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Understanding space-charge-limited current density (SCLCD) is fundamentally and practically important
for characterizing many high-power and high-current vacuum devices. Despite this, no analytic equations for
SCLCD with nonzero monoenergetic initial velocity have been derived for nonplanar diodes from first principles.
Obtaining analytic equations for SCLCD for nonplanar geometries is often complicated by the nonlinearity of
the problem and over constrained boundary conditions. In this Letter, we use the canonical coordinates obtained
by identifying Lie-point symmetries to linearize the governing differential equations to derive SCLCD for any
orthogonal diode. Using this method, we derive exact analytic equations for SCLCD with a monoenergetic
injection velocity for one-dimensional cylindrical, spherical, tip-to-tip (t-t), and tip-to-plate (t-p) diodes. We
specifically demonstrate that the correction factor from zero initial velocity to monoenergetic emission depends
only on the initial kinetic and electric potential energies and not on the diode geometry and that SCLCD is
universal when plotted as a function of the canonical gap size. We also show that SCLCD for a t-p diode is a
factor of four larger than a t-t diode independent of injection velocity. The results reduce to previously derived
results for zero initial velocity using variational calculus and conformal mapping.

DOI: 10.1103/PhysRevE.106.L063201

Ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs) are used extensively to model the
behavior of many systems in applied physics and mathematics
[1], including tumor growth [2,3], heat transfer [4,5], fluid me-
chanics [6], neutron transport [7], chemical engineering [8],
electromagnetism [9], and electroporation [10–12]. Consider
the general first-order ODE of the form

dy

dx
= f (x, y), (1)

where f (x, y) is a smooth function of x and y. If function f
in (1) is a function of x alone [i.e., f (x, y) ≡ f (x)], we can
readily solve (1) by quadrature,

y =
∫

f (x)dx + c (2)

for some integration constant c. If, however, f (x, y) in (1)
cannot be separated into a product of two functions such that
f (x, y) = g(x)h(y) for some smooth functions g and h, the so-
lution to the ODE cannot be obtained directly by quadrature.
This often arises for the applications described above [1–12],
particularly, for complicated geometries. For such situations,
we can use the Lie-point symmetries of (1) to identify a set
of canonical coordinates that reduces (1) to a form that can
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be solved directly by quadrature (2) [13–15]. These canonical
coordinates represent local transformations that map every
solution set of a system to another solution set of the same
system for which known solutions exist or can be obtained
directly by quadrature. Similar transformations can be applied
to simplify and solve higher-order ODEs and PDEs.

We demonstrate this approach in this Letter by solving
a second-order ODE to derive exact analytic solutions for
space-charge limited current density (SCLCD) in vacuum
with nonzero monoenergetic electron injection velocity in
any orthogonal diode geometry. The SCLCD is the maxi-
mum steady-state current density that can flow between a
cathode and an anode in vacuum [16,17]. Characterizing
SCLCD is critical for numerous applications, including elec-
tric propulsion, nanovacuum transistors, thermionic energy
converters, solar power conversion, high-power microwaves,
and microplasma formation [16,17]. For a one-dimensional
(1D) planar diode, the exact analytic equation for classical
nonrelativistic SCLCD, first derived by Child and Langmuir
(CL) [18,19], is given by

JCL = γV 3/2
g

(xA − xC )2 , (3)

where γ = 4ε0
√

2e/m/9, ε0 is the permittivity of vacuum, e
and m are the charge and mass of the electron, respectively,
the anode is held at a constant voltage Vg located at x =
xA, and the grounded cathode is located at x = xC . Various
studies have extended the CL law to account for multiple
dimensions [20–27], nonplanar diode geometries [28–34],
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time-varying voltages [35–38], bipolar flow [39–42], relativis-
tic effects [43,44], trap-filled solids [45–47], and quantum
effects [48–51].

When the electron injection velocity is zero, the electron
charge density is infinite at the cathode, and the corresponding
SCLCD, given by (3), can only be obtained as the limit of
an indeterminate 0/0 singularity at the cathode [52]. Jaffé
avoided this singularity by deriving SCLCD for a constant
nonzero electron injection velocity and recovered (3) by tak-
ing the limit as the ratio of the kinetic energy to the electric
potential energy approached zero [53]. Recently, Lafleur [54]
validated Jaffé’s results using particle-in-cell simulations, and
Huang et al. [55] used a sheet model to simulate the injection
of electrons with either a monoenergetic or a Maxwell-
Boltzmann velocity distribution. In this Letter, we extend (3)
to include a constant nonzero initial velocity in a 1D planar
geometry before further generalizing SCLCD to any 1D diode
geometry represented by an orthogonal coordinate system,
which we use to derive SCLCD for cylindrical, spherical,
tip-to-tip, and tip-to-plate geometries. We only consider 1D
analysis and ignore image charges.

