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Wiener’s path integral plays a central role in the study of Brownian motion. Here we derive exact path-
integral representations for the more general fractional Brownian motion (FBM) and for its time derivative
process, fractional Gaussian noise (FGN). These paradigmatic non-Markovian stochastic processes, introduced
by Kolmogorov, Mandelbrot, and van Ness, found numerous applications across the disciplines, ranging from
anomalous diffusion in cellular environments to mathematical finance. Their exact path-integral representations
were previously unknown. Our formalism exploits the Gaussianity of the FBM and FGN, relies on the theory of
singular integral equations, and overcomes some technical difficulties by representing the action functional for
the FBM in terms of the FGN for the subdiffusive FBM and in terms of the derivative of the FGN for the super-
diffusive FBM. We also extend the formalism to include external forcing. The exact and explicit path-integral
representations make inroads in the study of the FBM and FGN.
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Introduction. The importance of path integrals in theo-
retical physics is broadly recognized. Their application has
proved to be rewarding not only as a computational tool,
both analytical and numerical, but also as a powerful and
versatile conceptual framework. The notion of path integrals
was introduced by Wiener [1] for Brownian motion (BM).
Since then it has helped uncover many nontrivial statistical
properties of BM [2–6]. Feynman reinvented path integrals
within his reformulation of quantum mechanics [7–9]. He is
also credited with making path integrals an intrinsic part of
physicist’s toolbox [10–17].

Path-integral representations of stochastic processes and
fields are especially useful in the studies of large-deviation
statistics of physical quantities. Performing a saddle-point
evaluation of the pertinent path integral (which relies on a
problem-specific large parameter), one can determine the op-
timal, that is, the most likely, history of the system which
dominates the statistics in question. This method of large-
deviation analysis appears in different areas of physics under
different names: the optimal fluctuation method, the instanton
method, the weak-noise theory, the macroscopic fluctuation
theory, the dissipative WKB approximation, etc. A full list
of references on different applications of this method would
exceed 100.

The key object of a path-integral representation of BM
and its functionals is the probability density P[x(t )] of a
given realization of a Brownian trajectory x(t ), P[x(t )] ∼
exp{−S[x(t )]}, where the action functional S[x(t )] is given by
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the Wiener formula [1]

S[x(t )] = 1
2

∫
dt ẋ2(t ) (1)

(the dot here and henceforth denotes the time derivative and
we set the diffusion coefficient to 1

2 for brevity). The local-
in-time Wiener action (1) reflects the Markovian nature of
BM. The past two decades have witnessed great interest in
fractional Brownian motion (FBM), introduced by Mandel-
brot and van Ness [18] and earlier by Kolmogorov [19]. The
Mandelbrot–van Ness (MvN) FBM is a non-Markovian gener-
alization of the Brownian motion which keeps the important
properties of Gaussianity, stationarity of the increment, and
dynamical scale invariance. For the two-sided (that is, prether-
malized) FBM, time t is defined on the entire axis |t | < ∞.
For the one-sided FBM 0 � t < ∞. Here the process starts at
t = 0 and there is no past. Both versions of the FBM are zero-
mean Gaussian processes [for convenience we set x(0) = 0]
and they are completely defined by their covariance functions

κ2(t, t ′) = 〈x(t )x(t ′)〉 = 1
2 (|t |2H + |t ′|2H − |t − t ′|2H ),

κ1(t, t ′) = 〈x(t )x(t ′)〉 = 1
2 (t2H + t ′2H − |t − t ′|2H ). (2)

Here the subscripts 1 and 2 stand for the one- and two-sided
processes, respectively, the angular brackets denote ensemble
averaging, and 0 < H < 1 is the Hurst index which quanti-
fies the dynamical scale invariance of the process [20] and
its ruggedness. For H < 1

2 the FBM is subdiffusive, i.e.,
the mean-square displacement 〈x2(t )〉 = t2H grows sublin-
early with time. For H > 1

2 the FBM is superdiffusive. In
the borderline case H = 1

2 one recovers the standard BM.
Figure 1 presents examples of numerical stochastic realiza-
tions of FBM for H = 1

4 , 1
2 (standard BM), and 3

4 .
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FIG. 1. Stochastic realizations of one-sided MvN FBM x(t ) for
H = 1

4 (left) and H = 3
4 (middle). H = 1

2 (right) corresponds to the
standard BM.

