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In silico testing of the universality of epithelial tissue growth
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The universality of interfacial roughness in growing epithelial tissue has remained a controversial issue.
Kardar-Parisi-Zhang (KPZ) and molecular beam epitaxy (MBE) universality classes have been reported among
other behaviors including a total lack of universality. Here, we simulate tissues using the CELLSIM3D kinetic
division model for deformable cells to investigate cell-colony scaling. With seemingly minor model changes, it
can reproduce both KPZ- and MBE-like scaling in configurations that mimic the respective experiments. Tissue
growth with strong cell-cell adhesion in a linear geometry is KPZ like, while weakly adhesive tissues in a radial
geometry are MBE like. This result neutralizes the apparent scaling controversy.
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Introduction. The growth of biological matter, e.g., tu-
mor invasion, depends on complex processes such as the
mechanism(s) of proliferation, the physical properties of the
microenvironment, and cellular migration that can be domi-
nated either by single-cell or collective motion [1]. Numerous
experimental and computational studies have investigated the
effects of biochemical regulation and mechanical factors such
as cell-to-cell adhesion and friction, and cell division [2–11].
To understand how these factors manifest in terms of both
kinetics and morphology, the interfacial growth of a tissue can
be characterized by a scaling analysis. This, in turn, identifies
governing equations and hence leading-order behavior(s).

Often, the interface width w(l, t ) obeys the Family-Vicsek
scaling relation [12,13]

w(l, t ) ∼ tβF (lt− 1
z ), (1)

where the exponent z describes the scaling relation between
the critical time and length scales, and can be obtained from
the scaling relation z = α

β
, where the exponent α characterizes

the roughness of the interface. The exponent β is obtained
through the scaling function F (u) = F (lt− 1

z ) which has the
following properties: There is a crossover at u = l∗. For u �
l∗ the scaling function increases as a power law, F (u) = uα

where α is the roughness exponent. For u � l∗ the width
saturates, and F (u) becomes a constant [14]. With these three
critical exponents, α, β, and z, interfacial growth is often
classified into different dynamic universality classes.

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic
nonlinear differential equation for surface growth [15],

∂t h(x, t ) = −λ[∂xh(x, t )]2 + ν∂2
x h(x, t ) + ξ (x, t ), (2)

where the height [h(x, t )] depends on position and time, and
λ, ν, and D are physical constants. The first term on the
right-hand side reflects growth that occurs locally normal to

the interface and renders the KPZ equation nonlinear. The sec-
ond term smooths the interface by surface tension ν, and the
last term, ξ (x, t ), is Gaussian noise given by 〈ξ (x, t )〉 = 0 and
〈ξ (s, x)ξ (t, y)〉 = 2Dδ(s − t )δ(x − y). The KPZ universality
class is characterized by the exponents αKPZ = 1

2 , βKPZ = 1
3 ,

and zKPZ = 3
2 [15].

Mathematically, surface tension and lateral growth deter-
mine the asymptotic scaling of the KPZ equation. In some
growth processes, however, surface diffusion controls the
scaling behavior, and the growth process is described by the
molecular beam epitaxy (MBE) model [16,17]

∂t h(x, t ) = −K∂4
x h(x, t ) + F + ξ (x, t ), (3)

where K is the surface diffusion coefficient, F is the growth
rate, and ξ (x, t ) is Gaussian white noise. The exponents for
the MBE universality class for a one-dimensional interface are
αMBE = 3

2 , βMBE = 3
8 , and zMBE = 4.0.

Apparent controversy. Brú et al. studied cellular growth
using cells from 15 different in vitro cell lines and 16 in
vivo types of tumor cells obtained from patients [7,8]. They
determined the growth to belong to the MBE universality class
in all cases with exponents α = 1.5 ± 0.15, β = 0.38 ± 0.07,
and z = 4.0 ± 0.5, thus suggesting universal growth dynamics
for cells. This conclusion was strongly criticized by Buceta
and Galeano [18], who dismissed the universality of tumor
growth dynamics stating serious flaws in Brú et al.’s scal-
ing analysis. In their rebuttal, Brú et al. [9] restated their
conclusions and wrote “the characteristics of MBE dynam-
ics discussed in Brú et al. (2003, 1998) have not only been
rigorously demonstrated but have served as the basis for a
successful antitumor therapy currently under development.”
A recent study of the growth of different brain tumors in vivo
using fractal and scaling analysis shows similarities with some
of the results of Brú et al. [19].
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In contrast to MBE-like dynamics, Huergo et al. [10,11,20]
reported KPZ scaling for both linearly and radially spreading
interfaces of HeLa (cervix cancer) and Vero cell colonies.
Galeano et al. studied the development of plant cell species
Brassica oleracea and B. rapa under various growing condi-
tions and obtained α = 0.86 ± 0.4, and z = 5.0 [21]. Santalla
et al. [22] grew colonies of B. subtilis and E. coli using a
high agar concentration regime with various nutrients and
discovered branching interfaces with exponents β = 0.5 and
α = 0.75 that are inconsistent with both MBE and KPZ.