We first consider a 1D planar diode with cathode and
anode, represented by infinite planes, located at x = xC and
x = xA, respectively. The anode is held at a constant potential
Vg, whereas, the cathode is grounded. Continuity implies that
the local current density in planar coordinates is Jp = ρpvp,
where ρp is the charge density and vp is the electron velocity
across the gap. From conservation of energy in 1D flow, given
by mv2

p/2 = mv2
0/2 + eφp [54], we obtain

vp = v0

√
1 + 2eφp

mv2
0

, (4)

where φp is the electric potential in the planar gap and v0

is the electron velocity at the cathode. Including nonzero v0

avoids the 0/0 singularity in Jp and infinite ρp at the cathode
and elucidates virtual cathode behavior in various orthogonal
geometries [53,54]. Considering variation only in the x direc-
tion, Poisson’s equation in planar coordinates is given by

d2φp

dx2
= ρp

ε0
= Jp

ε0vp
. (5)

Combining (4) and (5), we obtain

Jp = ε0v0
d2φp

dx2

√
1 + 2eφp

mv2
0

. (6)

The planar SCLCD at the cathode Jp,SCL is given by

Jp,SCL = lim
x→xC

[max(Jp)] = max[ lim
x→xC

(Jp)], (7)

where we define max( ) as a continuous functional that takes
the expression on the right-hand side of (6) as an input and
generates the maximum value of Jp (denoted as Jp,SCL) as the
output. We will now present a general definition and deriva-
tion of the max( ) functional.

Derivation of max(). For generality, we consider the cur-
rent density J in general canonical coordinates ζ . We consider
all current and electron velocity to be in the ζ direction.

Writing (6) in canonical coordinates gives

J = ε0v0
d2φζ

dζ 2

√
1 + 2eφζ

mv2
0

, (8)

with the grounded cathode at ζ = ζC and the anode biased
to Vg at ζ = ζA. To simplify the derivation, we define v2

D =
2eVg/m and the following dimensionless parameters [54]:

φ̄ζ = φζ

Vg
, ζ̄ = ζ − ζC

ζA − ζC
, β2 = mv2

0

2eVg
,

J̄ = JSCL(ζA − ζC )2

ε0VgvD
. (9)

Rewriting (8) in terms of the dimensionless parameters
from (9), we obtain

J̄ = d2φ̄ζ

d ζ̄ 2

√
φ̄ζ + β2. (10)

Multiplying both sides of (10) by dφ̄/d ζ̄ and simplifying
yields

1

2

d

d ζ̄

(
dφ̄ζ

d ζ̄

)2

= J̄√
β2 + φ̄ζ

(
dφ̄ζ

d ζ̄

)
. (11)

Multiplying both sides of (11) by d ζ̄ and integrating gives
a modified version of Poisson’s Eq. (5) as

1

2

∫ ζ̄

0
d

(
dφ̄ζ

dx̄

)2

= J̄
∫ φ̄ζ

0

dφ̄ζ√
β2 + φ̄ζ

. (12)

Simplifying (12), we obtain(
dφ̄ζ

d ζ̄

)2

=
(

dφ̄ζ

d ζ̄

)2

|ζ̄ = 0 + 4J̄ (
√

β2 + φ̄ζ − β ). (13)

Letting ζ̄ ∗ denote the location of the virtual cathode where
the electric field goes to zero, and φ̄∗

ζ denote the potential at
ζ̄ ∗ gives (

dφ̄

d ζ̄

)2

|ζ̄ = 0 = −4J̄ (
√

β2 + φ̄∗
ζ − β ). (14)

Substituting (14) into (13) and simplifying yields

dφ̄ζ

d ζ̄
= ±2

√
J̄ (

√
β2 + φ̄ζ −

√
β2 + φ̄∗

ζ )
1/2

. (15)

The normalized electric field, defined as Ē = −dφ̄ζ /d ζ̄ , is
positive for 0 � ζ̄ � ζ̄ ∗ and negative for ζ̄ ∗ � ζ̄ � 1, whereas
the electric field is zero at ζ̄ = ζ̄ ∗. Integrating (15) while
accounting for this sign change gives

−
∫ φ̄∗

ζ

0

dφ̄ζ

(
√

β2 + φ̄ζ −
√

β2 + φ̄∗
ζ )

1/2

+
∫ 1

φ̄∗
ζ

dφ̄ζ

(
√

β2 + φ̄ζ −
√

β2 + φ̄∗
ζ )

1/2 = 2
√

J̄
∫ 1

0
d ζ̄ .

(16)
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Defining ηL =
√

β2 + 1 and η∗ =
√

β2 + φ̄∗
ζ allows to

rewrite (16) as√
J̄ = 2

3 (β − η∗)1/2(β + 2η∗) + 2
3 (ηL − η∗)1/2(ηL + 2η∗).

(17)
We can find the extremum of J̄ by setting d

√
J̄/dη∗ = 0

in (17), yielding η∗
max = βηL/(β + ηL ) [54]. Evaluating (17)

at η∗ = η∗
max gives the maximum stable current density in

dimensionless parameters as

J̄SCL = 4
9 (β +

√
1 + β2)

3
. (18)

Redimensionalizing (18) using (9) yields

JSCL = γV 3/2
g

(ζA − ζC )2 (β +
√

1 + β2)
3
. (19)

Hence, we define the max( ) operator for canonical coordi-
nates from (8) and (19) as

max

[
ε0v0

d2φζ

dζ 2

√
1 + 2eφζ

mv2
0

]
= γV 3/2

g

(ζA − ζC )2 (β +
√

1 + β2)
3
.

(20)
Note that SCLCD, which may depend on position when

written in orthogonal coordinates, is constant when written in
canonical coordinates for any given diode.

