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Role of initial conditions in one-dimensional diffusive systems: Compressibility, hyperuniformity,
and long-term memory
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We analyze the long-lasting effects of initial conditions on dynamical fluctuations in one-dimensional diffusive
systems. We consider the mean-squared displacement of tracers in homogeneous systems with single-file
diffusion, and current fluctuations for noninteracting diffusive particles. In each case we show analytically that
the long-term memory of initial conditions is mediated by a single static quantity: a generalized compressibility
that quantifies the density fluctuations of the initial state. We thereby identify a universality class of hyperuniform
initial states whose dynamical variances coincide with the quenched cases studied previously, alongside a
continuous family of other classes among which equilibrated (or annealed) initial conditions are but one member.
We verify our predictions through extensive Monte Carlo simulations.
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In single-file diffusion, particles move in a single lane
with no possibility of overtaking [1–11]. Modern technology
has made this process increasingly relevant in experimental
[12–16], industrial [11,17,18], biological [19], and biomedical
[20] settings. Of fundamental interest is the mean-squared
displacement (MSD) of a tagged particle (tracer) within a
collection of identical particles executing single-file diffusion.
This MSD grows with time as

√
t , in contrast to normal

diffusion, where it grows as t .
Remarkably, theoretical studies [8–10,21–24] have shown

that MSDs can depend on the initialization of the system,
prior to measurement. For example, in one-dimension (1D)
one might either initialize point particles uniformly at random,
or prepare an initial state with equispaced particles. The MSD
grows as

√
t in both cases, but the prefactors are different

[8]. This is an everlasting dependence on the initial state,
affecting the asymptotic behavior at large times. Similar ever-
lasting effects of the initialization protocol are also observed
in other 1D systems (not necessarily single file), for example
when measuring the variance of particle currents [25,26]. In
both cases, one may additionally choose to perform either a
quenched or annealed average over initial states [9,25]: this
choice also has an everlasting effect on the resulting behavior.
These results establish that 1D particle systems can retain
long-term memory of their initialization: this is a form of non-
ergodicity, which may occur (in general) by many different
mechanisms [25,27–35].

We show here that these systems’ long-term memory can
be explained by a unified framework, greatly generalizing
previous results known for specific cases [8,9,25,26,36–38].
Physically, we note that the large-scale density fluctuations of
the initial condition relax very slowly: this causes long-term
memory. Remarkably, the role of these fluctuations can be
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quantified by a single static quantity, the Fano factor [39] or
generalized compressibility:

αic = lim
�→∞

Var[n(�)]

n(�)
. (1)

Here n(�) is the number of particles initially found within a
distance � of the origin and n(�) is its average; αic encapsulates
the effects of initial density fluctuations on systems’ asymp-
totic (large-time) dynamical behavior. Notably, αic in Eq. (1)
is a static property of the initial state that is experimentally
accessible (e.g., via microscopy) without knowing details of
particle interactions [40–42]. Via Eq. (2) below, it directly
controls a dynamical quantity that is similarly accessible [15],
namely the variance of particle displacements up to time T .

We now summarize our main results, before presenting
their derivation. First, consider single-file diffusion of a homo-
geneous interacting particle system under conditions where
macroscopic fluctuation theory (MFT) is applicable [9,43–
49]. MFT is a hydrodynamic theory that captures numerous
microscopic processes [43] including the simple exclusion
process, point Brownian particles, zero range processes, and
random average processes [22,50]. The system is initialized
in a macroscopically homogeneous state with mean density ρ̄

and density fluctuations determining αic via Eq. (1). Identify-
ing a single tracer particle starting from the origin, we will
show that the variance of its position X (T ) satisfies

Var[X (T )] � �X 2
noise(T , ρ̄ ) + αic�X 2

dens(T , ρ̄ ), (2)

where � indicates asymptotic equality for large T . Expres-
sions for �X 2

noise and �X 2
dens are given in Eqs. (24) and (25),

respectively. Both are proportional to
√

T , and depend on ρ̄

and on the transport coefficients; diffusivity D(ρ̄) and mobil-
ity σ (ρ̄) encoded in MFT [43,44]. The variance in Eq. (2)
includes the stochastic motion of the particles in the sys-
tem, and any random aspects of the initialization process; it
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corresponds to an annealed variance in the terminology of
Ref. [25].