The fractional Gaussian noise (FGN) was introduced by
Mandelbrot and van Ness [18] as the time derivative of x(t ).
That is, by definition, the FBM x(t ) obeys the Langevin equa-
tion ẋ(t ) = y(t ), where y(t ) is the FGN. For H < 1

2 the FGN
is antipersistent (that is, it has negative autocorrelations). For
H > 1

2 it is positively correlated. For H = 1
2 the δ-correlated

white Gaussian noise is recovered. The subsequent analysis
covers both sub- and superdiffusive cases.

Multiple physical processes have been successfully mod-
eled as FBM. These include fluctuating interfaces [21]
dynamics in crowded fluids [22,23], subdiffusive dynamics
of bacterial loci in a cytoplasm [24], telomere diffusion in
the cell nucleus [25,26], modeling of conformations of sero-
tonergic axons [27], diffusion of a tagged bead of a polymer
[28,29], translocation of a polymer through a pore [29–32],
single-file diffusion in ion channels [33–35], etc. A review
can be found in [36]. In turn, the FGN [18] is used to
model antipersistent or persistent dependence structures in ob-
served time series in many applications including hydrology
[37], information theory [38], climate data analysis [39], and
physiology [40], to mention a few.

By now the MvN FBM has become a standard model
of anomalous diffusion in systems with memory. Still, a
satisfactory path-integral representation of this process is un-
available.1 This is in spite of the fact that, for non-Markovian
but Gaussian processes, such as the MvN FBM, there is a
straightforward path [13] to constructing an analog of Eq. (1).
It involves the determination of a (highly singular) nonlocal
kernel, inverse to the covariance function (2), via solving a
singular integral equation [such as Eq. (5) below]. For MvN
FBM this equation is hard to deal with analytically, which
explains the scarcity of results on path-integral representations
of the FBM.2

1In simple large-deviation problems, analyzed with the optimal
fluctuation method, the explicit knowledge of the inverse kernel
can be unnecessary. This happens when the ensuing nonlocal Euler-
Lagrange equation (a linear integral equation) can be transformed
into a form containing only the covariance function of the pro-
cess [41–43]. For more complicated problems, however, no such
transformation exists and the knowledge of the inverse kernel is
indispensable.

2For the Riemann-Liouville FBM (a different mathematical model
of anomalous diffusion, introduced by Lévy [44]), the action S[x(t )]
can be determined by employing fractional calculus, as was done in
Refs. [45,46] and in Chap. 10 in Ref. [16]. Also, in Refs. [47,48] a
path-integral representation was found for the fractional Lévy motion
[47], still another mathematical model. All these results, however, are
irrelevant to the MvN FBM studied in our work.

These technical obstacles were circumvented in early work
[49], where a nonlocal analog of the Wiener action (1) was
derived, by a different method, in the particular case of the
dynamics of a tagged bead in an infinitely long prethermalized
Rouse polymer [49]. Under some natural assumptions, this
non-Markovian system is equivalent to a fluctuating interface
in one dimension and the latter is known to be describable
by the MvN FBM with the Hurst exponent H = 1

4 [21]. The
action, calculated in Ref. [49], is given, up to a constant factor,
by the expression

Sbead[x(t )] ∼
∫∫

dt1dt2
|t1 − t2|1/2

ẋ(t1)ẋ(t2) (3)

(see also Ref. [50]). We should also mention a series of works
[51–56] aimed at determining S[x(t )] for the one-sided MvN
FBM in the form of a perturbation expansion around the
Wiener action (1). By construction, such an expansion, based
on the small parameter |H − 1

2 | � 1, is quite limited in its
validity.

