul-
ticomponent fluid, where all the hydrodynamic modes origi-
nate from the fundamental conservation laws [50].

We adopt the following notations: N is the total number
of particles. ν is the total number of species. The in-
dices i, j, . . . = 1, 2, . . . , N label the particles and k, l, . . . =
1, 2, . . . , ν the particle species. The indices for the particles
of species k are denoted i ∈ Sk .

The slow modes of the system are the energy density,
the linear momentum density, and the particle densities of
each species. In compact notations, they are denoted as ĉα =
(ê, ĝb, n̂k ) and the corresponding current densities are Ĵa

cα =
(Ĵa

e , Ĵa
gb, Ĵa

nk
).

The Hamiltonian operator is

Ĥ =
N∑

i=1

p̂2
i

2mi
+

∑
1�i< j�N

ui j, (B1)

where, in the position representation, p̂i = −ı h̄∇i is the linear
momentum of the ith particle, ri ∈ R3 its position, and ui j =
ui j (ri j ) the potential energy of the binary interaction between
the particles i and j separated by the distance ri j = ‖ri − r j‖.

b. Microscopic densities and current densities. The parti-
cle, mass, momentum, and energy microscopic densities can
be defined as follows in the quantum formulation:

n̂k (r) =
∑
i∈Sk

δ(r − ri ), (B2)

ρ̂(r) =
N∑

i=1

mi δ(r − ri ) =
ν∑

k=1

mk n̂k (r), (B3)

ĝa(r) = 1

2

N∑
i=1

[
p̂a

i δ(r − ri ) + δ(r − ri ) p̂a
i

]
, (B4)

ê(r) = 1

2

N∑
i=1

[ε̂i δ(r − ri ) + δ(r − ri ) ε̂i], (B5)

where ε̂i is the Hermitian operator giving the energy of the ith
particle according to

ε̂i = p̂2
i

2mi
+ 1

2

N∑
j=1

( j �=i)

ui j . (B6)

The current densities obtained from Eq. (2) read

Ĵa
nk

(r) = 1

2

∑
i∈Sk

[
p̂a

i

mi
δ(r − ri ) + δ(r − ri )

p̂a
i

mi

]
, (B7)

Ĵa
gb (r) =

∑
i

1

4mi

[
p̂a

i p̂b
i δ(r − ri ) + p̂a

i δ(r − ri ) p̂b
i + p̂b

i

× δ(r − ri ) p̂a
i + δ(r − ri ) p̂b

i p̂a
i

] + 1

2

∑
i �= j

F b
i jD

a
i j (r),

(B8)

Ĵa
e (r) = 1

4

∑
i

ε̂i

[
p̂a

i

mi
δ(r − ri ) + δ(r − ri )

p̂a
i

mi

]

+ 1

16

∑
i �= j

[(
p̂b

i

mi
+ p̂b

j

m j

)
F b

i j + F b
i j

(
p̂b

i

mi
+ p̂b

j

m j

)]
× Da

i j (r) + H.c., (B9)

with

Da
i j (r) ≡

∫ 1

0
dξ

dRa
i j (ξ )

dξ
δ[r − Ri j (ξ )], (B10)

where F a
i j ≡ −(∂/∂ra

i )ui j (ri j ) is the force exerted on the par-
ticle i by the particle j and Ri j (ξ ) is a smooth curve joining
Ri j (0) = r j to Ri j (1) = ri, e.g., Ri j (ξ ) = r j + ξ (ri − r j ), in
which case dRa

i j/dξ = ra
i j ≡ ra

i − ra
j .

