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This Letter demonstrates for chaotic maps [logistic, classical, and quantum standard maps (SMs)] that the
exponential growth rate (�) of the out-of-time-ordered four-point correlator is equal to the classical Lyapunov
exponent (λ) plus fluctuations (�(fluc)) of the one-step finite-time Lyapunov exponents (FTLEs). Jensen’s
inequality provides the upper bound λ � � for the considered systems. Equality is restored with � = λ + �(fluc),
where �(fluc) is quantified by k-higher-order cumulants of the (covariant) FTLEs. Exact expressions for � are
derived and numerical results using k = 20 furnish �(fluc) ∼ ln (

√
2) for all maps (large kicking intensities in

the SMs).
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Introduction. Interest in the quantum-classical correspon-
dence of classically chaotic systems has been renewed in the
last years due to the conjecture that puts a bound on the
exponential growth rate � � 2πT (T is the temperature) of
an out-of-time-ordered four-point correlator (OTOC) [1]. In-
troduced in the context of the theory of superconductivity [2],
� is closely associated with the largest positive asymptotic
Lyapunov exponent (LE) of the classical chaotic system for
times shorter than the Ehrenfest time (t < tE ), for which quan-
tum interference effects did not have time to become relevant.
Besides serving as a tool to understand the fundamentals in
the quantum-classical relation of classically regular [3–5],
quasiregular [6,7], and chaotic [6,8] systems, the behavior
of the OTOC attracted considerable attention in many-body
systems [9–17] and in experiments [18–21]. In this context,
we refer the readers to the recent interesting review about
semiclassical many-body quantum chaos [22].

In general, it is known that even though related, � obtained
from classical and quantum OTOCs and the LE (λ) are not
precisely equal due to the distinct order of averaging. While
� is proportional to ln (E[X ]), λ is proportional to E[ln (X )],
where X = {x1, x2, . . . , xN } is a random variable related to the
local finite-time Lyapunov exponent (FTLE) λ(t ), calculated
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at time t (for t → ∞, λ(∞) = λ). Here, E[·] is the average
over all points in the phase space. In some cases, the relation
between both is written as � = λ + �. For example, in the
completely chaotic region of the kicked rotator it was ob-
served numerically that � ≈ ln

√
2 [6] and in the many-body

Dicke model, � ≈ 0.015 [17]. Even though the distinct order
of averaging seems to be a mere mathematical property, it
has deep, interesting physical consequences. The mathemat-
ical background of our findings lies in Jensen’s inequality
(JI) E[ϕ(X )] � ϕ(E[X ]), where ϕ(X ) is a convex function.
Equality is restored when all variables in X = {x1, x2, . . . , xN }
are equal or when higher moments of X are taken into ac-
count, which is the case considered here. An elucidating
example [23] of JI in another context is the entropy gain
�S = CN ln ( T A

T G
) obtained after N reservoirs at constant ca-

pacity C, and initial temperature Ti, are put in thermal contact.
T A = 1

N

∑N
i Ti and T B = (

∏N
i Ti )1/N are, respectively, the

arithmetic and geometric mean. Positive entropy gain implies
in JI [using ϕ(T ) = − ln (T )], namely, ln (T A) > ln (T B) =
1
N

∑N
i ln (Ti ). Thus, the logarithm of the arithmetic mean of

Ti is larger than the arithmetic mean of the logarithm of Ti.
In other words, the kind of fluctuation, or distribution of Ti

until equilibrium is reached, is responsible for the distinction
before and after log averaging.

This Letter demonstrates that fluctuations of the FTLEs
lead to the distinction between � and λ. In general, the
concept, relevance, and ability of the FTLEs in describing
dynamical systems have been demonstrated since the 1980s in
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distinct physical situations [24–42]. Specifically, fluctuations
of the local one-step FTLEs are well-known properties in
dynamical systems (see, for example, Refs. [43,44]). Conse-
quently, our results establish that for times t < tE , the classical
and quantum exponential growth rates � contain features of
classical fluctuations not visible in the asymptotic λ itself.
Analytical and numerical results are shown for the chaotic
logistic and tend maps and the classical and quantum standard
maps. The classical OTOC is defined as

Ccl(t ) = E[{x(t ), p(0)}2] = E

[(
∂ p(t )

∂x(0)

)2
]
. (1)

For chaotic systems it is expected that Ccl(t ) ∼
e2�t and the exponential growth rate is deter-
mined through the numerical computation of � =
1/2 limt→∞ lim�x(0)→0 ln [Ccl(t + 1)/Ccl(t )], where �x(0)
are small initial displacements. For one-dimensional
systems X = J (t )2 = e2tλ(t )

, where J (t ) is the Jacobian
at time t . Applying JI to − ln (X ) (convex) we have
ln (E[X ]) � E[ln (X )], which provides the upper bound
for the LE, namely that λ � �.