Substrate disorder can also influence growth dynamics.
Vicsek et al. [23] studied the growth of E. coli and B. subtilis
colonies and found the roughness exponent α = 0.78 ± 0.07
which is inconsistent with both the KPZ and MBE models
as well as with the quenched KPZ (qKPZ) model [14] that
includes disorder. It has also been demonstrated that the be-
havior of bacterial colonies in the medium-to-high nutrient
concentration regime can be very rich due to the appearance
of quenched disorder in growth patterns [24]. In that con-
text, Huergo et al. also examined the two-dimensional (2D)
growth dynamics of quasilinear Vero cell-colony fronts in
a methylcellulose-containing culture medium. Their scaling
analysis yielded α = 0.63 ± 0.04, β = 0.75 ± 0.05, and z =
0.84 ± 0.05, suggesting qKPZ dynamics [25].

On the computational and theoretical side, Santalla and
Ferreira [26] used an off-lattice Eden model modified to ac-
count for nutrient diffusion. Under scarce nutrient supply,
they observed initially a KPZ regime that transitioned via
a qKPZ transient to unstable growth. Block et al. studied
the growth of 2D cellular monolayers for a class of cellular
automaton models. Their results suggest KPZ dynamics over
a wide range of parameters and different cell migration dy-
namics [27] contradicting the MBE dynamics reported by Brú
et al. [7]. Another contradiction was reported by Azimzade
et al. who developed a tumor growth model based on the
nonlinear Fisher-Kolmogorov-Petrovsky-Piskunov equation,
a reaction-diffusion equation, to investigate the impact of the
cellular environment and spatial correlations on tumor inva-
sion [28]. They concluded that kinetic growth models, such
as KPZ, cannot characterize tumor invasion fronts, and that
the structure of the tumor interface depends intimately on the
initial conditions [28].

Simulations. A large number of different models has been
used to describe cellular growth [29]. Here, we use the
CELLSIM3D off-lattice growth model and simulator to study
epithelial tissue growth [30,31]. In this model, cells can mi-
grate, deform, divide, and interact with each other and their
environment mechanically via adhesion and friction. Its 2D
version has been shown to produce, e.g., cell-cell force dis-
tributions, force dipoles, spontaneous orientation of cells in
the direction of highest stiffness, and cellular migration in
agreement with experiments [32]. The analysis below uses
averages over ten independent simulations. In brief, in CELL-
SIM3D, epithelial tissues can be modeled as quasi-2D systems
of 3D cells confined into a plane, corresponding to the experi-
mental confinement of cells between two plates; the bottom
plate models basal tissue and the top plate prevents exces-
sive buckling. Details of the code, model, and parameters are
provided in the Supplemental Material [33]. The code is open
source [34].

Interface scaling. The interface width is defined as the
standard deviation of height over a length scale l at time t
as [14]

w(l, t ) =
{

1

N

N∑
i=1

[hi(t ) − 〈hi〉l ]
2

} 1
2

L

, (4)

where L is the contour length, which increases with time as
L = 2π〈h(t )〉 for radially expanding fronts and is constant
for linear fronts. For radially expanding fronts, hi(t ) is the
distance from the center of mass to the point i of the interface
at time t , 〈hi〉l is the local average of the subsets of arc
length l , and {·}L is the overall average. We complement the
universality class analysis by an examination of the structure
factor,

S(k, t ) = 〈ĥ(k, t )ĥ(−k, t )〉, (5)

where k is the wave number, and ĥ(k, t ) is the Fourier trans-
form of the interface profile h(x, t ) [14]. The advantage of
the Fourier method over the real space method is that only
long-wavelength modes contribute to its scaling. Hence, it is
less affected by finite-size effects. This method provides the
global roughness exponent α and the dynamic exponent z via
the Family-Vicsek scaling form [Eq. (1)] for S(k, t ),

S(k, t ) = k−(2α+1)s(kt
1
z ), (6)

where

s(u = kt
1
z ) =

{
const for u � 1,

u2α+1 for u � 1.
(7)

At u = 1 there is a crossover, for u � 1 the curves measured
at different times collapse, and for u � 1 they split.