c. Local thermodynamics. In the laboratory frame, where
the continuous medium moves with the velocity v = (va), the
energy density and the chemical potential of species k are,
respectively, given by

e = e0 + ρv2/2 and μk = μk0 − mkv2/2 (B11)

in terms of the corresponding quantities e0 and μk0 in the
moving frame, where the medium is at rest. Therefore, in
the laboratory frame, the Euler and Gibbs relations have the
following forms up to terms of O(∇2):

s = e + p

T
−

∑
k

μk

T
nk − va

T
ga, (B12)

ds = 1

T
de −

∑
k

μk

T
dnk − va

T
dga, (B13)

where s is the entropy density introduced in Eq. (46) and p
is the pressure. From Eq. (12), the conjugate fields at leading
order in the gradients are given in terms of the inverse temper-
ature β ≡ (kBT )−1 by

λe(r, t ) ≡ 1

kB

δS(c)

δe(r, t )
= β(r, t ), (B14)

λnk (r, t ) ≡ 1

kB

δS(c)

δnk (r, t )
= −β(r, t ) μk (r, t ), (B15)

λga (r, t ) ≡ 1

kB

δS(c)

δga(r, t )
= −β(r, t ) va(r, t ), (B16)

again up to terms of O(∇2) as in the classical framework.
d. Reversible current densities. The reversible current den-

sities are derived by a direct computation of the statistical
averages with the changes of momentum variables p̂i = p̂i0 +
miv(ri ) from the laboratory frame to the frame moving with
the medium. Consequently, the observables of interest are
transformed into the corresponding observables with the sub-
script 0 according to

ê = ê0 + ĝa
0v

a + 1
2 ρ̂ v2, (B17)
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ĝa = ĝa
0 + ρ̂ va , (B18)

Ĵa
nk

= Ĵa
nk ,0 + n̂k va , (B19)

Ĵa
gb = Ĵa

gb,0 + ĝa
0 vb + va ĝb

0 + ρ̂ va vb, (B20)

Ĵa
e = Ĵa

e,0 + ê0 va + Ĵa
gb,0v

b + ĝb
0v

b va + 1
2 v2(ĝa

0 + ρ̂ va)

− (�̂a + �̂′a), (B21)

where

�̂a ≡ 1

2

∑
i �= j

[
vb(r) − vb(ri ) + vb(r j )

2

]
F b

i j Da
i j (r) (B22)

expressed with the quantity (B10) [27], and

�̂′a ≡ h̄2

4
∇b

[
(∇avb)

∑
i

1

mi
δ(r − ri )

]
. (B23)

We evaluate the statistical averages over local equilibrium in
the frame moving with the medium, which gives 〈ĝa

0〉leq = 0,
〈Ĵa

nk ,0〉leq = 0, 〈Ĵa
e,0〉leq = 0, 〈ρ̂〉leq = ρ, 〈ê0〉leq = e0, 〈n̂k〉leq =

nk , and 〈Ĵa
gb

0
〉leq = p δab. In addition, 〈�̂a + �̂′a〉leq behaves

as the square of the gradients and can thus be neglected.
Therefore, we get

e = 〈ê〉leq = e0 + ρ

2
v2, (B24)

ga = 〈ĝa〉leq = ρ va, (B25)

J̄a
nk

= 〈
Ĵa

nk

〉
leq = nkv

a, (B26)

J̄a
gb = 〈

Ĵa
gb

〉
leq = ρvavb + p δab, (B27)

J̄a
e = 〈

Ĵa
e

〉
leq =

(
e0 + p + ρ

2
v2

)
va + O(∇2), (B28)

for the mean value of the energy density and the reversible
parts of the mean current densities. Introducing these ex-
pressions into the macroscopic equations (7) leads to the
dissipativeless Eulerian equations of hydrodynamics, which
thus satisfy the Galilean invariance.

e. Entropy production rate and dissipative current densi-
ties. Substituting the conjugate fields (B14)–(B16) into the
expression (39), the time derivative of the entropy reads

1

kB

dS

dt
=

∫ [
∇aβ J a

e − ∇a(βvb)J a
gb −

∑
k

∇a(βμk )J a
nk

]
dr

(B29)
at leading order of the expansion in the gradients. Using
∇a(βvb) = β∇avb + vb∇aβ, Eq. (B11) for the chemical po-
tentials, and the relation

