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Long-lived solitons and their signatures in the classical Heisenberg chain
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Motivated by the Kardar-Parisi-Zhang (KPZ) scaling recently observed in the classical ferromagnetic Heisen-
berg chain, we investigate the role of solitonic excitations in this model. We find that the Heisenberg chain,
although well known to be nonintegrable, supports a two-parameter family of long-lived solitons. We connect
these to the exact soliton solutions of the integrable Ishimori chain with ln(1 + Si · Sj ) interactions. We explicitly
construct infinitely long-lived stationary solitons, and provide an adiabatic construction procedure for moving
soliton solutions, which shows that Ishimori solitons have a long-lived Heisenberg counterpart when they are not
too narrow and not too fast moving. Finally, we demonstrate their presence in thermal states of the Heisenberg
chain, even when the typical soliton width is larger than the spin correlation length, and argue that these
excitations likely underlie the KPZ scaling.
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Introduction. There has been renewed interest in under-
standing the long-time dynamics of classical many-body
systems, in particular regarding the scope of anomalous, non-
diffusive transport. A paradigmatic phenomenon is Kardar-
Parisi-Zhang (KPZ) scaling [1], associated with (generalized)
hydrodynamics [2–10] and integrability [9,11–24]. Recent
theoretical developments have identified integrability and
non-Abelian symmetry as key ingredients for KPZ physics
[16,23–28]. Indeed, KPZ scaling is now established [9,16] in
the integrable Ishimori chain [29,30], also known as the inte-
grable lattice-Landau-Lifshitz model. Intriguingly, the simple
nonintegrable nearest-neighbor classical Heisenberg chain
was also found to host a long-lived regime of KPZ scaling at
low temperature [18], and it was subsequently noted that KPZ
scaling in the Ishimori chain persists under spin-symmetry-
preserving perturbations [17]. While the classical Heisenberg
spin chain is a widely studied system and a paradigmatic
model of magnetism, it remains far from completely under-
stood. For example, predictions of its hydrodynamics have
involved ordinary diffusion [31–37] or different forms of
anomalous behavior [38–41]. Our recent observation of KPZ
behavior up to enormously large scales [18] thus raises the
question: does the Heisenberg chain exhibit properties ordi-
narily associated with integrability? In particular, one might
wonder if this phenomenology can be related to magnon dy-
namics or the existence of solitons, thought to be crucial for
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KPZ behavior both in quantum [24,26,42–44] and classical
integrable one-dimensional (1D) spin systems [9,16,17,24].

In this Letter, we demonstrate the existence of long-lived
solitons in the classical Heisenberg chain. The appellation
soliton is justified by an explicit continuous connection to
those of the Ishimori chain via an interpolating Hamiltonian.
We provide a direct construction of stable (infinitely long-
lived) stationary isolated solitons, as well as an adiabatic
construction of moving solitons. A central result is the exis-
tence of a family of solitons which are stable over a broad
parameter regime [see Fig. 1(a)]. This is, a priori, very sur-
prising for a chain so far believed to be essentially generic.
Beyond the isolated solitons, we study two-soliton scattering
and observe behavior quite analogous to that of the integrable
model. Finally, for low-temperature thermal states, we show
that solitons are present and can be individually identified
even when their density is high. Taken together, these obser-
vations provide a physical basis for the robust KPZ scaling
observed at low temperatures in the Heisenberg chain.

Models. The classical Heisenberg Hamiltonian is

H = −J
∑

i

(Si · Si+1 − 1), (1)

where Si are classical O(3) vectors at sites i of a chain, with
nearest-neighbor ferromagnetic interaction strength J .

The integrable [25,29,30,45–48] Ishimori Hamiltonian,

H = −2J
∑

i

ln

(
1 + Si · Si+1

2

)
, (2)

possesses an extensive set of locally conserved charges, be-
sides energy and magnetization, such as the torsion

τi = Si · (Si+1 × Si−1)

(1 + Si · Si+1)(1 + Si · Si−1)
. (3)
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FIG. 1. Solitons in the classical Heisenberg chain. (a) Parameter
space of Ishimori solitons for which we found an adiabatically con-
nected soliton in the Heisenberg chain. (b),(c) Comparisons between
adiabatically connected solitons (only z component shown) in the
Heisenberg (H , •) and Ishimori (I , ×) chains. The solitons in (b) are
stationary (R = 0.25, k = 0); and in (c), they move (R = 0.1, k =
0.15). The Heisenberg soliton moves at a slower velocity, but both
preserve their initial profile.

