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Syed Shuja Hasan Zaidi,1 Prabhat K. Jaiswal ,1,* Madhu Priya ,2 and Sanjay Puri3,†

1Department of Physics, Indian Institute of Technology Jodhpur, Karwar 342030, India
2Department of Physics, Birla Institute of Technology Mesra, Ranchi 835215, India

3School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

(Received 30 May 2022; accepted 2 October 2022; published 1 November 2022)

We present simulation results from a comprehensive molecular dynamics (MD) study of surface-directed
spinodal decomposition (SDSD) in unstable symmetric binary mixtures at wetting surfaces. We consider long-
ranged and short-ranged surface fields to investigate the early stage wetting kinetics. The attractive part of the
long-ranged potential is of the form V (z) ∼ z−n, where z is the distance from the surface and n is the power-law
exponent. We find that the wetting-layer thickness R1(t ) at very early times exhibits a power-law growth with an
exponent α = 1/(n + 2). It then crosses over to a universal fast-mode regime with α = 3/2. In contrast, for the
short-ranged surface potential, a logarithmic behavior in R1(t ) is observed at initial times. Remarkably, similar
rapid growth is seen in this case too. We provide phenomenological arguments to understand these growth laws.
Our MD results firmly establish the existence of universal fast-mode kinetics and settle the related controversy.
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Introduction. An immiscible binary (A + B) mixture in a
homogeneous phase segregates into regions of A-rich and
B-rich domains when quenched deep below the miscibility
curve. This spontaneous decay of the unstable mixture is
called spinodal decomposition (SD). This is an important
example of coarsening or domain growth problems, which
have received great attention in the literature [1–3]. Multi-
component mixtures and their phase separation have immense
scientific and technological applications in complex fluids
such as polymer blends [4,5], emulsions [6,7], alloys and
glasses [8,9], Ionic Liquids (ILs) [10], active materials for or-
ganic solar cells [11] and memristors [12], hardening of alloys
[13], stabilization of proteins using ILs [14], and composite
materials with enhanced mechanical strength and plasticity
[15–18].

The morphology of domains formed due to phase seg-
regation could be bicontinuous (interconnected) or droplets,
depending upon the concentration ratio of the components in
the mixture [1]. These coarsening domains follow power-law
growth as �(t ) ∼ t θ , where the exponent θ defines the under-
lying physical mechanism for the transport of particles. The
θ = 1/3 for phase-separating binary solid alloys marks the
diffusion as the primary mode of transportation in solids and is
referred to as Lifshitz-Slyozov (LS) growth law [19]. For fluid
mixtures, hydrodynamics comes into play at later times, and
the resulting evolution exhibits a crossover to other exponent
values, e.g., θ = 1 followed by θ = 2/3 in three-dimension
(3D), owing to a faster advective transport of the particles
[1,2,20–23].

Introducing a substrate (S), with a preferential attraction
for one of the components (say, A) of this phase-segregating
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mixture A + B, breaks the translational symmetry of the par-
ticle transportation in a direction perpendicular to the surface.
It changes the kinetics and domain morphology at the surface
[24,25]. If the system is now quenched below the spinodal
curve, it spontaneously decomposes into A-rich and B-rich
domains. Simultaneously, the system is wetted by the pre-
ferred component A. The wetting phenomenon of the surface
in conjunction with the bulk phase separation is known as
surface-directed spinodal decomposition (SDSD). The surface
may evolve either in a completely wet (CW) or a partially wet
(PW) morphology at equilibrium, depending upon the relative
surface tensions between A, B, and S.

The SDSD phenomenon is effective in fabricating low
cost, lightweight, and easy-to-process optoelectronic devices
[26–28]. Phase-separated structures, including bicontinuous
interconnected layers, droplets, pillars, and disks in organic
thin films, ferroelectric transistors, organic photovoltaic de-
vices (OPVs), etc., can be tailored to achieve distinct optical
and electrical properties [11,29,30]. In particular, an OPV
consists of an active layer featuring interconnected domain
morphology for effective charge separation and layering near
the substrate. This gives rise to an enhanced charge collec-
tion and improves the efficiency of optoelectronic devices
[28,31–34]. Additionally, layering in SDSD can also enhance
the physical, mechanical, and surface properties of polymer
blends [4,32]. The layering, however, may also result in unde-
sirable enrichment layers adversely affecting the mechanical
and thermal properties of polymer blends [32,35]. Further-
more, SDSD provides methods for generating transient target
morphologies in metallic or polymer mixtures (block copoly-
mers) [36], etc., via chemically or morphologically patterned
substrates or through the introduction of micro- or nano-sized
filler particles [37–39]. These target morphologies show po-
tential technological applications in bit-patterned media [40],
nanowires [41], polarizers [42], ion conduction channels [43],
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nanolithography [44], and electrolytes in energy storage de-
vices [45]. A few more recent SDSD applications include
thin-film fabrication for oral drug delivery [46], microfluidic
based liquid-liquid phase separation (water ILs) to recover on
demand the IL-rich phase of interest [47], and food process-
ing [48]. In the light of the above mentioned technological
applications, it is compelling to understand and control the
growth regimes of layered morphologies and coarsening bulk
domains in SDSD.