Several previous results are special cases of Eq. (2). If the
initial condition is the thermal equilibrium ensemble of the
system’s own dynamics, then αic is the thermal compressibil-
ity factor [51,52], and we recover a result of Refs. [9,36]. If in
contrast one chooses initial conditions that are hyperuniform
(HU), then αic = 0 by definition [53] and Eq. (2) correctly
predicts a different variance, �X 2

noise. This was known for the
equispaced initial condition of Ref. [8], which now emerges
as representative of a much larger, HU universality class.
Another special case was obtained in Ref. [9] by considering
a quenched average over initial conditions: in our frame-
work, this also represents αic = 0 (see Ref. [54]). Moving
beyond these special cases, we emphasize that Eq. (2) reveals
a continuous spectrum of classes with variances Var[X (T )]
parameterized by αic, which is tunable via the initialization
protocol.

To elucidate the physics behind results (1) and (2), we
also analyze below a diffusive system of noninteracting parti-
cles. After initializing a homogeneous system at density ρ̄,
we remove all particles to the right of an arbitrary origin.
The remaining particles have dynamics that at large times is
Brownian with diffusivity D. Let Q(T ) be the integrated flux
of particles through the origin, up to time T . We show that

Var[Q(T )] � �Q2
noise(T , ρ̄ ) + αic�Q2

dens(T , ρ̄ ). (3)

Here �Q2
noise and �Q2

dens, given explicitly in Eqs. (13) and
(12), respectively, both grow as

√
T for large times, and αic

again obeys Eq. (1).
The similarity between Eqs. (2) and (3) is striking: both

variances depend on initialization solely via the mean density
ρ̄ and the Fano factor αic. Moreover, they share a physical
origin: everlasting memory of the initial condition can only
survive through modes whose lifetime is unbounded. These
are the (conserved) mean density, and the large-scale (� →
∞) density fluctuations, quantified by αic.

We next derive the above results, first obtaining Eq. (3) by
direct computation. To derive Eq. (2) is more complicated, but
the same physical principles are at work. Indeed, while Eq. (2)
is more relevant for applications involving single-file diffu-
sion, Eq. (3) provides a simpler illustration of the underlying
physics.

Current fluctuations for noninteracting particles. Consider
noninteracting particles with initial positions y = (y1, y2, . . . )
lying to the left of the origin (yi < 0). At time t , define χi(t ) =
1 if particle i has position xi(t ) > 0, and χi(t ) = 0 otherwise.
Also define the propagator G(x, y, t ) as the probability density
that a particle is at position x, given that it was at position
y a time t earlier. For given initial conditions y, we have
〈χi(t )〉y = U (−yi, t ), where [26]

U (z, t ) =
∫ ∞

0
dx G(x,−z, t ). (4)

The notation 〈...〉y represents an average over the stochastic
particle dynamics, for a given initial condition y. The mean
integrated flux through the origin follows by summing over
all particles: 〈Q(t )〉y = ∑

i U (−yi, t ). Defining the empirical
density of the initial condition ρ̂(x|y) = ∑

i δ(x − yi ), we

write

〈Q(t )〉y =
∫ ∞

0
dz ρ̂(−z|y)U (z, t ). (5)

(Here and below, positive z lies to the left of the origin.)
For independent particles, and since χi ∈ {0, 1}, the quan-

tity

〈Q(t )2〉y − 〈Q(t )〉2
y =

∫ ∞

0
dz ρ̂(−z|y)U (z, t )[1 − U (z, t )]