We first consider the growth of linear fronts at two different
adhesion strengths, 10 (weak) and 2000 (strong) (see Table
S1 for parameters). The initial configurations had a line of
240 cells, and the final populations consisted of ≈200 000
cells. Snapshots are shown in Fig. 1. As this figure shows, in-
creasing the cell-cell adhesion changes the morphology of the
colony and the interface. Figure 2(a) shows that the interfaces
grow at constant velocities with the growth rate decreasing
with increasing adhesion.

Next, the box counting method was utilized to determine
the fractal dimensions (df ) of the interfaces for both line
configurations (triangles) and radially growing (circles) sys-
tems. Figure 2(b) shows that df is in the same range for all
simulations. In both geometries, however, df is slightly higher
for the case of strong adhesion. This is consistent with the
experiments of Torres Hoyos et al. [19] who reported smaller
df for malignant and invasive cancer cells as compared to the
benign and more solid (higher adhesion) tumors.

We investigate the scaling behavior by plotting the width
scaling function F (u) in Eq. (1) and the structure scaling
function s(u) in Eq. (6) at three different time points in or-
der to see if they collapse for given values of α, β, and z.
Instead of relying only on a visual inspection, we calculated
the chi-squared statistics [Eq. (S12)] similar to the concept
of the maximum likelihood estimator for equality of two dis-
tributions. Figures 3(a)–3(d) show the scaling results for line
growth both via the width function [Eq. (1)] and the structure
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FIG. 1. Interface evolutions of cell colonies starting from a hori-
zontal line and a radially expanding interface. (a) Line configuration
at weak (10) and (b) strong cell-cell adhesion (2000). (c) Radially
expanding interface with weak (10) and (d) strong adhesion (2000).
All interfaces have overhangs. Scaling analysis was done using
overhang-corrected interfaces [14]. For the units, see Table S1.

factor [Eq. (6)]. Both scaling functions suggest KPZ dynam-
ics; using the Family-Vicsek relation for the structure factor,
Eq. (6) [Figs. 3(a) and 3(b)], and width, Eq. (1), the data col-
lapse to a single function using the KPZ exponents [Fig. 3(d)].
The chi-squared statistics [Eq. (S12)] and goodness-of-fit p
values indicate better collapse for the KPZ than for the MBE
exponents (see Tables S2–S5).

Figure S1 shows that interface roughness w(t ) follows a
power law tβ with βweak = 0.28 ± 0.01 and βstrong = 0.25 ±
0.02 for weak and strong adhesion, respectively. Figures S2
and S3 show the local and global roughness exponents.
As the figures show, determining the roughness exponent
is questionable especially in the case of weak adhesion.
The value α

strong
loc = 0.62 ± 0.02 was calculated using width,

FIG. 2. (a) Velocity (〈v〉) of the interface determined from the
mean colony radius 〈R〉 and the mean interface height 〈h〉 vs time for
different cell-cell adhesion strengths. Radially expanding interface:
(red circles) at weak (10) and (blue circles) strong adhesion (2000).
Line configuration: (green triangles) at weak and (orange triangles)
at strong adhesion. (b) The fractal dimension (df ) determined by
plotting box counts vs box size. For radially expanding interface: (red
circles) at weak (10) and (blue circles) strong adhesion (2000). For
line configuration: (green triangles) at weak and (orange triangles)
strong adhesion. For units, see Table S1.

FIG. 3. Data collapse for line growth at high adhesion at three
different times. (a) Using the structure factor [Eq. (6)] and MBE ex-
ponents, αMBE = 3

2 and zMBE = 4. (b) With KPZ exponents, αKPZ =
1
2 and zKPZ = 3

2 . The y axis is scaled with the factor (kt
1
z )

3
2 to have

the same range as MBE scaling. (c) Using the Family-Vicsek relation
for width [Eq. (1)] with MBE exponents, βMBE = 3

8 and zMBE = 4,
and (d) with KPZ exponents, βKPZ = 1

3 and zKPZ = 3
2 . For units, see

Table S1.

and αweak
glob = 0.75 ± 0.04 and α

strong
glob = 0.52 ± 0.02, using the

structure factor. As the results show, αglob decreases with
increasing adhesion.