We next apply this definition for a few orthogonal diode
geometries. For the 1D planar problem, we substitute Jp from
(6) into (7) to obtain the SCLCD as

Jp,SCL = (β +
√

1 + β2)
3
JCL. (21)

Poisson’s Eq. (12) is separable in Cartesian coordinates
since the spatial dependence can be isolated; however, this is
not true for nonplanar diode geometries since the Laplacian
in Poisson’s equation becomes nonlinear. For such nonlin-
ear ODEs, we can introduce canonical coordinates to make
them separable and derive analytical equations for SCLCD.
To illustrate this approach, we first derive SCLCD in gen-
eral orthogonal coordinates. We then consider 1D concentric
cylindrical, concentric spherical, tip-to-tip (t-t), and tip-to-
plate (t-p) geometries.

General coordinates. We now derive analytic equations
for SCLCD in any orthogonal geometry by considering the
generalized metric ds2 = (h1dq1)2 + (h2dq2)2 + (h3dq3)2 =∑

(hidqi )
2, where ds represents the infinitesimal distance

between any two points, and qi and hi represent the orthogonal
coordinates and scaling factors, respectively [56]. We will
only consider a 1D diode geometry where the potential φq

varies only with q1. The anode and cathode are at qA and qC ,
respectively. Continuity requires that the local current density
Jq = ρqvq, where ρq and vq represent the electron charge
density and velocity in the gap in the q1 direction. We may
write Poisson’s equation as [57]

1

h1h2h3

d

dq1

(
h2h3

h1

dφq

dq1

)
= Jq

ε0vq
. (22)

Using conservation of energy for 1D flow in general coor-
dinates, given by mv2

q/2 = mv2
0/2 + eφq, allows us to write

(22) as

Jq = ε0v0

[
1

h1h2h3

d

dq1

(
h2h3

h1

dφq

dq1

)]√
1 + 2eφq

mv2
0

, (23)

where v0 represents the velocity of the electrons at the cathode
in the q1 direction. To make (23) separable, we introduce
the canonical coordinate ζq such that dζq/dq1 = h1/(h2h3).
Using the canonical coordinate ζq, defining φq[ζq(q1)] ≡ φζq ,
and applying the chain rule allows us to recast (23) as

Jq = ε0v0

[
1

(h2h3)2

(
d2φζq

dζ 2
q

)]√
1 + 2eφζq

mv2
0

. (24)

SCLCD Jq,SCL, which corresponds to the maximum current
density emitted from the cathode, is defined as [assuming that
max( ) is continuous everywhere],

lim
q→qC

{max[(h2h3)2Jq]} = max

{
lim

q→qC

[(h2h3)2Jq]

}

= Jq,SCL
[
(h2h3)2|q=qC

]
. (25)

We may then write SCLCD by substituting (24) into (25)
to obtain

Jq,SCL = ε0v0

(h2h3)2|q=qC

max

[(
d2φζq

dζ 2
q

)√
1 + 2eφζq

mv2
0

]
. (26)

One of the requirements for writing Poisson’s equation for
a system is ∇ × E = 0, which implies E = −∇φ. However,
any curl equation, such as ∇ × E = 0, is a three-dimensional
(3D) equation that only makes sense in three dimensions
of space. Hence, current densities obtained from Poisson’s
equation are equations in three-dimensional space, which can
also be observed by noting that Poisson’s equation always
yields current densities with units of A/m2 in any number
of dimensions. Accounting for continuity in one direction
differs between 1D and 3D systems since the units of current
density must be preserved due to Poisson’s equation. In 1D,
the current density should have units of A because the other
two dimensions do not exist. Hence, J must be multiplied
by the corresponding orthogonal coordinates in the continuity
equation when truly in 1D to convert from A/m2 to A. In 3D,
the standard divergence accounts for the full geometry. Hence,
we note that continuity for 1D flow, in general, orthogonal
coordinates is given by ∇ · (χ �Jq) = 0, where χ = h2h3 for
a flow in 1D (along q1), χ = h3 for a flow in two dimen-
sions (e.g., on the q1q2 plane), and χ = 1 for a flow in three
dimensions [58]. For a flow in q1, the continuity equation
reduces to d (h2

2h2
3Jq )/dq1 = 0. Furthermore, noting that the

argument of max ( ) in (26) exactly equals the argument
defined in (20) and substituting ζq, A = [

∫
h1dq/(h2h3)]|q=qA ,

and ζq, C = [
∫

h1dq/(h2h3)]|q=qC gives SCLCD at the cathode
in the general orthogonal coordinate system as

Jq,SCL = (h2h3)−2|q=qC γV 3/2
g (β +

√
1 + β2)

3

([∫ h1dq
h2h3

]|q=qA − [∫ h1dq
h2h3

]|q=qC

)2 . (27)

Equation (27) represents the general form of the SCLCD
by using the definition of metric ds2 alone without having to
solve the nonlinear Poisson’s equation. Equation (27) is true
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FIG. 1. The exact solution of the ratio of SCLCD in general
coordinates to the corresponding SCLCD with zero injection velocity
in general coordinates as a function of β from (28) with limits for
β � 1 from (30) and β 	 1 from (31).

for any orthogonal geometry. We may then write SCLCD in
general orthogonal coordinates as