Chaotic logistic map (LM). The map is defined as xn+1 =
4 xn(1 − xn), with discrete times n = 1, 2, . . .. The LM has an
invariant density ρLM(x) = 1/[π

√
x(1 − x)] and the asymp-

totic LE is λLM = ln (2). It has been shown that the probability
distribution function (PDF) in this case has a cusp form
[36,44]. Using the definition of the OTOC for the map, we
have

CLM
cl (n) = E

[(
∂xn

∂x0

)2
]

= E
[(

e2
∑

n λ
(n)
LM

)]
, (2)

where λ
(n)
LM = ln |Jn| are the local one-step FTLEs and Jn =

∂xn/∂xn−1 = 4 − 8xn−1 is the Jacobian of the map at time
n. Note that ∂xn/∂x0 = JnJn−1 · · · J2J1. The local one-step
FTLEs are fluctuating quantities and are responsible for the
emergence of a nontrivial probability density, as observed
previously for the LM [44], that asymptotically converges to
a delta centered at λLM(=limN→∞ 1/N

∑N
n λ

(n)
LM). Thus, fluc-

tuations of the FTLEs are expected to be relevant when
determining Eq. (2).1

Concerning the term in the middle of Eq. (2), it is
easy to show that CLM

cl (1) = ∫ 1
0 dx0ρLM(x0)(∂x1/∂x0)2 = 8,

CLM
cl (2) = 64, CLM

cl (3) = 512, CLM
cl (4) = 4096, . . .. From

this we obtain the exact OTOC exponent �
(exact)
LM =

ln [CLM
cl (2)/CLM

cl (1)]/2 = ln [CLM
cl (3)/CLM

cl (2)]/2 =
ln [CLM

cl (4)/CLM
cl (3)]/2 = 3 ln (2)/2. These are two-iteration

processes, namely from n = 0 → n = 2, n = 1 → n = 3,
and n = 2 → n = 4, respectively. Observe that �

(exact)
LM =

λLM + ln (
√

2), so that �
(exact)
LM = ln (

√
2) gives the exact gap

between both exponents.
To demonstrate the fluctuation properties of the gap, we

use a numerical method to determine �
(fluc)
LM . Motivated by the

exact results obtained above for the two-iteration processes in

1For the present analysis it is not adequate to use E[(e2
∑

n λ
(n)
LM )] =

E[(e2NλLM )] due to the relevance of each one-step FTLE.

the determination of the middle term from Eq. (2), it is rea-
sonable to use only two iterations to attain knowledge about
the fluctuations of the one-step FTLEs which are relevant to
CLM

cl (n). This simplifies enormously our task since we only
need two iterations for the calculation of the last term on
the right-hand side of Eq. (2). Thus, in terms of the one-step
FTLEs, we have

�
(1→2)
LM = 1

2
lnE

[(
∂x2

∂x0

)2
]

− 1

2
lnE

[(
∂x1

∂x0

)2
]
,

= 1

2
lnE

[(
e2(λ(2)

LM+λ
(1)
LM))] − 1

2
lnE

[(
e2λ

(1)
LM

)]
. (3)

It crucial to realize that λ
(1)
LM and λ

(2)
LM are one-step FTLEs

from n = 0 → 1 and from n = 1 → 2, respectively. In order
to connect Eq. (3) with the fluctuations of the one-step FTLEs,
we apply the generating function of the cumulants

ln
(
E

[
exp

(
2 λ

( f )
T

)]) =
∞∑

k=1

κ̃
( f )
k

(2)k

k!
, (4)

to both terms in Eq. (3), being λ
( f =2)
T = λ

(2)
LM + λ

(1)
LM and

λ
( f =1)
T = λ

(1)
LM, so that κ̃

( f =2)
k are the k-order cumulants of

the sum λ
(2)
LM + λ

(1)
LM, and κ̃

( f =1)
k are the k-order cumulants of

λ
(1)
LM. Note that using the one-step FTLEs, the time n does not

appear explicitly in Eq. (4) since it is incorporated in the sum
λ

(2)
LM + λ

(1)
LM. Therefore

�
(1→2)
LM = κ̃

(2)
1 − κ̃

(1)
1 + 1

2

∞∑
k=2

(
κ̃

(2)
k − κ̃

(1)
k

) (2)k

k!
, (5)