In this work we find exact and explicit nonlocal analogs
of the Wiener action (1) for the MvN FBM: for arbitrary
0 < H < 1 and for both two-sided and one-sided versions
of the FBM. We also extend the path integrals to include
overdamped motion of the particle under external force. We
achieve these goals by seeking, from the start, the action
functional for the FBM in terms of its time derivative pro-
cesses: the first-derivative process (that is, the FGN) for the
subdiffusive FBM and the second-derivative process for the
superdiffusive FBM.3 Our formalism fully exploits the Gaus-
sianity of the FBM and relies on the well-established theory
of singular integral equations (see, e.g., Refs. [57,58]). The
resulting path integrals are convenient to work with, as they
involve only mildly singular kernels. Finally, we extend the
formalism to include external forcing.

General expressions and main results. Quite generally, the
action functional S[X (t )] of a Gaussian process X (t ) on a time
interval � can be represented as [13]

S[X (t )] = 1
2

∫
�

dt1

∫
�

dt2K(t1, t2)X (t1)X (t2). (4)

The kernel K(t1, t2) (a symmetric function of t1 and t2) is the
inverse of the covariance function κ (t1, t2) of the process X (t ):∫

�

dt1κ (t1, t3)K(t1, t2) = δ(t2 − t3). (5)

Once K(t1, t2) is known, the action functional (4) is com-
pletely defined, giving the probability density P[X (t )] of a
given realization of the process X (t ). Now we present our
main results for the action functionals of the MvN FBM x(t ).
They have different forms for the subdiffusive and superdiffu-
sive FBM and for the two- and one-sided processes.

We start with the subdiffusion. For the two-sided sub-
diffusive (0 < H < 1

2 ) FBM x(t ), the action S = S[x(t )] is

3Indeed, although x(t ) is a Gaussian process, the Wiener action (1)
is expressed through ẋ(t ), rather than through x(t ). Furthermore, one
can rewrite Eq. (1) as S[x(t )] = 1

2

∫∫
dt1dt2δ(t1 − t2)ẋ(t1)ẋ(t2), with

a δ-function kernel. In the x representation the kernel ∂2
t1t2

δ(t1 − t2)
is more singular and less convenient to work with.

L062102-2



PATH INTEGRALS FOR FRACTIONAL BROWNIAN MOTION … PHYSICAL REVIEW E 106, L062102 (2022)

given by

S = cot(πH )

4πH

∫ ∞

−∞

∫ ∞

−∞

dt1dt2
|t1 − t2|2H

ẋ(t1)ẋ(t2). (6)

For the one-sided subdiffusive FBM we obtain

S = cot(πH )

4πH

∫ ∞

0

∫ ∞

0

dt1dt2Iz
(

1
2 − H, H

)
|t1 − t2|2H

ẋ(t1)ẋ(t2), (7)

where Iz(a, b) is the regularized incomplete beta function

Iz(a, b) = �(a + b)

�(a)�(b)

∫ z

0
xa−1(1 − x)b−1dx, (8)

�(· · · ) is the Gamma function, and z = 4t1t2(t1 + t2)−2.
As one can see, the action functionals (6) and (7) are nonlo-

cal in time and written in terms of the FGN ẋ(t ) rather than in
terms of x(t ) itself. The expression (7) for the one-sided case
is more complicated than that for the two-sided one, Eq. (6).
In particular, the two-sided kernel in Eq. (6) is a difference
kernel, which reflects the stationarity in time of the two-sided
derivative process, the FGN. The one-sided kernel (7) is not a
difference kernel in spite of the stationarity of the FGN. The
nonstationarity, however, is temporary, as it is caused by a
transient created by the initial condition x(t = 0) = 0. Indeed,
in the limit of t1, t2 → ∞ and t1 − t2 = const, z tends to 1, the
one-sided kernel coincides with the two-sided one, and the
stationarity is restored.