Jq,SCL

Jq,SCL,0
= (β +

√
1 + β2)

3
, (28)

where SCLCD with v0 = 0, Jq,SCL,0 (i.e., β = 0), is given by

Jq,SCL,0 = (h2h3)−2|q=qC γV 3/2
g([∫ h1dq

h2h3

]|q=qA − [∫ h1dq
h2h3

]|q=qC

)2 . (29)

For β � 1, we approximate (28) as

Jq,SCL

Jq,SCL,0
≈ 1 + 3β. (30)

For β 	 1, we approximate (28) as

Jq,SCL

Jq,SCL,0
≈ 8β3. (31)

Figure 1 shows Jq,SCL/Jq,SCL,0 as a function of β for the ex-
act (29) and asymptotic [(30), (31)] solutions. We next apply
this approach to common orthogonal coordinate systems and
show how continuity is satisfied in each case.

Example 1. We first consider a concentric 1D cylindrical
diode in polar coordinates with the cathode at r = rC and the
anode at r = rA. Using the metric ds2 = dr2 + r2dθ2 + dz2

in polar cylindrical coordinates gives Poisson’s equation for
variation only in the r direction as

1

r

d

dr

(
r

dφc

dr

)
= Jc

ε0vc
, (32)

where the local current density in cylindrical coordinates is
given by Jc = ρcvc, where ρc and vc represent charge density
and electron velocity in cylindrical coordinates. To make (32)
separable, we define a canonical coordinate ζc that reduces
(32) to a separable form [59]. Upon inspection, we may define
ζc such that dζc/dr = 1/r, which yields ζc = ln r and reduces

FIG. 2. SCLCD (JSCL) as a function of canonical gap size δc =
r2

C[ln(rC/rA)]2 or δs = r2
C[rA − rC]2/r2

A for cylindrical or spherical
coordinates, respectively, for various values of β. The applied voltage
is Vg = 30 kV. Note that JSCL is the same for any geometry for a given
canonical gap size.

(32) to

Jc = ε0v0

r2

(
d2φζc

dζ 2
c

)√
1 + 2eφζc

mv2
0

, (33)

where φc[ζc(r)] ≡ φζc . Assuming that max( ) is continuous
everywhere, the maximum current density (SCLCD) at the
cathode is

lim
r→rC

[max(r2Jc)] = max
[

lim
r→rC

(r2Jc)
] = r2

CJc,SCL. (34)

Substituting (33) into (34) yields

r2
CJc,SCL = ε0v0 max

[(
d2φζc

dζ 2
c

)√
1 + 2eφζc

mv2
0

]
. (35)

Applying (20) in (35) and noting that ζc, A = ln rA and
ζc,C = ln rC , we obtain

Jc,SCL = γV 3/2
g

r2
C (ln rA − ln rC )2 (β +

√
1 + β2)

3
. (36)

For v0 = 0 (β = 0), (36) reduces to Jc,SCL =
γV 3/2

g /[r2
C (ln rA−ln rC )2], which agrees with the result

from variational calculus (VC) [30] and conformal mapping
(CM) [31]. Continuity is satisfied in (36) since it requires that
d (r2Jc)/dr = 0 [58,60] for 1D flow in cylindrical coordinates.
Note that this derivation is completely independent of the VC
and CM techniques and was obtained without using the 1D
continuity definition. Figure 2 shows Jc,SCL as a function of
the canonical gap size δc = r2

C[ln(rC/rA)]2 for various values
of β.

Example 2. We next consider a concentric 1D spherical
diode with the anode and cathode located at rA and rC , re-
spectively. Defining ds2 = dr2 + r2dφ2 + r2sin2φdθ2 as the
metric and assuming variation only in the r direction gives

L063201-4
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Poisson’s equation as

1

r2

d

dr

(
r2 dφs

dr

)
= Js

ε0vs
, (37)

with local current density Js = ρsvs. We define the canonical
coordinate ζs such that dζs/dr = 1/r2, yielding ζs = −1/r.
Rewriting (37) in terms of canonical coordinates and defining
φs[ζs(r)] ≡ φζs gives

Js = ε0v0

r4

(
d2φζs

dζ 2
s

)√
1 + 2eφζs

mv2
0

. (38)

Assuming that max( ) is continuous everywhere, SCLCD
at the cathode can be obtained by

lim
r→rC

[max(r4Js)] = max
[

lim
r→rC

(r4Js)
] = r4

CJs,SCL. (39)

Using (39) to maximize (38) yields

r4
CJs,SCL = ε0v0 max

[(
d2φζs

dζ 2
s

)√
1 + 2eφζs

mv2
0

]
. (40)

Using (20) in (40) and noting that ζs, A = −1/rA and ζs,C =
−1/rC , we obtain

Js,SCL = γV 3/2
g r2

A

r2
C (rA − rC )2 (β +

√
1 + β2)

3
. (41)

For v0 = 0 (i.e., β = 0), (41) reduces to Js,SCL =
γV 3/2

g r2
A/[r2

C (rA − rC )2], which agrees with VC [30] and pro-
vides an independent verification of this approach. Continuity
for 1D flow in spherical coordinates, given by d (r4Js)/dr = 0
[58,60], is satisfied in (41). Figure 2 shows Js,SCL as a function
of the canonical gap size δs = r2

C[rA − rC]2/r2
A for various

values of β. SCLCD is independent of geometry when plotted
as a function of the canonical gap size, so this plot may be
used for any geometry and converted to physical dimensions
by using the appropriate metric.