∑
k mk J a

nk
= 0 implied by mass

conservation, we find

1

kB

dS

dt
=

∫ [
∇aβ

(
J a

e − vbJ a
gb

) − β(∇avb)J a
gb

−
∑

k

∇a(βμk0)J a
nk

]
dr. (B30)

The heat current density can thus be identified as

J a
q ≡ J a

e − vbJ a
gb, (B31)

the diffusive current density of species k as J a
nk

, the dissipative
part of the pressure tensor as �ab ≡ J a

gb , and the phenomeno-
logical affinities mentioned in Eq. (70) as

Aa
cα,ph = [∇aβ,−β(∇avb),−∇a(βμk0)]. (B32)

f. Hydrodynamic equations. Replacing the dissipativeless
and dissipative current densities into the balance equations,
the equations of fluid mechanics are obtained:

∂t nk + ∇a
(
nk va + J a

nk

) = 0, (B33)

∂tρ + ∇a(ρ va) = 0, (B34)

∂t (ρ va) + ∇b(ρ va vb + p δab + �ab) = 0, (B35)

∂t

(
e0 + ρ

2
v2

)
+ ∇a

[(
e0 + p + ρ

2
v2

)
va

+ �abvb + J a
q

]
= 0. (B36)

They have the same form as in the classical framework, as
established on the basis of nonequilibrium thermodynamics
[1]. In particular, Eq. (B35) is equivalent to the Navier-Stokes
equations of hydrodynamics. Therefore, the microscopic ap-
proach based on the local-equilibrium statistical operator (8)
and the expansion in powers of the gradients justifies the rules
of nonequilibrium thermodynamics for the linear transport
properties.

g. Green-Kubo formulas. The dissipativeless equations for
the time evolution of the conjugate fields are given by

∂t β = −va∇aβ + β χ ∇ava, (B37)

∂t (βμk0) = −va∇a(βμk0) − β ψk ∇ava, (B38)

β ∂t va = − β vb∇b va + ρ−1(e0 + p) ∇aβ

−
∑

k

ρ−1nk ∇a(βμk0), (B39)

with the coefficients

χ ≡
(

∂ p

∂e0

)
{nk}

, (B40)

ψk ≡
(

∂ p

∂nk

)
e0,{n j } j �=k

. (B41)

These equations are obtained from Maxwell’s thermodynamic
relations and the hydrodynamic equations (B33)–(B36) by ne-
glecting the dissipative terms, since they are of higher order in
the gradients. Accordingly, the operator �̂t given by Eq. (24)
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can be expressed as

�̂t =
∫ t

0
dτ

[
∇aβτ ∗ δĴ ′a

e,τ−t − βτ∇avb
τ ∗ δĴ ′a

gb,τ−t

−
∑

k

∇a(βτμk0,τ ) ∗ δĴ ′a
nk ,τ−t

]
(B42)

with

δĴ ′a
e ≡ δĴa

e − ρ−1(e0 + p) δĝa, (B43)

δĴ ′a
gb ≡ δĴa

gb −
(

χ δê +
∑

k

ψk δn̂k

)
δab, (B44)

δĴ ′a
nk

≡ δĴa
nk

− ρ−1nk δĝa. (B45)

These expressions are here derived from Eqs. (B37)–(B39) for
the conjugate fields. We note that they can also be derived us-
ing the projection operator (50) and Eq. (54). The microscopic
total currents (58) are thus given by

δĴ ′a
e = δĴ a

e − ρ−1(e0 + p) δP̂a, (B46)

δĴ ′a
gb = δĴ a

gb −
(

χ δÊ +
∑

k

ψk δN̂k

)
δab, (B47)