We interpolate smoothly between the chains,

H = −2Jγ −1
∑

i

ln

(
1 + γ

Si · Si+1 − 1

2

)
, (4)

with the Ishimori chain corresponding to γ = 1, and the
Heisenberg chain to the limit γ → 0, preserving SO(3) sym-
metry throughout. We set J = 1 in the following.

The classical equations of motion follow from

Ṡi = ∂H
∂Si

× Si, (5)

from which we obtain the dynamics of Eq. (4),

Ṡi = 2Si ×
(

Si−1

2 − γ + γ Si · Si−1
+ Si+1

2 − γ + γ Si · Si+1

)
.

(6)

One-soliton solutions. In the Ishimori chain [29], these
are indexed by two physical parameters: An inverse-width
R ∈ (0,∞) and a wave number k ∈ [−π/2, π/2); see the
Supplemental Material (SM) [49] for explicit expressions and
their properties.

The Heisenberg chain (1), by contrast, is not integrable.
We next provide exact (though not closed-form) expressions
for stationary solitons in the form of an (implicit) solution to
the nonlinear equations of motion of the Heisenberg model.

For this, we use canonical coordinates, zi = Sz
i , φi =

arctan(Sy
i /Sx

i ). Our ansatz is based on the structure of the sta-
tionary (k = 0) Ishimori solitons. We assume (i) stationarity
of the z components, i.e., żi = 0, ∀i, (ii) spatially uniform
azimuthal angles φi (except for a discontinuity of π across
the center), and (iii) a uniform rotation frequency of the
in-plane spin components, i.e., φi(t ) = φi(0) + ωt, ∀i. This
ansatz reduces the equations of motion to a set of consistency

equations for the zi,

φ̇i = ω = J
zi√

1 − z2
i

(√
1 − z2

i+1 +
√

1 − z2
i−1

)

− J (zi+1 + zi−1), (7)

which, for a chosen frequency ω, may be solved numerically
to arbitrary precision (see SM [49]).

This yields stable stationary solitons of arbitrary width
(∼1/R), implying that the existence diagram in Fig. 1(a)
extends to infinity on the x axis. An example of a soliton
obtained from the solution of these equations is shown in
Fig. 1(b). This constitutes an exact soliton in the Heisenberg
model. We also note that this construction extends more gen-
erally to 1D spin chains (see SM [49]).

Adiabatic connection. We next connect these stationary
solitons to those in the Ishimori chain by continuously tuning
the interpolating Hamiltonian (4) between the two via a C∞-
smooth interpolation,

γ (t ) =
{

1 − e−tA/t

e−tA/t +e−tA/(tA−t ) , 0 < t < tA
0, t � tA,

(8)

from γ = 1 at t = 0 to γ = 0 at some long adiabatic time tA.
We evolve an initial Ishimori soliton (R, k) under the dynam-
ics of Eq. (4), with this time-dependent γ (t ) given by Eq. (8),
for some adiabatic time tA; we then evolve up to some later
time t f under the Heisenberg dynamics (1).

This procedure continuously transforms stationary solitons
of the Ishimori chain into stationary solitons of the Heisenberg
chain with the same magnetization.

Moving solitons. As the connection between the stationary
solitons of the two models does not guarantee the existence of
moving soliton solutions of the Heisenberg chain, we next use
our adiabatic procedure to extend the “existence diagram” in
Fig 1(a) to finite k. We consider a resultant state a soliton of
the Heisenberg chain if the following conditions are satisfied:
(i) There is, for all times, a unique local minimum of zi(t ); (ii)
for t > tA, the torsion τ = ∑

i τi is constant in time; (iii) the
unique local minimum propagates with a constant velocity.
These conditions are examined in more detail in the SM [49].
An example of a thus constructed moving soliton is shown in
Fig. 1(c) and compared to the original Ishimori soliton.

The resulting existence diagram [Fig. 1(a)] shows that the
solitons are stable in the Heisenberg model over a remarkably
large range of parameters (R, k), with the narrow solitons
apparently becoming unstable first with increasing velocity
(∼k).

We find no indication of a finite lifetime of the single
soliton states which are stable under this adiabatic procedure.
Moreover, the torsion—generally not a conserved quantity
of the Heisenberg chain—is conserved in these states, up to
numerical accuracy.