Example 3. We next consider t-t and t-p geometries where
the cathode and the anode are represented by hyperboloids
ηC and ηA, respectively, in prolate spheroidal coordinates
[32]. The prolate spheroidal coordinate system models a
1D infinite hyperbolic cathode and anode facing each other,
with η = π/2 modeling the t-p geometry (cf. Fig. 1 of
Ref. [32]). The surfaces of constant η, given by z2/cos2(η) −
(x2 + y2)/sin2(η) = a2, represent the hyperboloid of revo-
lution [32]. Although prolate spheroidal coordinates are a
natural orthogonal coordinate system to study the SCLCD for
a tip, the radius of curvature is fixed for each hyperboloid tip.
We can compensate for this restriction by choosing an appro-
priate distance between the foci of the hyperboloids, which
is given by a/2, to model a given experimental setup [32].
The metric in prolate spheroidal coordinates is given by ds2 =
a2[(sinh2ξ + sin2η)(dξ 2 + dη2) + (sinh2ξsin2η)dϕ2]. If Jt−t

represents the local current density in the t-t geometry, Pois-
son’s equation, assuming variation only in the η direction, is
given by [32]

1

a2

1

(sinh2ξ + sin2η)sin η

d

dη

(
sin η

dφη

dη

)
= Jt-t

ε0vη

. (42)

Using conservation of energy, given by mv2
η/2 = mv2

0/2 +
eφη, and defining the canonical coordinate ζt such that
dζt/dη = 1/ sin η and φη[ζt (η)] ≡ φζt reduces (42) to

Jt-t = ε0v0

a2(sinh2ξ + sin2η)sin2η

(
d2φζt

dζ 2
t

)√
1 + 2eφζt

mv2
0

. (43)

Assuming that max( ) is continuous everywhere, SCLCD
at the cathode tip can be written as

lim
η→ηC

[max(a2sin4ηJt-t )] = max
[

lim
η→ηC

(a2sin4ηJt-t )
]

= Jt-t,SCLa2sin4ηC . (44)

Substituting (43) into (44) and noting that sinh ξ = 0 at the
cathode tip yields

Jt-t,SCLa2sin4ηC = ε0v0 max

[(
d2φζt

dζ 2
t

)√
1 + 2eφζt

mv2
0

]
. (45)

Using (20) in (45) and noting that ζt, A = ln[tan(ηA/2)]
and ζt, C = ln[tan(ηC/2)] gives SCLCD in t-t geometry at the
cathode tip as

Jt-t,SCL = γV 3/2
g

a2sin4ηC
(
ln

[
tan

(
ηA

2

)] − ln
[
tan

(
ηC

2

)])2

× (β +
√

1 + β2)
3
. (46)

For v0 = 0 (β = 0), (46) reduces to Jt-t,SCL =
γV 3/2

g a−2sin−4ηC{ln[tan(ηA/2)]− ln[tan(ηC/2)]}−2, which
agrees with VC and CM [32]. Continuity for 1D
flow in prolate spheroidal coordinates requires that
d (h2

2h2
3Jt-t )/dη = d[(sinh2ξ + sin2η)sin2ηJt-t]/dη = 0,

where h2
2 = a2(sinh2ξ + sin2η) and h2

3 = a2sinh2ξ sin2η [58].
At the tip of the cathode represented by ξ = 0, sinh ξ = 0
and the continuity equation reduces to d (a2sin4ηJt-t )/dη = 0;
hence, continuity is satisfied in (46).

Assuming identical tips (i.e., ηA = π − ηC) and defin-
ing the distance between the apex of the tips as D0

gives a2 = D0(D0 + R), where R is the radius of the tips
[32]. Next, defining μ = D0/R = cot2ηA = cot2ηC yields
cos2(ηA) = cos2(ηC ) = D0/(D0 + R) and sin4ηC = sin4ηA =
R2(D0 + R)−2. Using these definitions and noting that xA −
xC = D0 gives (46) in terms of JCL with D2

0 = (xA − xC )2 as

Jt-t,SCL

JCL
= μ(μ + 1)

4[ln(
√

1 + μ + √
μ)]

2 (β +
√

1 + β2)
3
, (47)

where we used
√

1 + μ − √
μ = (

√
1 + μ + √

μ)
−1

.
The SCLCD for t-p can be obtained from (46) by

noting that the anode (a plate) is represented in prolate
spheroidal coordinates with ηA → π/2 in (46), which ne-
cessitates ln[tan(ηA/2)] → 0 [32]. Applying this and v0 = 0
to (46) gives Jt-p,SCL = γV 3/2

g a−2sin−4ηC (ln[tan(ηC/2)])−2,
which agrees with VC and CM [32]. Hence, SCLCD near the
cathode tip in t-p geometry is given by

Jt-p,SCL

JCL
= μ(μ + 1)

[ln(
√

1 + μ + √
μ)]

2 (β +
√

1 + β2)
3
. (48)

Writing (47) and (48) in this form further shows that
Jt-p,SCL = 4Jt-t,SCL, which was not apparent from the forms we
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FIG. 3. SCLCD normalized to CL as a function of μ = D0/R for various values of β for (a) tip-tip (Jt-t,SCL/JCL) and (b) tip-to-plate
(Jt-p,SCL/JCL) geometries.

derived for v0 = 0 using CM [32]. Figure 3 shows Jt-t,SCL/JCL

and Jt-p,SCL/JCL as a function of μ for various values of
β. Equations (47) and (48) show that SCLCD increases
by 4× as the anode tip becomes a horizontal plate for a
given v0.