(6)
measures how much Q(t ) fluctuates between trajectories, for
a fixed initial condition y. For many initialization protocols,
the initial condition is itself stochastic, so the next step is to
average over y, (denoted as (...)). We define the variance of
the flux to include both sources of randomness [54,55]:

Var[Q(t )] = �Q2
noise(t, ρ̄ ) + �Q2

ic(t, ρ̄ ), (7)

where

�Q2
noise = 〈Q(t )2〉y − 〈Q(t )〉2

y,

�Q2
ic(t ) = 〈Q(t )〉2

y − 〈Q(t )〉y
2
. (8)

In the disordered-systems terminology of Ref. [25], Var[Q(t )]
and �Q2

noise are, respectively, “quenched” and “annealed”
variances [32,33,56]. Physically, �Q2

noise measures how much
Q fluctuates between trajectories with the same initial condi-
tion, while �Q2

ic depends additionally on the fluctuations of
the initial condition, which are never forgotten. Using Eq. (5)
yields

�Q2
ic(t ) =

∫ ∞

0

∫ ∞

0
dz dz′ U (z, t )U (z′, t )C2(z, z′), (9)

where C2(z, z′) = ρ̂(−z|y)ρ̂(−z′|y) − ρ̂(−z|y) ρ̂(−z′|y).
Hence, the initial fluctuations enter the variance through the
one- and two-point density correlations only.

So far, this analysis is general. We now specialize to the
case where, for large t , the propagator G is diffusive, such that

U (z, t ) � 1

2
erfc

[
z√
4Dt

]
as t → ∞. (10)

This assumption covers passive diffusers, and many kinds of
active particle whose late-time motion is also diffusive. Sec-
ond, we consider initial conditions found by taking an infinite,
translationally invariant system and erasing all particles to the
right of the origin. This means that ρ̂(−z|y) = ρ̄	(z) and
C2(z, z′) = ρ̄	(z)	(z′)C(z − z′) where 	(z) is the Heaviside
function and C(z − z′) the two-point correlator before erasure.
These assumptions can be relaxed, but are sufficient here.

For large times T , (9, 10) yield

�Q2
ic(T ) � ρ̄

√
DT

4π

∫ ∞

0
dy

∫ ∞

0
dy′

∫ ∞

−∞
d p eip(y′−y)

× S

(
p√

4DT

)
erfc(y) erfc(y′), (11)

where S(q) = ∫ ∞
−∞dz C(z)e−iqz is the structure factor. The

fluctuations of the initial condition enter this expression solely
through αic = limq→0 S(q), which is equivalent to Eq. (1)
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FIG. 1. (a) The variance Var[Q(T )] of noninteracting Brownian
particles with D = 1 and ρ̄ = 1, at different values of αic. The MC
simulation results (points) match the theoretical prediction (3) (solid
lines). For HU initial states (αic = 0), two different initial set-ups are
shown: equispaced initial positions with or without additional ran-
dom displacements. (b) The variance Var[Q(T )] for noninteracting
active particles at long times. Points show simulation results; lines
are the prediction (3).

[52,54,57]. Replacing the structure factor by its limit, the in-
tegrals in Eq. (11) yield �Q2

ic(T , ρ̄ ) = αic�Q2
dens(T , ρ̄ ) with

�Q2
dens(T , ρ̄ ) � (√

2 − 1
)√ ρ̄2DT

2π
. (12)

Similarly using Eq. (6), �Q2
noise is

�Q2
noise(T , ρ̄ ) �

√
ρ̄2DT

2π
. (13)

Combining Eqs. (7),(12), and (13) gives the promised result,
Eq. (3).