In the limiting case H = 1
2 , the kernels in Eqs. (6) and (7)

become δ functions and yield the classical Wiener formula
(1), as we show in Ref. [59]. For H = 1

4 Eq. (6) has the same
functional form as the two-sided expression (3), as to be ex-
pected in view of the prethermalization of the Rouse polymer
[49]. We also remark that Eq. (6) was postulated in Ref. [50]
as an effective Hamiltonian of topologically stabilized poly-
mers in melts, permitting one to cover various conformations
ranging from ideal Gaussian coils to crumpled globules. Our
derivation validates their approach.

Now we present our results for the superdiffusive FBM,
1
2 < H < 1. In the two-sided case we obtain

S = σ (H )

2

∫ ∞

−∞

∫ ∞

−∞
dt1dt2|t1 − t2|2−2H ẍ(t1)ẍ(t2), (9)

where

σ (H ) = − cot(πH )

4πH (1 − H )(2H − 1)
, (10)

a positive function. For the one-sided case

S = σ (H )

2

∫ ∞

0

∫ ∞

0
dt1dt2|t1 − t2|2−2H

×Iz′
(

3
2 − H, 2H − 2

)
ẍ(t1)ẍ(t2), (11)

where z′ = min(t1, t2)/max(t1, t2). Again, the expressions in
Eqs. (9) and (11) are nonlocal in time, but now they are written
in terms of ẍ(t ), that is, in terms of the first derivative of
the FGN. The two-sided kernel is a difference kernel. The
one-sided kernel is not, but it approaches the difference form
following an initial transient. Also, the classical Wiener form
(1) is recovered in the limit H → 1

2 [59].
Expressions (6)–(11), along with Eqs. (25) and (27) be-

low, represent the main results of this work. Here we present

derivations of Eqs. (6) and (9) for the two-sided subdiffusive
and superdiffusive FBM, respectively. The derivation of the (a
bit more bulky) one-sided expressions in Eqs. (7) and (11) is
relegated to the Supplemental Material [59].

Subdiffusion. Here we work directly with the FGN. Its
covariance function c(t1, t2) can be readily calculated

c(t1, t2) = 〈y(t1)y(t2)〉 = 〈ẋ(t1)ẋ(t2)〉

= ∂2

∂t1∂t2
〈x(t1)x(t2)〉 = d

dτ
(H |τ |2H−1sgnτ ),

(12)

where τ = t1 − t2 and we used Eq. (2). Equation (12) holds for
both the two-sided and the one-sided process and for all 0 <

H < 1. Notably, the FGN is a stationary process. For H = 1
2

Eq. (12) gives c(τ ) = 1
2 (d/dτ )sgnτ = δ(τ ), as to be expected

for white noise.
Let us denote by C(τ ) the kernel inverse to c(τ ). For

the two-sided process, C(τ ) is defined by the equation∫ ∞
−∞ dτ c(τ − t )C(τ ) = δ(t ) or in the explicit form∫ ∞

−∞
dτ C(τ )

d

dτ
[|τ − t |2H−1sgn(τ − t )] = 1

H
δ(t ). (13)

Integrating by parts and assuming that the boundary terms are
zero (as can be verified a posteriori), we arrive at the integral
equation ∫ ∞

−∞
dτ

sgn(τ − t )

|τ − t |1−2H
D(τ ) = − 1

H
δ(t ) (14)

for the unknown function D(τ ) = dC(τ )/dτ . The solution
can be found in Ref. [57]:

D(τ ) = dC(τ )

dτ
= cot(πH )

2πH

d

dτ

1

|τ |2H
. (15)

Getting rid of the τ derivative and using the fact that the kernel
must vanish at |τ | → ∞, we obtain

C(τ ) = cot(πH )

2πH

1

|τ |2H
. (16)

The ensuing Gaussian action functional (4), written in terms
of X (t ) = ẋ(t ), yields Eq. (6).