To summarize, we have demonstrated how to obtain canon-
ical coordinates to make Poisson’s equation separable to solve
for SCLCD in general orthogonal coordinates for nonzero
monoenergetic injections velocities and then for four simple
geometries. Of particular note, we have provided independent
validation of previous calculations of SCLCD using VC for
cylindrical, spherical, tip-to-tip, and tip-to-plate geometries.
We have also shown that the correction factor to account
for initial velocity for any coordinate system is independent
of geometry, so it is straightforward to write SCLCD for
monoenergetic emission for a known 1D SCLCD with zero
injection velocity. This may be valuable for complicated ge-
ometries that may not be amendable to this analysis, such as
those we have studied previously using the CM [31]. We have
also demonstrated that 1D SCLCD is independent of geome-
try once written as a function of canonical gap size (cf. Fig. 2);
therefore, one may obtain SCLCD for a given geometry by
applying the appropriate metric to the universal SCLCD.
For ODEs and PDEs with nonobvious canonical coordinates,
one may use Lie-point symmetries to derive the correspond-
ing canonical coordinates to simplify the ODEs and PDEs
[1,59]. This method provides various possible directions for
future research. For instance, Lie-point symmetries may sim-

plify the governing PDEs in cylindrical crossed-field diode
geometries [61].

Finally, we note that other current definitions [62,63] are
claimed to be SCLCD for monoenergetic injection of elec-
trons, but actually correspond to the bifurcation point in the
diode [64]. SCLCD, as defined by the maximum current den-
sity permissible in the diode, is not related to the onset of
reflection of particles but to the inherent nonlinear behavior of
the governing ODEs [64]. We recently applied VC to simplify
the Poisson’s equation to delineate how the SCLCD and bi-
furcation point are obtained using the appropriate differential
equations, boundary conditions, and functionals for extrem-
ization [65]. Future work will also apply these techniques to
quantum [66], time-dependent [67], and relativistic conditions
[44,68].
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were created or analyzed in this Letter.

This material is based upon work supported by the
Air Force Office of Scientific Research under Awards
No. FA9550-19-1-0101 and No. FA9550-22-1-0499. J.M.H.
gratefully acknowledges funding from an Undergraduate
Research Scholarship from the Purdue School of Nuclear
Engineering. A.M.D. gratefully acknowledges funding from a
Purdue Doctoral Fellowship. We also gratefully acknowledge
L. K. Ang and J. Luginsland for useful discussions.

The authors have no conflict of interest to disclose.

[1] C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic
Problems in Natural Sciences (AM, Philadelphia, 1988).

[2] Y. Kuang, J. D. Nagy, and S. E. Eikenberry, Introduction to
Mathematical Oncology (CRC, Boca Raton, FL, 2016).

[3] A. L. Garner, Y. Y. Lau, T. L. Jackson, M. D. Uhler, D.
W. Jordan, and R. M. Gilgenbach, Incorporating spatial de-
pendence into a multicellular tumor spheroid growth model,
J. Appl. Phys. 98, 124701 (2005).

[4] S. P. Venkateshan, Heat Transfer, 3rd ed. (Springer, Cham,
2020).

[5] A. L. Garner, M. Deminksy, V. B. Neculaes, V. Chashihin, A.
Knizhnik, and B. Potapkin, Cell membrane thermal gradients
induced by electromagnetic fields, J. Appl. Phys. 113, 214701
(2013).

[6] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics,
6th ed. (Elsevier, Oxford, 2016).

L063201-6

https://doi.org/10.1063/1.2146073
https://doi.org/10.1063/1.4809642


SPACE-CHARGE-LIMITED CURRENT DENSITY FOR … PHYSICAL REVIEW E 106, L063201 (2022)

[7] J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engi-
neering, 4th ed. (Pearson, Upper Saddle River, NJ, 2017).

[8] C. G. Hill, Jr. and T. W. Root, Introduction to Chemical Engi-
neering Kinetics & Reactor Design, 2nd ed. (Wiley, Hoboken,
NJ, 2014).

[9] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[10] J. C. Weaver and Y. A. Chizmadzhev, Theory of electropora-
tion: A review, Bioelectrochem. Bioenerg. 41, 135 (1996).

[11] C. Chen, S. W. Smye, M. P. Robinson, and J. A. Evans,
Membrane electroporation theories: A review, Med. Biol. Eng.
Comput. 44, 5 (2006).

[12] A. L. Garner and V. B. Neculaes, Extending membrane pore
lifetime with AC fields: A modeling study, J. Appl. Phys. 112,
014701 (2012).

[13] P. E. Hydon, Symmetry Methods for Differential Equations:
A Beginner’s Guide (Cambridge University Press, Cambridge,
UK, 2000).