δĴ ′a
nk

= δĴ a
nk

− ρ−1nk δP̂a, (B48)

where δP̂a = ∫
δĝa dr, δÊ = ∫

δê dr, and δN̂k = ∫
δn̂k dr are

the fluctuations δĈα ≡ Ĉα − 〈Ĉα〉eq with respect to equilib-
rium for the total momentum, energy, and particle numbers.
Since fluids are isotropic, the fourth-order tensor of viscosity
coefficients has the following form:

ηabcd = η

(
δacδbd + δadδbc − 2

3
δabδcd

)
+ ζ δabδcd , (B49)

and vectorial quantities cannot be coupled to tensorial ones.
Therefore, the viscous part of the pressure tensor, the heat
current density, and the diffusive current density of species
k are obtained as

J a
gb = −η

(
∇avb + ∇bva − 2

3
∇cvcδab

)
− ζ ∇cvc δab,

(B50)

J a
q = Lqq ∇a 1

T
+

∑
k

Lqk ∇a
(
−μk0

T

)
, (B51)

J a
nk

= Lkq ∇a 1

T
+

∑
l

Lkl ∇a
(
−μl0

T

)
. (B52)

The shear viscosity η, the bulk viscosity ζ , the heat conductiv-
ity κ = Lqq/T 2, the thermodiffusion coefficients Lkq, and the
diffusion coefficients Dk = (Lkk/T )(∂μk0/∂nk )T can thus be
evaluated in the limit V → ∞ with the Green-Kubo formulas:

η = 1

V

∫ ∞

0
dt

∫ β

0
dϑ 〈δĴ ′

xy(t ) δĴ ′
xy(ı h̄ϑ )〉eq , (B53)

ζ = 1

V

∫ ∞

0
dt

∫ β

0
dϑ 〈δĴ ′

ζ (t ) δĴ ′
ζ (ı h̄ϑ )〉eq , (B54)

Lqq = T

V

∫ ∞

0
dt

∫ β

0
dϑ 〈δĴ ′

ex(t ) δĴ ′
ex(ı h̄ϑ )〉eq , (B55)

Lkq = T

V

∫ ∞

0
dt

∫ β

0
dϑ 〈δĴ ′

kx(t ) δĴ ′
ex(ı h̄ϑ )〉eq , (B56)

Lkl = T

V

∫ ∞

0
dt

∫ β

0
dϑ 〈δĴ ′

kx(t ) δĴ ′
lx(ı h̄ϑ )〉eq , (B57)

where δĴ ′
ab = δĴ ′a

gb , δĴ ′
ea = δĴ ′a

e , δĴ ′
ka = δĴ ′a

nk
for a, b =

x, y, z, and δĴ ′
ζ ≡ (δĴ ′

xx + δĴ ′
yy + δĴ ′

zz )/3 with the micro-
scopic total currents (B46)–(B48). The thermodiffusion and
cross-diffusion coefficients obey the Onsager reciprocal re-
lations Lqk = Lkq and Lkl = Llk . These coefficients are not
independent of each other, because the diffusive current
densities should satisfy the constraints

∑
k mkJ a

nk
= 0 as a

consequence of mass conservation.
Finally, the entropy production rate becomes

dS

dt
=

∫
dr

1

T

[
ηabcd ∇avb ∇cvd + κ

T
∇aT ∇aT

+ 2
∑

k

Lqk

T
∇aT ∇a

(μ0k

T

)
+

∑
k,l

LklT ∇a
(μ0k

T

)
∇a

(μ0l

T

)]
� 0, (B58)

where we have used the Onsager reciprocal relations between
the transport coefficients.