Next, we focus on radially expanding isotropic fronts. The
initial configuration was one cell at the center of the sim-
ulation box and the final populations were ≈200 000 cells.
We define Ri(t ) to be the distance from the center of mass
of the colony to the ith site at the interface. Snapshots at
different times and adhesion strengths are shown in Fig. 1;
increasing the adhesion between the cells changes the colony
morphology and increases overhangs. The radii grow at con-
stant velocities, 〈v〉 = 4.24 ± 0.01 for weak and 〈v〉 = 2.15 ±
0.01 for strong adhesion [Fig. 2(a)]. As in the linear case,
increasing the adhesion causes the front velocities to de-
crease. Again, the fractal dimension [Fig. 2(b)] shows a slight
increase with increasing adhesion, dweak

f = 1.13 ± 0.01 and
dstrong

f = 1.21 ± 0.01.
Figures 4(a)–4(d) show the scaling results for radial growth

both through the width function [Eq. (1)] and structure fac-
tor [Eq. (6)]. Using the Family-Vicsek relation for width
[Fig. 4(c)] with MBE exponents displays good collapse. In
addition, the structure factors at different times show good
collapse with MBE exponents (see Tables S6–S9).

Figure S4 shows that fitting the width versus time gives the
growth exponents βweak = 0.40 ± 0.04 and βstrong = 0.42 ±
0.06, For varying adhesion strengths, the local roughness ex-
ponents αloc are all within the same range: αweak

loc = 0.66 ±
0.01 and α

strong
loc = 0.7 ± 0.01 (Fig. S5). The scaling exponent

αglob, measured from the structure factor, shows a decrease
with increasing adhesion strength, αweak

glob = 0.95 ± 0.04 and

α
strong
glob = 0.71 ± 0.02 (Fig. S6).
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FIG. 4. Data collapse for the radially growing interface at low ad-
hesion at three different times. (a) Using the structure factor [Eq. (6)]
with MBE, αMBE = 3

2 and zMBE = 4 and (b) KPZ exponents, αKPZ =
1
2 and zKPZ = 3

2 . The y axis is scaled with the factor (kt
1
z )

3
2 to have

the same range as MBE scaling. (c) Using the Family-Vicsek relation
for width [Eq. (1)] with MBE exponents, βMBE = 3

8 and zMBE = 4,
and (d) with KPZ exponents, βKPZ = 1

3 and zKPZ = 3
2 . For units, see

Table S1.

Finally, to test the generality of the above observations,
cell-medium friction, intermembrane friction, cell division
rules, and the number of cell types with different stiffness
were tested using the radially growing system. Figure S7
shows that αglob is insensitive to changes in factors such as
cell-medium friction, intermembrane friction, cell division
rules, and the number of cell types with different stiffness.
These results suggest that the dynamics of the radially grow-
ing colonies are well described by MBE-like scaling when at
weak cell-cell adhesion.

Conclusions. Our simulations indicate that weak cell-cell
adhesion and an isotropically growing colony display MBE-
like scaling for the boundary roughness. This is consistent
with the experiments of Brú et al. [7]; we digitized their
data and show its scaling in Fig. S8. In contrast, a colony
growing from a single line of cells, and with strong cell-

cell adhesion displays KPZ-like scaling. This is in agreement
with the experiments of Huergo et al. [10]. In all the stud-
ied cases the fractal dimensions of the interface are within
the range 1.13–1.26, which is also consistent with prior ex-
periments [7,10,11,20,21], regardless of the growth scaling
behavior.

All the studied cases show linear growth with constant ve-
locity. This is consistent with experiments: Brú et al. reported
radially spreading cell colonies to exhibit exponential growth
in the early stages followed by linear growth [7]. Huergo et al.
showed that once the number of cells exceeds 700–1000, radi-
ally spreading colonies grow with a constant velocity [11,20].
Constant velocity also applies for line growth [10]. Physically,
these data suggest that cells are partially contact inhibited
and that most activity occurs within a limited band along
the interface challenging the notion of Gomperzian growth of
cancer [35]. Experiments by Costa et al. indicate that in vitro
cultivated cells may exhibit sigmoidal growth [3].

Finally, it can be assumed that the first multicellular
life forms were rather simple cell colonies. It is interest-
ing to speculate that if cell-colony growth dynamics would
be rigidly confined to a single universality class, adaptive
evolution would likely be significantly harder in contrast
to more versatile growth dynamics. This is consistent with
earlier results in the sense that very rich growth behavior
and diverse tissues appear with modest changes, and, e.g.,
nontrivial dependencies in initial conditions, nutrients, apop-
tosis, disorder, and mechanical forces from various sources
cause changes in both quantitative and qualitative behaviors
(see, e.g., Refs. [2,28,31,32,36]).

CELLSIM3D assumes that adhesion molecules are dis-
tributed uniformly over the cell surface. This is, however, not
necessarily the case in real cells since cell polarity may affect
their distribution and activity [37–39]. Polarized cells may
exhibit directional differences in their mechanical properties
and cell-cell interactions, which may influence the dynamics
of tissue roughness. Work is in progress to address such issues.
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