[14] B. Merkt, J. Timmer, and D. Kaschek, Higher-order Lie sym-
metries in identifiability and predictability analysis of dynamic
models, Phys. Rev. E 92, 012920 (2015).

[15] F. Oliveri, Lie symmetries of differential equations: Classical
results and recent contributions, Symmetry 2, 658 (2010).

[16] P. Zhang, Y. S. Ang, A. L. Garner, Á. Valfells, J. W. Luginsland,
and L. K. Ang, Space-charge limited current in nanodiodes:
Ballistic, collisional and dynamical effects, J. Appl. Phys. 129,
100902 (2021).

[17] P. Zhang, A. Valfells, L. K. Ang, J. W. Luginsland, and Y. Y.
Lau, 100 years of the physics of the diodes, Appl. Phys. Rev. 4,
011304 (2017).

[18] C. D. Child, Discharge from hot CaO, Phys. Rev. (Series 1) 32,
492 (1911).

[19] I. Langmuir, The effect of space charge and residual gases on
thermionic currents in high vacuum, Phys. Rev. 2, 450 (1913).

[20] Y. Y. Lau, Simple Theory for the Two-Dimensional Child-
Langmuir Law, Phys. Rev. Lett. 87, 278301 (2001).

[21] J. W. Luginsland, Y. Y. Lau, R. J. Umstattd, and J. J. Watrous,
Beyond the Child–Langmuir law: A review of recent results on
multidimensional space-charge-limited flow, Phys. Plasmas 9,
2371 (2002).

[22] A. Rokhlenko and J. L. Lebowitz, Space-charge-limited 2d
Electron Flow between Two Flat Electrodes in a Strong Mag-
netic Field, Phys. Rev. Lett. 91, 085002 (2003).

[23] A. Rokhlenko and J. L. Lebowitz, Space charge limited electron
flow in two dimensions without magnetic field, J. Appl. Phys.
110, 033306 (2011).

[24] A. Rokhlenko and J. L. Lebowitz, Space charge limited two-
dimensional electron flow in a rectangular geometry, J. Appl.
Phys. 102, 023305 (2007).

[25] Y. B. Zhu and L. K. Ang, Non-uniform space charge limited
current injection into a nano contact solid, Sci. Rep. 5, 9173
(2015).

[26] S. H. Chen, T. C. Tai, Y. L. Liu, L. K. Ang, and W. S. Koh, Two-
dimensional electromagnetic Child–Langmuir law of a short-
pulse electron flow, Phys. Plasmas 18, 023105 (2011).

[27] N. R. S. Harsha, M. Pearlman, J. Browning, and A. L. Garner,
A multi-dimensional Child–Langmuir law for any diode geom-
etry, Phys. Plasmas 28, 122103 (2021).

[28] I. Langmuir and K. Blodgett, Currents limited by space charge
between coaxial cylinders, Phys. Rev. 22, 347 (1923).

[29] I. Langmuir and K. Blodgett, Currents limited by space charge
between concentric spheres, Phys. Rev. 24, 49 (1924).

[30] A. M. Darr and A. L. Garner, A coordinate system invariant
formulation for space-charge limited current in vacuum, Appl.
Phys. Lett. 115, 054101 (2019).

[31] N. R. S. Harsha and A. L. Garner, Applying conformal mapping
to derive analytical solutions of space-charge-limited current
density for various geometries, IEEE Trans. Electron Devices
68, 264 (2021).

[32] N. R. S. Harsha and A. L. Garner, Analytic solutions for space-
charge-limited current density from a sharp tip, IEEE Trans.
Electron Devices 68, 6525 (2021).

[33] Y. B. Zhu and L. K. Ang, Space charge limited current emission
for a sharp tip, Phys. Plasmas 22, 052106 (2015).

[34] A. L. Garner, A. M. Darr, and N. R. S. Harsha, A Tutorial on
Calculating Space-Charge-Limited Current Density for General
Geometries and Multiple Dimensions, IEEE Trans. Plasma Sci.
50, 2528 (2022).

[35] Y. N. Gartstein and P. Ramesh, Hysteresis and self-sustained
oscillations in space charge limited currents, J. Appl. Phys. 83,
2958 (1998).

[36] M. Griswold, N. J. Fisch, and J. Wurtele, An upper bound
to time-averaged space-charge limited diode currents, Phys.
Plasmas 17, 114503 (2010).

[37] M. Griswold, N. J. Fisch, and J. Wurtele, Amended conjecture
on an upper bound to time-dependent space-charge limited cur-
rent, Phys. Plasmas 19, 024502 (2012).

[38] W. S. Koh, L. K. Ang, and T. J. Kwan, Multidimensional short-
pulse space charge-limited flow, Phys. Plasmas 13, 063102
(2006).

[39] M. Y. Liao, R. H. Yao, and Y. B. Zhu, Space charge limited
current for bipolar flow with uniform initial velocity, Phys.
Plasmas 28, 063508 (2021).

[40] M. Y. Liao, R. H. Yao, and Y. B. Zhu, A numerical approach for
space charge limited bipolar flow in cylindrical diodes, IEEE J.
Electron Devices 9, 1009 (2021).