These results confirm that the current variance has an ev-
erlasting dependence on the fluctuations of the initial state,
through αic. The case αic = 0 arises if the initialization has no
randomness at all (e.g., equispaced particles) or is hyperuni-
form; the variance in these cases is simply �Q2

noise, referred
to as the quenched variance in Refs. [25,26] (see Ref. [54]).
On the other hand, if the initial condition has C(z) = δ(z) (as
holds for an equilibrated ideal gas), then αic = 1. This coin-
cides with the annealed variance computed in Refs. [25,26],
which is larger than the quenched variance by a factor

√
2.

These previously-studied cases now emerge as two specific
choices within an infinite family of classes of initial condition,
parameterized by αic which may take any non-negative value.

To understand the physical mechanism, note that together,
Eqs. (5) and (10) imply that particles starting within

√
4DT

from the origin have passed it with probability 1/2 after time
T , while particles starting much further away are unlikely to
have done so. Hence, the average flux is controlled by the
number of particles within

√
4DT of the origin. For large T

the variance of this number is determined by αic via Eq. (1),
thereby controlling �Q2

ic(T, ρ̄ ). The everlasting effect of the
initial conditions stems from the longest-wavelength density
fluctuations that determine αic, whose unbounded relaxation
times are the source of long-term memory.

Figure 1(a) shows Var[Q(T )] for point Brownian particles
in 1D, obtained from Monte Carlo (MC) simulations for var-
ious αic. In the initial state for these numerics, particles are

placed at random, with spacings constrained to exceed some
constant r0: this yields αic = (1 − r0ρ̄ )2, providing a family
of initialization protocols spanning αic between 0 (equal spac-
ing r0 = 1/ρ̄) and unity (ideal gas, r0 = 0) [54]. All results
match Eqs. (3),(12), and (13). To check that all dependence
on the initial conditions comes from αic, we also simulated
a different HU initial ensemble where equispaced particles
receive independent random displacements of fixed size [54]:
the long-time behavior matches that for equispaced initial
particles.

Figure 1(b) shows results for three popular models of
active particles [58–65]: active Ornstein-Uhlenbeck particles
(AOUPs), active Brownian particles (ABPs), and run-and-
tumble particles (RTPs), see Ref. [54] for details. These
systems all satisfy Eq. (10) with D their late-time diffusivity.
They precisely obey our predictions (3),(12), and (13).

Notably, Eq. (3) also applies in higher dimensions, to fluc-
tuations of the flux passing through a planar boundary: it
suffices that the particles’ normal distances from the boundary
are independent, Markovian, and obey Eq. (10). Moreover,
the current in a system of hard Brownian point particles un-
dergoing single-file motion has the same statistics as in the
noninteracting case [66]. Hence Eq. (3) also applies in that
single-file system, which we address next.

Single-file tracer motion: We now consider an infinite 1D
system of diffusive, hardcore particles, whose initial condi-
tion is homogeneous, with mean density ρ̄ and two-point
correlation C(z). A single tracer particle is identified, and its
displacement between times 0 and T is denoted by X (T ),
whose variance obeys Eq. (2), as we now show. The physical
mechanism for this result is the same as that leading to Eq. (3),
although the computation is more involved. The method fol-
lows previous work [9]; we outline it here, with details in
Ref. [54].

We first assume that the hydrodynamic density field ρ

obeys the MFT equation [43]

∂tρ(x, t ) = ∂x[D(ρ)∂xρ(x, t ) +
√

σ (ρ)η(x, t )], (14)

where σ (ρ) and D(ρ) are the mobility and diffusivity and
η(x, t ) is Gaussian spatiotemporal white noise. Examples of
such MFT systems include hard Brownian particles [9], and
the symmetric simple exclusion process [49].