Much scientific effort has been put into SDSD through
analytical investigations [49–55], experimental studies
[4,5,28,32,56–60], and computer simulations [2,24,35,37–
39,61–76]. The Puri-Binder model (PB) [49] is the first
successful theoretical model of SDSD for binary alloys and
early-stage kinetics of polymer mixtures at the coarse-grained
scale. This model consists of Cahn-Hilliard-Cook (CHC)
equation for the phase separating mixture supplemented
by two boundary conditions at the surface. Puri and
Binder studied the kinetics of SDSD of critical mixtures
(50%A − 50%B) for a short-ranged δ-function potential and
formulated tools to characterize domain growth parallel and
perpendicular to the wetting surface [77]. They found that the
growth of the wetting-layer thickness R1(t ) appeared to be
logarithmic with time t .

Puri and Binder [65,66] considered the case when the
surface exerts a long-ranged attractive force on the preferred
component of the mixture. For surface interactions of the form
V (z) ∼ z−n, they showed that the wetting layer at very early
times exhibited power-law growth in the potential-dependent
regime. The growth exponent was found to be strongly de-
pendent on n. It then crosses over to a diffusive regime. Note
that the above mentioned studies were based on the diffusion-
driven model. However, for fluid mixtures, the hydrodynamics
effects become relevant, and faster growth of the wetting layer
is observed at late times [24,68,76]. Jaiswal et al. [67] carried
out molecular dynamics simulation to study the kinetics of
SDSD. They deduced the growth laws for the wetting-layer
thickness R1 ∼ tα , with α ≈ 1/3 (diffusive regime) and α ≈
1 (viscous hydrodynamic regime). The usual phase separation
was observed for bulk domains.

In the present work, we perform comprehensive molec-
ular dynamics (MD) simulation to investigate the effects of
long-ranged power-law and short-ranged exponential surface
potentials on the early-stage dynamics of SDSD. We primarily
focus on the potential-dependent growth of the wetting layer
for symmetric (critical) binary mixtures and its crossover
to the diffusive regime via an intermediate fast-mode kinet-
ics. The fast mode was observed experimentally for polymer
blends as well as low-molecular-weight critical mixtures by
Wiltzius, Cumming, and coworkers [58–60]. The existence of
this fast mode has been controversial and disputed by several
authors [74,78–80]. Further, a major gap remained in the liter-
ature, i.e., comprehensive atomistic simulations which would
(a) confirm or refute the existence of a fast mode; and (b)
if it exists, provide a reasonable theoretical explanation. Our
present paper addresses precisely this gap, and settles the con-
troversy. For the long-ranged interactions, we observe that the
growth laws for R1(t ) exhibit power-law behavior in various
regimes. As the growth of the wetting layer unfolds, dis-
tinct and noteworthy crossovers are observed in the following

sequence: potential-dependent regime → fast-mode regime
→ diffusive regime → hydrodynamic regime. In contrast,
for the case with short-ranged wall potential, a logarithmic
growth of the wetting layer is observed that again crosses
over to a fast mode and subsequently to the well-established
diffusive and hydrodynamic regimes.

Methodology. To study the surface-directed spinodal de-
composition (SDSD), we carry out molecular dynamics (MD)
simulations using LAMMPS [81] software package. We con-
sider a binary mixture of A and B type particles in a box
of volume V = L × L × D with an equal number of A and
B (NA = NB = N/2) particles. We apply periodic boundary
conditions in x, y directions, and a wall is placed in the z
direction at z = 0. The wall is impenetrable to either of the
particles, and the simulation box constitutes a semi-infinite
geometry.

The particle-wall interaction is modeled via an integrated
Lennard-Jones (LJ) potential (uw), given as

uw(z) = 2πρNσ 3

3

[
2εr

15

(σ

z′
)9

+ δαV (z′)
]
, z′ = z + σ/2,

(1)
with V (z′) representing the attractive potential and has been
employed in two forms in the present study. These forms
mimic the long-ranged and short-ranged surface interactions
with the particles:

V (z′) =
{

Vlong = −εa

(σ

z′
)n

,

Vshort = −εa exp (−z′/z0).
(2)

The parameters εr and εa set the energy scales for the wall-
particle repulsion and attraction, respectively. σ is the LJ
diameter, and ρN is the fluid density (ρN = N/L2D). The
attractive term in the potential in Eq. (1) is switched on or off
using δα for “α” type of particles. Therefore, to have an A-rich
wetting layer at z = 0, we set δA = 1 and δB = 0. Moreover,
the variable z′ in Eq. (1) is defined as z′ = z + σ/2 so that
the singularity in uw(z) occurs outside the simulation box at
z = −σ/2. We place a confining surface at z = D with z′ =
D + σ/2 − z. However, in this case, we set δA = δB = 0 so
that both A and B particles are repelled. The particle-particle
interaction and the other simulation details, including thermo-
stat, integrator, etc., are provided in Sec. I of the Supplemental
Material (SM) [82], which includes Refs. [22–24,65,83,84].