where κ̃
(1)
k are the cumulants related to λ

(1)
LM, and κ̃

(2)
k are the

cumulants related to the sum λ
(2)
LM + λ

(1)
LM, namely the joint

cumulants of λ
(2)
LM and λ

(1)
LM,2 so that

�
(1→2)
LM ∼ {

λLM + (
E

[
λ

(1)
LMλ

(2)
LM

] − λ2
LM − κ

(1)
2

)
+ (

3
2E

[
λ

(1)
LM

(
λ

(2)
LM

)2] + 3
2E

[(
λ

(1)
LM

)2
λ

(2)
LM

]
− 2λ3

LM − κ
(1)
3

) + · · · },
where we used κ

(2)
1 = 2 κ

(1)
1 = 2 λLM and κ̃

(1,2)
k = κ

(1,2)
k nk

(with n = 1). Taking into account the first k = 20 cumulants
we determine (see below)

�
(1→2)
LM ∼ [λLM + 0.347 500]. (6)

Thus, the contribution of the fluctuations leads to
�

(fluc)
LM (20) ∼ 0.347 500, which is close to the analytical

gap �
(exact)
LM = log (

√
2) ∼ 0.346 574. To determine �

(fluc)
LM (k)

2Here, we use the joint cumulant of the variables λ
(2)
LM and

λ
(1)
LM, namely κ̃

(2)
1 = E[λ(1)

LMλ
(2)
LM] − E[λ(1)

LM]E[λ(2)
LM] = E[λ(1)

LMλ
(2)
LM] −

λ2
LM, and so on for higher moments.
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FIG. 1. �
(fluc)
LM as a function of the higher-order cumulants for the

two-iteration case. The dashed line shows ln (
√

2) for reference.

we integrate numerically the central moments ϒk
LM(N ),3

ϒk
LM(1) =

∫ 1

0
dxn ρLM(xn)

[
λ

(1)
LM − λLM

]k
,

ϒk
LM(2) =

∫ 1

0
dxn ρLM(xn)

[
λ

(2)
LM + λ

(1)
LM − 2λLM

]k
.

Results for �
(fluc)
LM (k) are presented in Fig. 1 as a function

of the cumulants’ order k, and it shows that it converges to
0.347 500. Thus, we expect that for k → ∞ cumulants, the
gap converges to �

(fluc)
LM → log

√
2 ∼ 0.346 573 5. It is worth

mentioning that the cumulant expansion of the individual
terms in Eq. (3) increases without bounds, but the differ-
ence between them converges following Fig. 1. Furthermore,
Eqs. (3) and (5) could be generalized to �

(n→n+1)
LM , however,

the determination of ϒk
LM(N ) becomes harder and harder as n

increases and does not provide new relevant information.
Tend map (TM). For the tend map, defined as xn+1 = 2xn

for xn < 1/2, and xn+1 = 2(1 − xn) for xn � 1/2, the asymp-
totic LE is λTM = ln (2). The logistic and tend maps have
the same LE [45]. The OTOC growth rate is determined
exactly as �

(exact)
TM = ln [CTM

cl (n)/CTM
cl (1)]/[2(n − 1)] = λTM.

Since for the TM the invariant density is ρTM(x) = 1, the
FTLEs are independent of the ICs, and no fluctuations are
expected, so the corresponding central moments are exactly
zero, leading to �

(fluc)
TM = 0. This trivial example establishes

that when fluctuations of the FTLEs are absent, the OTOC
and Lyapunov exponents are identical.