The moment generating function (MGF) of the tracer po-
sition is 〈eλX (T )〉, which can be expressed as a path integral in
the Martin-Siggia-Rose formalism [9]:

〈eλX (T )〉 =
∫

D[ρ(x, t ), ρ̂(x, t )] e−S[ρ(x,t ),ρ̂(x,t )], (15)

where the average 〈...〉 now includes both the random initial
condition and the stochastic dynamics of the density; ρ̂(x, t )
is a response field, and the action is

S[ρ, ρ̂] = −λX (T ) + F [ρ] +
∫ T

0
dt

∫ ∞

−∞
dx L(ρ, ρ̂ ). (16)

Here F [ρ] is the log-probability of the initial condition, and

L(ρ, ρ̂ ) = ρ̂∂tρ − σ (ρ)

2
(∂xρ̂ )2 + D(ρ)(∂xρ)(∂xρ̂ ). (17)

For single-file motion, X (T ) is fully determined by the dy-
namics of the density: at time T , all particles between the
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tracer and the origin must have had initial positions yi < 0.
This implies [9,54]∫ X (T )

0
dx ρ(x, T ) =

∫ ∞

0
dx [ρ(x, T ) − ρ(x, 0)] . (18)

On hydrodynamic time scales, noise becomes weak and
Eq. (15) can be evaluated by a saddle-point method. Phys-
ically, this involves the computation of an instanton that
generates a large tracer displacement X (T ), whose size is de-
termined by the parameter λ. To find the variance of X (T ), the
computation is required to O(λ2). At this level, the instanton
dynamics is ρ(x, t ) ≈ ρ̄ + λq1(x, t ) and ρ̂(x, t ) ≈ λp1(x, t ),
where p1, q1 are canonically conjugate fields; terms at higher
order in λ can be neglected.

Within MFT, the log-probability of the initial state is deter-
mined by a function gic, as F [ρ] = ∫ ∞

−∞dx gic(ρ(x, 0)), speci-
fying the probability of local density fluctuations [43,54]. We
emphasize that ρ is the hydrodynamic density: there may be
density correlations on the scale of the interparticle spacing,
but gic is still a local function of ρ. Since the density fluctu-
ations are of order λ, it is consistent to approximate [43,54]

gic(ρ) ≈ [ρ(x, 0) − ρ̄]2/(2αicρ̄), (19)

where αic = 1/(ρ̄g′′
ic(ρ̄)) is the Fano factor defined in Eq. (1).

Two special cases are relevant: first, if the initial con-
dition has no fluctuations then ρ(x, 0) = ρ̄ exactly and
αic → 0. The corresponding result for Var[X (T )] coincides
with the quenched case addressed in Ref. [9]. Second, if
the initial condition is a thermally equilibrated steady state
of Eq. (14) then a fluctuation-dissipation theorem requires
g′′

ic(ρ̄) = 2D(ρ̄)/σ (ρ̄) [43]. In this case, gic follows from the
model’s free energy, and Var[X (T )] coincides with the an-
nealed variance of Ref. [9]. Hence (as for the noninteracting
particles considered above) our formalism incorporates these
two special cases, but extends them to arbitrary initial proto-
cols with no assumption of thermal equilibration.

The instanton dynamics is obtained by extremizing the
action, leading to

∂t q1(x, t ) = ∂x[D(ρ̄)∂xq1(x, t ) − σ (ρ̄) ∂x p1(x, t )]

∂t p1(x, t ) = −D(ρ̄ )∂xx p1(x, t ) , (20)

with boundary conditions [54]

q1(x, 0) = ρ̄ αic[p1(x, 0) − p1(x, T )], (21)

p1(x, T ) = 	(x)/ρ̄. (22)

The equations for p1 are closed and exactly solvable, fol-
lowing Ref. [9]. Hence Eq. (21) sets the initial condition for
the instanton, which is the fluctuation of the initial condition
ρ(x, 0) associated with the prescribed fluctuation of X (T ):

q1(x, 0) = αic

[
1

2
erfc

( −x√
4D(ρ̄ )T

)
− 	(x)

]
. (23)

This result is shown in Fig. 2(a). In physical terms, if the
initial density is large on the left of the tracer, then it tends to