While stationary solutions of nonlinear classical equa-
tions of motion are well known, stable moving solitons are
not expected to exist in a generic system [50]. From this
perspective, our finding of propagating objects with appar-
ently unlimited stability is remarkable.

Next we consider how the properties of Ishimori solitons
are modified in the Heisenberg model. Figure 2 shows that
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FIG. 2. Physical properties of the Ishimori solitons (solid lines)
compared to Heisenberg solitons [dotted lines: up to the boundary of
the existence diagram; Fig. 1(a)], shown as a function of inverse-
width R, for various values of the wave number k. (a)–(d) The
internal frequency ω, the velocity v, the energy E (measured by the
Heisenberg Hamiltonian), and the torsion τ , respectively.

the internal frequency (the frequency with which the in-plane
spin components rotate) and velocity of a Heisenberg soliton
are suppressed. The energy (measured in both cases by the
Heisenberg Hamiltonian) is only slightly reduced, while the
torsion is very slightly higher for the Heisenberg solitons (see,
also, Fig. S2 in the SM [49]). Overall, we note a remarkable
similarity between the one-soliton properties in the Ishimori
and Heisenberg chains. Differences increase when approach-
ing the boundary of the stability region. i.e., for narrower
solitons.

Two-soliton scattering. We now turn to interactions be-
tween the solitons. To set the stage, we briefly recall scattering
in the Ishimori chain. As a fully integrable model, interactions
are completely described by the two-soliton phase shifts, even
for thermal multisoliton states [45,46]. When two solitons
collide, the asymptotic result (compared to two separate one-
soliton solutions) is unchanged, except that the solitons are
displaced by a so-called phase shift [45],

�(R, k; R′, k′)

= sgn[v(R, k) − v(R′, k′)]

× 1

2R
ln

{
cosh[2(R + R′)] − cos[2(k − k′)]
cosh[2(R − R′)] − cos[2(k − k′)]

}
, (9)

experienced by the soliton (R, k), due to a collision with the
soliton (R′, k′).

Figure 3 displays the scattering of two Heisenberg soli-
tons. The solitons survive scattering essentially unchanged
[Fig. 3(a)], akin to the fully integrable model. While the
collisions do leave the solitons unchanged asymptotically, the
magnetization of a moving soliton is “screened” during the
collision with a larger soliton, as seen in Fig. 3(b). Impor-
tantly, solitons survive multiple collisions [Fig. 3(c)], with
the change to their trajectories apparently given by simple
consecutive phase shifts.

However, there exist some important differences between
the Heisenberg and Ishimori cases. First, absent integrabil-
ity, scattering in the Heisenberg chain is not expected to be
perfectly lossless. Indeed, there is a very small amount of radi-
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FIG. 3. Soliton scattering in the Heisenberg chain. Color scale
shows the z components and is the same for (a)–(c). (a) Single
scattering event between two solitons with parameters (R, k) =
(0.1, 0.1) and (R′, k′) = (0.1, −0.15). (b) Screening of the mag-
netization transported by a narrower soliton as it moves through
a wider soliton. (c) Repeated scattering of two solitons [(R, k) =
(0.1, 0.1) and (R′, k′) = (0.1, 0)] under periodic boundary con-
ditions. (d) Comparison of the scattering phase shift �(R, k =
0; 0.1, 0.1) in the Ishimori chain (solid line) and in the Heisenberg
chain, for stationary target solitons. Phase shifts in the Heisenberg
chain obtained by averaging over 10 scattering events [cf. (c)] and
over the relative phases of the solitons—the error bars are the stan-
dard deviation with respect to the relative phases.

ation emitted during the collision (approximately δSz ∼ 10−6

in magnitude) in Fig. 3(a). Second, scattering from narrow
solitons at small k (where the existence diagram is wider in R)
can emit significant amounts of radiation, although, curiously,
the modified solitons that emerge appear to be stable to subse-
quent collisions. In addition, the phase shift � appears not to
depend only on the soliton parameters R, k, R′, k′. We extract
the phase shift in Fig. 3(d) by averaging over 10 scattering
events. They are also averaged over the relative phase (az-
imuthal angles) of the solitons at the moment of collision. In
the integrable case, this has no effect—in the Heisenberg case,
however, in particular for larger R, the phase shift depends on
the relative phase (see SM [49]).

Despite these differences, collisions over a large parameter
regime in the Heisenberg model strongly resemble the scatter-
ing in the Ishimori case. Importantly, while the phase shift
� acquires some fluctuations, the velocities of the solitons
remain unaffected by the collisions.