Superdiffusion. Here we work with the second-derivative
process z(t ) = ẍ(t ). Its covariance is

q(t1, t2) = d3

dτ 3
[H |τ |2H−1sgn(τ )]. (17)

For the two-sided process the inverse kernel Q(t1, t2) is defied
by the equation

∫ ∞
−∞ dτ q(τ − t )Q(τ ) = δ(t ) or in the explicit

form∫ ∞

−∞
dτ Q(τ )

d3

dτ 3
[|τ − t |2H−1sgn(τ − t )] = 1

H
δ(t ). (18)

Integrating three times by parts and assuming that the bound-
ary terms are zero (as verified a posteriori), we arrive at the
equation ∫ ∞

−∞
dτ

sgn(τ − t )

|τ − t |1−2H
Z (τ ) = − 1

H
δ(t ), (19)

where Z (τ ) = d3Q(τ )/dτ 3. This is exactly the same equa-
tion as Eq. (14) but now 1 − 2H < 0. It is convenient to
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rewrite this equation as

−
∫ t

−∞
dτ (t − τ )2H−1Z (τ ) +

∫ ∞

t
dτ (τ − t )2H−1Z (τ )

= − 1

H
δ(t ) (20)

and differentiate both sides of Eq. (20) with respect to t . The
resulting equation

∫ ∞

−∞
dτ

Z (τ )

|τ − t |2−2H
= 1

H (2H − 1)
δ′(t ) (21)

is solvable [57] and we obtain

Z (τ ) = − cot(πH )

2πH (2H − 1)

d2

dτ 2

sgnτ

|τ |2H−1
. (22)

Integrating this expression over τ three times and taking into
account the fact that the kernel must vanish at |τ | → ∞, we
obtain the desired inverse kernel

Q(τ ) = σ (H )|τ |2(1−H ), (23)

where σ (H ) is defined in Eq. (10). The resulting Gaussian
action functional (4), written in terms of X (t ) = z(t ) ≡ ẍ(t ),
yields Eq. (9).

External force. An important extension of this formalism
deals with situations where the FBM of a particle is accompa-
nied by its overdamped motion under an external force f (x).
A natural approach to modeling this situation employs the
non-Markovian Langevin equation [61]

ẋ(t ) = f [x(t )] + y(t ), (24)

where the noise term y(t ) describes FGN. When the exter-
nal force f (x) is confining, the x distribution approaches a
steady state. This steady state, however, is a non-Boltzmann
one. Therefore, not surprisingly, it violates the fluctuation-
dissipation theorem [61]. As the FGN y(t ) is a Gaussian
process, a natural path-integral representation for Eq. (24) is

provided by the action functional

S[x(t )] = 1

2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2C(t1 − t2){ẋ(t1) − f [x(t1)]}

×{ẋ(t2) − f [x(t2)]}, (25)

where C(τ ) is the inverse kernel for the FGN, given by
Eq. (16). Here we assumed a two-sided subdiffusive FBM.

For a superdiffusive FBM a suitable non-Markovian
Langevin equation can be obtained by a formal differentiation
of Eq. (24) with respect to time, leading to

ẍ(t ) = f ′[x(t )]ẋ(t ) + z(t ), (26)

where f ′(x) ≡ df (x)/dx and the noise term z(t ) is the time
derivative of the FGN. The corresponding path integral for the
two-sided process is given by the action functional

S[x(t )] = 1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Q(t1 − t2)

×{ẍ(t1) − f ′[x(t1)]ẋ(t1)}{ẍ(t2) − f ′[x(t2)]ẋ(t2)},
(27)

where Q(τ ) is given by Eq. (23). Expressions similar to
Eqs. (25) and (27) but with the one-side kernels as in Eqs. (7)
and (11) hold for the one-sided sub- and superdiffusive FBM,
respectively.

Summary. We generalized the classical Wiener path in-
tegral for BM and found exact path-integral representations
for the two-sided and one-sided MvN FBM for the whole
range 0 < H < 1 of the Hurst exponent. We also extended the
formalism to include external forcing. The exact and explicit
path-integral representations make inroads into analytical and
numerical studies of FBM (an important paradigm of scale-
invariant stochastic processes with memory) in a multitude of
applications in natural sciences, technology, and finance.
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