We note that the hydrodynamic equations (B33)–
(B36) with the dissipative current densities given by
Eqs. (B50)–(B52) are in general nonlinear partial differential
equations, because they nonlinearly depend on the velocity
field v = (va), the particle densities nk , the mass density
ρ = ∑

k mknk , and the temperature T . In particular, the equa-
tions of state for the pressure p and the internal energy density
e0, as well as the transport coefficients (B53)–(B57) are usu-
ally nonlinear functions of the temperature T and the particle
densities nk .

h. The low-density limit. The results of kinetic theory are
recovered in this limit, as here shown in the case of one-
component fluids. At low particle density, the particles spent
most of their time in free flight interrupted by binary col-
lisions. As a consequence, the effect of interactions can be
described in terms of the collisional cross section and the
interaction energy is negligible in the equilibrium distribution.
Accordingly, the particles may be considered to be statistically
independent. In addition, the thermal de Broglie wave length
is smaller than the mean distance between nearest neighboring
particles, so that the quasi-classical approximation applies.
Under such circumstances, the time evolution of the system
can be approximated by a kinetic equation ruling the one-
particle statistical operator or distribution function [12,49].
For the calculation of time-dependent correlation functions,
the kinetic equation can be linearized around equilibrium
in terms of its collision operator K̂ acting on one-particle
observables. In the same conditions, the microscopic total
currents (B46), (B47), and (B48) reduce to expressions for
independent particles. In monatomic one-component fluids
composed of N particles, the only transport properties are
the viscosities and the heat conductivity. The relevant micro-
scopic total currents for linear momentum and energy can thus
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be approximated according to

δĴ ′
xy �

N∑
i=1

ĵxy,i, δĴ ′
ζ � 0, δĴ ′

ex �
N∑

i=1

ĵex,i (B59)

in terms of the one-particle currents

ĵxy,i = p̂x
i p̂y

i

m
and ĵex,i =

(
ε̂i − 5

2
kBT

)
p̂x

i

m
(B60)

with ε̂i � p̂2
i /(2m), because e0 � (3/2)nkBT , p � nkBT , and

δN̂k = 0 in the canonical equilibrium ensemble with given
and fixed particle numbers. These expressions are substituted
into the Green-Kubo formulas (B53), (B54), and (B55) in the
quasiclassical approximation where h̄ → 0. We note that, if
the particles are statistically independent, an autocorrelation
function becomes

N∑
i, j=1

〈
ĵw,i(0) ĵw, j (t )

〉
eq =

N∑
i=1

〈ĵw,i(0) ĵw,i(t )〉eq

= N〈ĵw(0) ĵw(t )〉eq , (B61)

where ĵw is the current corresponding to w = xy or w = ex
for a generic particle. Hence, the viscosity coefficients and the
heat conductivity are approximately given by

η � n

kBT

∫ ∞

0
dt

〈
ĵxy eK̂t ĵxy

〉
eq, ζ � 0, (B62)

κ � n

kBT 2

∫ ∞

0
dt〈ĵex eK̂t ĵex〉eq, (B63)

where n = N/V is the equilibrium particle density. These
formulas are precisely the expressions obtained from kinetic
theory [12–14]. The values of the transport coefficients can
thus be calculated by solving the eigenvalue problem for the
collision operator K̂ with the standard methods of kinetic
theory [7,12–14].

APPENDIX C: PHASES WITH BROKEN
CONTINUOUS SYMMETRIES

The condensed matter phases with continuous symmetry
breaking are characterized by microscopic local order fields
x̂σ , which evolve in time according to

∂t x̂σ + Ĵxσ = 0 with Ĵxσ ≡ 1

ı h̄
[Ĥ, x̂σ ]. (C1)

Introducing the gradients of the order fields and the corre-
sponding current densities according to

ûaσ ≡ ∇ax̂σ and Ĵb
uaσ ≡ δab Ĵxσ , (C2)

these gradients obey the local conservation equations

∂t ûaσ + ∇bĴb
uaσ = 0, (C3)

which are comparable to the equations (2) holding for the
fundamentally conserved quantities. In crystals, the order
fields are given by the three Cartesian components of the
displacement vector, which can be expressed in terms of
the microscopic particle densities and the spatially periodic
equilibrium densities of the different particle species in the
crystalline lattice [31,32,51–54].

As in the classical case of Ref. [31], the derivation of
Appendix B can be extended to include the modes originating
from the breaking of continuous symmetries.
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