Solitons in thermal states. While the Heisenberg chain sup-
ports solitons as stable solitary waves, which suffer only very
weak dissipation in scattering events, the imperfect nature of
the scattering implies the existence of a thermal timescale on
which they eventually decay. The question arises, then, as to
what extent these solitons exert their influence on the hydro-
dynamics and transport properties: thermal states are not in
any sense a dilute soliton gas and it would not be unreasonable
to expect solitons to experience so many scattering events
that, unprotected by integrability, they collapse too swiftly
to generate a discernible superdiffusive contribution to the
transport of spin or energy.
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FIG. 4. Solitons in the thermal state at T = 0.1J for the Heisen-
berg (left) and Ishimori (right) chains. Upper and lower panels show
torsion τ j (t ), and Sz

j (t ), respectively. Ballistic trajectories are clearly
visible in the torsion plots, both in the Ishimori and in the Heisenberg
chains. These ballistic trajectories can also be seen in the plots
of Sz, where the magnetization carried by a soliton changes as it
moves through the chain—the mechanism preventing ballistic spin
transport.

We find that the torsion (3) allows us to track the trajec-
tories of solitons through a thermal background: Figs. 4(a)
and 4(b) show the spacetime profile of the torsion τ ( j, t ) for
a low-temperature thermal state of both the Heisenberg and
Ishimori chains. The expected ballistic trajectories of the soli-
tons are clearly observed in the Ishimori chain. Remarkably,
very long-lived ballistic trajectories are also observed in the
Heisenberg chain. These trajectories can also be seen in the
z-spin component Sz( j, t ) [Figs. 4(c) and 4(d)]—though, since
the magnetization changes as they propagate, spin is not trans-
ported ballistically. In a complementary approach, for both the
Ishimori and the Heisenberg chain, the thermal solitons can
also be isolated by surrounding an initial thermal state with a
fully polarized state S = ẑ, and allowing the thermal state to
expand into this vacuum during the subsequent dynamics (see
SM [49]).

Having established the existence and nature of the almost
integrable behavior of the Heisenberg chain, we now address
the KPZ scaling observed at low temperatures [18]. In the
Ishimori chain, KPZ—rather than ballistic—spin transport
emerges as follows. As smaller, faster solitons move through
larger, slower solitons, they rotate to the “local vacuum”
within the larger soliton. Thus, in any thermal state, the
magnetization carried by the smaller solitons is screened on
a timescale set by the rate at which they encounter larger

solitons. This argument is qualitatively the same as that for
KPZ scaling in the quantum S = 1/2 Heisenberg chain that
appears in [26,27,42,43]. Since long-lived solitons are also
present in the classical Heisenberg chain at low temperature,
this provides a qualitative picture of and explanation for the
KPZ regime in spin transport.

Conclusions. Our work clearly establishes the existence
of a family of solitons in the nonintegrable ferromagnetic
Heisenberg chain in terms of those known to exist in the
integrable Ishimori chain. Furthermore, these solitons are
shown to exist and be relevant for the dynamics of thermal
low-temperature states of the Heisenberg model. This then
allows us to explain the observation of KPZ scaling as a direct
consequence of the nearly integrable scattering behavior of
long-lived solitons and the screening of magnetization during
collisions.

The fact that these solitons actually survive and deter-
mine the hydrodynamic behavior at finite temperatures, where
correlation lengths are only a few lattice sites, seems truly
remarkable, in particular considering that, in that case, the
adiabatically stable solitons are larger than the correlation
lengths. The crossover from this situation to the increasingly
normal diffusive transport at higher temperatures is an obvi-
ous object for future studies.

Our work contributes to the broader study of the role of
approximate integrability in many-body systems, a question
of sustained interest in both quantum [51–57] and classical
[58–64] contexts. For this, the Heisenberg chain provides a
suitable setting as, besides the proximity to the Ishimori chain
exploited here, it can also be thought of a lattice version of
the integrable continuum Landau-Lifshitz model, via which
route a family of approximate mobile solitons can be obtained
by discretization [65], while in the limit of low tempera-
tures, magnon-type excitations exhibit the usual “emergent
integrability” of weakly interacting quasiparticles. Our work
in particular raises the question about a wider applicability
of these ideas about anomalous transport and the existence of
solitons in classical spin models with SO(3) spin symmetry
(see SM [49]). It certainly illustrates the point that even in the
very simplest settings, many-body dynamics still holds many
surprises awaiting discovery.
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