[41] Y. B. Zhu, M. Y. Liao, P. Zhao, and R. H. Yao, Nonuniform
space charge limited current for 2-D bipolar flow in vacuum
diode, IEEE Trans. Electron Devices 68, 6538 (2021).

[42] W. S. Koh, L. K. Ang, S. P. Lau, and T. J. T. Kwan, Space-charge
limited bipolar flow in a nano-gap, Appl. Phys. Lett. 87, 193112
(2005).

[43] L. K. Ang and P. Zhang, Ultrashort-pulse Child-Langmuir Law
in the Quantum and Relativistic Regimes, Phys. Rev. Lett. 98,
164802 (2007).

[44] A. D. Greenwood, J. F. Hammond, P. Zhang, and Y. Y. Lau, On
relativistic space charge limited current in planar, cylindrical,
and spherical diodes, Phys. Plasmas 23, 072101 (2016).

[45] W. Chandra, L. K. Ang, K. L. Pey, and C. M. Ng, Two-
dimensional analytical Mott-Gurney law for a trap-filled solid,
Appl. Phys. Lett. 90, 153505 (2007).

[46] Y. L. Liu, S. H. Chen, W. S. Koh, and L. K. Ang, Two-
dimensional relativistic space charge limited current flow in the
drift space, Phys. Plasmas 21, 043101 (2014).

[47] Y. B. Zhu, K. Geng, Z. S. Cheng, and R. H. Yao, Space-charge-
limited current injection into free space and trap-filled solid,
IEEE Trans. Plasma Sci. 49, 2107 (2021).

[48] Y. Y. Lau, D. Chernin, D. G. Colombant, and P.-T. Ho, Quantum
Extension of Child-Langmuir Law, Phys. Rev. Lett. 66, 1446
(1991).

L063201-7

https://doi.org/10.1016/S0302-4598(96)05062-3
https://doi.org/10.1007/s11517-005-0020-2
https://doi.org/10.1063/1.4733694
https://doi.org/10.1103/PhysRevE.92.012920
https://doi.org/10.3390/sym2020658
https://doi.org/10.1063/5.0042355
https://doi.org/10.1063/1.4978231
https://doi.org/10.1103/PhysRevSeriesI.32.492
https://doi.org/10.1103/PhysRev.2.450
https://doi.org/10.1103/PhysRevLett.87.278301
https://doi.org/10.1063/1.1459453
https://doi.org/10.1103/PhysRevLett.91.085002
https://doi.org/10.1063/1.3622152
https://doi.org/10.1063/1.2757718
https://doi.org/10.1038/srep09173
https://doi.org/10.1063/1.3553451
https://doi.org/10.1063/5.0071018
https://doi.org/10.1103/PhysRev.22.347
https://doi.org/10.1103/PhysRev.24.49
https://doi.org/10.1063/1.5115261
https://doi.org/10.1109/TED.2020.3038619
https://doi.org/10.1109/TED.2021.3122393
https://doi.org/10.1063/1.4919936
https://doi.org/10.1109/TPS.2022.3172424
https://doi.org/10.1063/1.367983
https://doi.org/10.1063/1.3503661
https://doi.org/10.1063/1.3671961
https://doi.org/10.1063/1.2208086
https://doi.org/10.1063/5.0034995
https://doi.org/10.1109/JEDS.2021.3116046
https://doi.org/10.1109/TED.2021.3125286
https://doi.org/10.1063/1.2130526
https://doi.org/10.1103/PhysRevLett.98.164802
https://doi.org/10.1063/1.4954827
https://doi.org/10.1063/1.2721382
https://doi.org/10.1063/1.4869732
https://doi.org/10.1109/TPS.2021.3084461
https://doi.org/10.1103/PhysRevLett.66.1446


SREE HARSHA, HALPERN, DARR, AND GARNER PHYSICAL REVIEW E 106, L063201 (2022)

[49] L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, New Scaling of Child–
Langmuir Law in the Quantum Regime, Phys. Rev. Lett. 91,
208303 (2003).

[50] S. Bhattacharjee, A. Vartak, and V. Mukherjee, Experimental
study of space-charge-limited flows in a nanogap, Appl. Phys.
Lett. 92, 191503 (2008).

[51] D. Biswas and R. Kumar, The Child-Langmuir law in the quan-
tum domain, Europhys. Lett. 102, 58002 (2013).

[52] R. J. Umstattd, C. G. Carr, C. L. Frenzen, J. W. Luginsland,
and Y. Y. Lau, A simple physical derivation of Child–Langmuir
space-charge-limited emission using vacuum capacitance, Am.
J. Phys. 73, 160 (2005).

[53] G. Jaffé, On the currents carried by electrons of uniform initial
velocity, Phys. Rev. 65, 91 (1944).

[54] T. Lafleur, Space-charge limited current with a finite injection
velocity revisited, Plasma Sources Sci. Technol. 29, 065002
(2020).

[55] J. B. Huang, R. H. Yao, P. Zhao, and Y. B. Zhu, Simulation
of space-charge-limited current for hot electrons with initial
velocity in a vacuum diode, IEEE Trans. Electron Devices 68,
3604 (2021).

[56] M. Vinokur, Conservation equations for gas dynamics in
curvilinear coordinate systems, J. Comput. Phys. 14, 105
(1974).
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