FIG. 2. (a) The nontypical initial condition q1(x, 0) that appears
when considering fluctuations of X (T ) for various αic. Large currents
correspond to an excess of particles to the left of the origin, biasing
the tracer to the right. (b) The mean-squared tracer displacement
Var[X (T )] in a system of point Brownian particles at density ρ̄ = 10.
Numerical results are shown as points; solid lines show the theo-
retical prediction (26). We show results for two different HU initial
conditions, with initialization protocols the same as Fig. 1.

move to the right, and vice versa. The size of the fluctuation
is set by αic (vanishing for HU initial conditions, which lack
these large-scale density fluctuations by definition); the asso-
ciated length scale is

√
4D(ρ̄ )T . Like the current fluctuations

considered earlier, this shows that fluctuations of tracer posi-
tion are strongly coupled to the number of particles within this
distance on either side of the origin.

Finally, the variance of the tracer position is set by the
second derivative of the MGF. We thereby obtain Eq. (2) with

�X 2
noise(T ) � 1

ρ̄

√
σ (ρ̄)2T

2πρ̄2D(ρ̄)
, (24)

�X 2
dens(T ) �

√
2 − 1

ρ̄

√
2D(ρ̄)T

π
. (25)

Once again, αic = 0 corresponds to the quenched result given
in Ref. [9], while their annealed result is recovered for the
thermally equilibrated value of αic.

For the specific case of hardcore Brownian particles, one
also has σ (ρ̄) = 2Dρ̄ and D(ρ̄ ) = D. Hence,

Var[X (T )] � 1

ρ̄

√
2DT

π
[1 + αic(

√
2 − 1)]. (26)

This result is verified numerically in Fig. 2(b), for three dif-
ferent values of αic with D = 1, ρ̄ = 10. For the HU case
(αic = 0), we also show that two different initial preparations
yield the same result, similarly to Fig. 1.

To summarize, we have considered two different situations
where the initial preparation of a 1D diffusive system has
long-lasting effects on its fluctuating dynamics. We showed
that this dependence is captured by the single parameter αic,
which quantifies large-scale density fluctuations in the initial
state. The resulting framework generalizes previous results to
a vastly wider range of initialization protocols. The coupling
of αic to the long-time dynamics occurs because X (T ) and
Q(T ) are both correlated with the number of particles that
were initially within a distance

√
4DT of the origin: for large

T , the fluctuations in this number are set by αic. We suspect
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that similar effects arise in several other systems [10,21,67]
where initialization protocols have everlasting effects (see
also Ref. [68]).

These results may be important for quantitative experi-
ments on single-file diffusion, such as NMR measurements
inside molecular sieves [17,18]. Equation (26) predicts that
the molecular transport ratio Var[X (T )]/

√
T has an everlast-

ing dependence on αic, which itself depends on the (typically
nonequilibrium) conditions under which the molecules are
loaded into the sieve [17,18]. Without controlling for this
dependence, measurements of this ratio may not yield re-
producible results. Our predictions could also be tested in
colloidal systems, following Ref. [15]. We also note that our
results on single-file motion could lead to interesting con-
sequences for related harmonization studies on bead-spring
systems [37].

We have emphasized the special role of HU initial states,
whose long-wavelength density fluctuations have vanishing

amplitude. All such states lie within a single universality class
that also contains quenched systems [9,25,26]. While many
previous works focused on their creation [69–71], our work
reveals instead a dynamical consequence of HU states (see
also Refs. [72,73]).

While we have analyzed the variances of dynamical quan-
tities, their higher moments (and large deviations) presumably
depend on higher-order statistics of the initial state, suggest-
ing rich new possibilities for future research. Further open
questions arise for single-file systems not described by MFT
[66]; for driven 1D systems [22–24,74–77]; and in higher
dimensions [78–80].

We thank T. Agranov, C. Scalliet, J. Pausch, and J.-F.
Derivaux for helpful discussions. This work was funded in
part by the European Research Council under the Horizon
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