Expressing the OTOC in terms of covariant Lyapunov vec-
tors (CLVs). Before discussing results for the classical and
quantum SMs, we present an expression for the classical
OTOC in terms of CLVs in the two-dimensional continuous
case. CLVs were proposed [46] to recover the directions of
the LEs, after being corrupted by the repeated Gram-Schmidt
orthogonalization. We write the right-hand side of Eq. (1) as
a function of quantities related to the evolution in the tangent
space TxM ≡ R2, namely in the CLV basis, {vx} = {v(u)

x , v(s)
x },

which generates the Oseledec unstable {E (u)
x } and stable

{E (s)
x } subspaces with the properties Dx f tv(i)

x = γ
(t )

i,x v
(t )
i,x+t ,

∠(Ei,x, Ej,x ) �= 0 (for i �= j), and limt→∞ 1
t log ||Dx f tv

(t )
i,x|| =

3The cumulants in terms of the central moments can be obtained
from expansions of the incomplete Bell polynomials. As an example,
the first terms are κ2n = ϒ (2), κ3n2 = ϒ (3), κ4n3 = ϒ (4) − 3(ϒ (2) )2,
. . ., κ5n4 = ϒ (5) − 10ϒ (3)ϒ (2), . . .. To not confuse the readers we did
not use n = 1 here.

λ
(∞)
i being the magnitude of the asymptotic Lyapunov ex-

ponent, with i = u or i = v. It is possible to show, after
straightforward manipulation, that

C(CLV)
cl (t ) = E

[
f (t )
u,x f (t )

u,x e2tλ(t )
u,x + f (t )

s,x f (t )
s,x e2tλ(t )

s,x
]

− 2E
[

f (t )
u,x f (t )

s,x et(λ(t )
u,x+λ

(t )
s,x )], (7)

with the amplitudes

f (t )
u,x = cos (φx + θx/2) cos

(
φ f t (x) − θ f t (x)/2

)
/sin θx,

f (t )
s,x = cos(φx − θx/2) cos

(
φ f t (x) + θ f t (x)/2

)
/sin θx.

Equation (7) furnishes explicitly the quantity C(CLV)
cl (t ) as a

function of the finite-time CLV λ(t )
u,x, related to the unsta-

ble manifold, the finite-time CLV λ(t )
s,x related to the stable

manifold, the angle θx between both manifolds, their time
derivative θ f t (x), the angle φx, which is the angle between
θx/2 and the horizontal axis, and φ f t (x), its time derivative.
We notice that the CLVs λ(t )

u,x and λ(t )
s,x are calculated for finite

times t , and only for t → ∞ do they lead to the usual asymp-
totic LEs λ(∞)

u and λ(∞)
s , respectively. In other words, for short

times, the local values of λ(t )
u,x and λ(t )

s,x, and their fluctuations,
are essential for the behavior of the OTOC. Furthermore,
the amplitudes of the exponents provide a clear contribution
to the underline dynamics. For example, for sin θx → 0 an
alignment between CLVs occurs and relevant contributions
from the amplitudes of Eq. (7) are expected.4 Recent works
in other contexts focus on the role of prefactors to the OTOC
[47].

The standard map (SM). The classical dissipative map
is defined as [48] pn+1 = γ pn + K

2π
sin (2πqn)(mod 1), and

qn+1 = qn + pn+1(mod 1), where (pn, qn) are conjugate vari-
ables, n = 1, 2, . . . the discrete time, γ is the dissipation
parameter, and K is the nonlinear parameter. For the analytical
analysis of the SM, we use Eq. (1) in the form

CSM
cl (n) = E

[(
∂ pn

∂q0

)2
]

=
∫ 1

0

∫ 1

0
dq0 d p0

(
∂ pn

∂q0

)2

, (8)

where the integration is over all phase-space initial conditions.
The conservative case (γ = 1). The analytical LE can

be estimated from λ
(exact)
SM = ∫ 1

0 dq ln |L(q)|, with L(q) =
1 + k(q)/2 + sgn[k(q)]

√
k(q)[1 + k(q)/4] and k(q) =

K cos (2πq) [48]. Fluctuations of the stability exponents in
the SM have been already studied in another context [49]. It
is known that for K > 4 only one chaotic component lives
in the phase space [45]. Therefore, for large values of K , a
completely chaotic motion is observed, and the asymptotic LE
is λSM = ln (K/2). Equation (8) furnishes exact expressions,
namely CSM

cl (1) = K2/2 and CSM
cl (2) = K2 + K4/4, so that

�
(1→2)
SM = 1

2
ln

[
CSM

cl (2)

CSM
cl (1)

]
= − ln

√
2 + ln (4 + K2)

2
. (9)

Therefore, the gap is �
(exact)
SM = �

(1→2)
SM − λSM = ln

√
2 +

1
2 ln (4 + K2) − ln (K ), which for K2 	 4 reduces to
�

(exact)
SM ≈ ln (

√
2). Amazingly, this is the same gap �

(exact)
LM

4More details of these contributions will be considered elsewhere.
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FIG. 2. �
(i)
SM = �

(i)
SM − λ

(exact)
SM for the distinct calculated �

(i)
SM,

namely the analytical result �
(i)
SM = �

(1→2)
SM (black line), �

(i)
SM =

�
(CLV)
SM (red crosses), �

(i)
SM = �

(fluc)
SM (blue square), and �

(i)
SM = �

(Q)
SM

(black stars). (a) For the conservative case and (b) for the dissipative
case. The upper borders of the light green rectangles show ln (

√
2)

for reference to be compared when K is large.

obtained for the LM, which is a dissipative system. We present
results for the SM with K � 4, since for smaller values of K
the dynamic is mixed (regular and chaotic), and the classical
and quantum averages lead to additional difficulties which,
besides being of general interest, are not essential for the goal
of the present Letter.

For the numerical results, we initially compared the time
evolution of C(CLV)

cl (n) from Eq. (7) with Ccl(n) from Eq. (1),
obtained using some small initial displacements �x(0). Both
results are in full agreement. However, the C(CLV)

cl (n) from
Eq. (7) is more superior in terms of the stability for longer
iterations, since it does not depend on �x(0). Thus, to cal-
culate the exponent �

(CLV)
SM (n) we use Eq. (7). To obtain the

fluctuations of the CLVs, we determine numerically the distri-
butions of λ(t )

u,x at the Ehrenfest time,5 and obtain the k = 20
first central moments directly from these distributions. Such
higher moments lead again to �

(fluc)
SM , whose convergences

are similar to those obtained for the LM in Fig. 1(a). The
distributions keep changing shape for short times and strongly
depend on K . When possible, values of the first cumulants
were compared to previous studies [49] and have shown to
be consistent. As pointed out in Ref. [49], distributions of
FTLEs converge very slowly to a Gaussian when n → ∞ and
probably only the first two cumulants are nonzero. However,
for short iterations, higher-order momenta for the cumulant
expansions become essential. Figure 2(a) shows results for
�

(fluc)
SM (blue squares), �

(CLV)
SM = �

(CLV)
SM − λ

(exact)
SM (red crosses)

for distinct values of K , together with the exact results �
(exact)
SM

5The Ehrenfest time depends on K . For details and specific values
of the Ehrenfest times, we refer the reader to Ref. [6].

(dark pink squares). For K � 8, �
(CLV)
SM and �

(exact)
SM are in-

distinguishable, and approach the value 0.346 for K = 1000.
The values of �

(fluc)
SM are very close, even though a bit smaller.

The discrepancy between distinct curves for smaller values of
K is surely a consequence of the larger amount of dynamical
fluctuations due to sticky motion [45], which strongly depend
on appropriate averages.

Before we proceed to the quantum analysis, some in-
formation must be given. The quantum OTOC is obtained
numerically from CQ(n) = E{[q̂(n), p̂(0)]2}, where (q̂, p̂) are
the corresponding position and momentum operators, and
[,] denotes the commutator. The quantum SM problem is
described using the kicked Hamiltonian operator (dimension-
less units) Ĥ = p̂/2 + K/(4π2) cos (2π q̂)

∑∞
m=0 δ(t − mτ ),

and C(SM)
Q (n) is obtained from the numerical integration

of the corresponding Schrödinger equation. The associ-
ated OTOC exponent is named �

(Q)
SM. We use individual

angular-momentum eigenstates |�(0)〉 = ∑∞
n=−∞ a(0)

n |n〉 and

Gaussian wave packets a(0)
n = exp(− h̄2

eff (n−n0 )2

2σ 2 ), where n0 =
p0

h̄eff
. For the numerical integration we use p0 = 0, σ = 4,

and |�〉, represented in a finite basis of eigenstates |n〉, n ∈
[−N, N − 1]. Functions of p̂ are applied on this basis, and
functions of q̂ are applied in the Fourier-transformed repre-
sentation. We use an adaptive grid with 2h̄effN ∈ [212, 216]
[6]. The quantum and classical OTOC exponents for the con-
servative SM were already considered recently [6], and our
exponents are in good agreement with those presented in
Fig. 2 from Ref. [6], for the considered K values. We choose
not to repeat such a figure, but instead display results for �SM,
our main interest. Numerical results for �

(Q)
SM = �

(Q)
SM − λ

(exact)
SM

as a function of K are shown as black stars in Fig. 2(a). We no-
tice that, except for specific values of K , �

(Q)
SM and �

(CLV)
SM are

in relatively good agreement. Differences between both gaps
are related to quantum averages and the number of eigenstates
for each value of K . The determination of �

(Q)
SM revealed to

be a difficult numerical issue. Summarizing, Fig. 2(a) demon-
strates that the gaps between the distinct OTOCs and the
classical LE are close to each other, and all quantities ap-
proach ∼ ln (

√
2) for large K values, as accurately explained

by the fluctuations of the finite-time CLVs.
The dissipative case (γ = 3/5). We could not obtain an

analytical expression for the OTOC exponent using arbitrary
values of γ . However, for γ = 3/5, we attain

�
(1→2)
SM = 1

2
log

{
34

25
+ K2

2
−

√
5 − √

5[KJ0(K ) − J1(K )]

Kπ
√

2

+ 5
√

5 − √
5[KJ0(2K ) + (K2 − 1)J1(2K )]

48Kπ
√

2

}
,

with Ji(K ) (i = 0, 1) being the Bessel function of the first
type. Other specific values of γ could be used. Furthermore,
Eq. (7) is used to calculate �

(CLV)
SM , and the FTLE λ

(num)
SM is

determined numerically, as usual. Dissipation in the quantum
model is introduced between the kicks by coupling the
main system to a zero-temperature environment. The density
operator is determined as an ensemble mean over pure states
obtained from the quantum state diffusion [50] Ito-stochastic
Schrödinger equation |dψ〉 = −Ĥ|ψ〉dt + ∑

k (Lk −
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〈Lk〉)|ψ〉dξk − 1/2
∑

k (L†
k Lk − 2〈L†

k 〉)Lk + |〈ψ〉|2|ψ〉dt . Lk

are the Lindblad operators with k = 1, 2 and 〈·〉 stands for the
expectation value. The Lindblad operators induce a damping
−ν〈p̂〉, and the dissipation parameter becomes γ = e−ντ ,
where the kicking time τ = h̄eff is the effective Planck’s
constant [50]. For details, we refer to Ref. [51]. Figure 2(b)
summarizes our results for the dissipative case with γ = 3/5.
We plot �

(i)
SM = �

(i)
SM − λ

(num)
SM for the distinct calculated

�
(i)
SM, namely the analytical result �

(i)
SM = �

(exact)
SM (dark

pink squares), �
(i)
SM = �

(CLV)
SM (red crosses), �

(i)
SM = �

(fluc)
SM

(blue square), and �
(i)
SM = �

(Q)
SM (black stars). As for the

conservative case, all quantities lead to a gap �SM ∼ ln (
√

2)
for larger K values, nicely explained by the fluctuations of the
one-step finite-time CLVs.

Conclusions. Time fluctuations of the one-step FTLEs in
the LM and the one-step finite-time CLVs in the SM are
demonstrated to be the origin of the distinction between
the classical and quantum OTOC exponential growth rate
(�) and the classical LE (λ). The fluctuations are quanti-
fied by higher-order cumulant expansions corrections �(fluc),
so that the upper bound � = λ + �(fluc) is reached. Com-
paring the LM, and the SM for K � 4, the correction is
�

(fluc)
LM ∼ �

(fluc)
SM ∼ ln (

√
2). Such an approximated equality is

intriguing: The statistical properties of the one-step FTLEs

from the dissipative chaotic attractor of the LM are equal to
those (CLVs) of the chaotic component of the conservative
and dissipative SMs. For the tend map, no fluctuations of
the FTLEs are observed, leading to �

(fluc)
TM = 0. Thus, the

quantum-classical correspondence regarding the exponential
growth of instabilities in the SMs becomes clear and uniquely
described for t < tE when taking into account the dynamical
fluctuations of the one-step finite-time CLVs. Because the
tend, logistic, and standard maps are paradigmatic models
describing a huge number of dynamical systems in distinct
physical contexts, we are confident that the finite-time Lya-
punov fluctuations producing the gap �(fluc) should be a
generic property. Finally, it would be interesting to investigate
the relation of higher-order fluctuations of the FTLEs, and
the gap due to Jensen’s inequality, in many-body systems
[22], in the context of Loschmidt echo [52], the oceanic
sound propagation through a structured ocean [38], and in
disordered systems, with possible applications to Anderson
localization [40].
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