Results and Discussion. First, we present results from
our molecular dynamics (MD) simulations for a long-ranged
power-law potential defined in Eq. (2). The interaction po-
tential parameters are εr = 0.6 and εa = 0.5 corresponding
to a completely wet (CW) morphology in equilibrium [85].
The simulation box is L2 × D with L = D = 32, i.e., the total
number of particles is N = 32768. We present the evolution
snapshots of the system in Fig. 1 for the power-law wall
potential with an exponent n = 3. Noticeably, the bulk segre-
gates into A-rich and B-rich phases with bicontinuous domain
morphology. Moreover, the surface at z = 0 starts populating
with A particles, whereas the B particles migrate towards the
bulk. This leads to the formation of an A-rich layer at the
surface with a B-rich depletion layer on top of it.

Further, the bulk domains as well as both the wetting and
depletion layers grow with time (for instance, in Figs. 1(c) and
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FIG. 1. Upper panel: Evolution snapshots for a binary Lennard-
Jones mixture (A + B) undergoing surface-directed spinodal decom-
position (SDSD) within a box of dimensions L2 × D, with L = D =
32. These snapshots correspond to t = 40 (a), t = 200 (b), and t =
400 (c). An impenetrable surface at z = 0 attracts A particles (marked
in gray). The choice of interaction coefficients between the wall and
particles, in Eq. (2), produces completely wet (CW) morphology
at equilibrium. The system is quenched from a high temperature
(corresponding to a homogeneous initial state) to T = 1.0 < Tc. The
other simulation details are mentioned in the text and [82]. Lower
panel: yz cross-sections of the snapshots shown in the upper panel at
x = L.

(f) corresponding to t = 400, a thicker A-rich wetting layer is
seen at the surface in comparison to Figs. 1(a) and (d) which
correspond to t = 40). The transport of A-rich bulk tubes into
the wetting layer is evident in Fig. 1(f). We stress that the tubes
are not expected to stretch from top to bottom in Fig. 1(f)
- rather, they connect bulk domains to the surface wetting
layer. This flush of wettable tubes spreads along the surface
and leads to the radial thickening of one end of the tube
connected to the wetting layer (see Fig. S1 and movie SM1
[82]). The resultant wetting-layer growth is much faster than
the diffusive dynamics and is attributed to the hydrodynamic
effects [76,78,86,87]. We end our discussion on Fig. 1 by
highlighting a similar observation (though, at a much earlier
time) of hydrodynamic pumping of bulk tubes into the wetting
layer (see Fig. S2 and movie SM2 [82]). This is the first nu-
merical observation of what has been experimentally referred
to as fast-mode kinetics [58,59]. Our MD results in this paper
demonstrate the presence of a universal fast mode and it is the
central result of this Letter.

The multilayered morphology shown in Fig. 1 results in the
emergence of a wave-like structure known as the SDSD wave
and can be corroborated from the depth profiles presented
in Fig. 2. We employ the laterally-averaged order parameter
for depth profiling of the morphology formed at the surface.
The order parameter ψ is calculated from the local densities
nA and nB as ψ (x, y, z, t ) = (nA − nB)/(nA + nB) and is then
averaged over the xy plane in a fixed layer thickness �z =
0.5 centered at different z values to produce the laterally-
averaged order parameter ψav(z, t ). We finally average these
profiles over 400 independent runs to improve the statistics.
We plot ψav(z, t ) vs z in Fig. 2 for three different times

FIG. 2. Laterally-averaged order parameter profiles ψav(z, t ) vs z
for the evolution shown in Fig. 1 at t = 40, 200, and 400. The solid
lines through the data set are guides to the eye.

t = 40, 200, and 400 corresponding to potential-dependent,
diffusive, and viscous hydrodynamic regimes respectively,
as will be discussed shortly. The SDSD wave originates at
the surface [where ψav(z, t ) ≈ 1] and vanishes into the bulk
[where ψav(z, t ) ≈ 0]. Such depth profiles exhibit a structured
oscillatory behavior at the surface and offer an experimental
counterpart of depth profiling techniques [57].

We examine the evolution of the SDSD profile by comput-
ing the first zero crossing R1(t ) from the laterally-averaged
order parameter shown in Fig. 2. The quantity R1(t ) charac-
terizes the wetting-layer thickness, and its evolution with time
t is shown in Fig. 3. We observe four distinct time regimes
shaded in different colors: potential-dependent, fast-mode,
diffusive, and viscous hydrodynamic regimes as time pro-
gresses. Each regime exhibits a power-law growth R1(t ) ∼ tα

(where α denotes the growth exponent) and is punctuated by
a sharp crossover. In our previous work on MD of SDSD
[88], we established such a crossover from the universal dif-
fusive regime (α = 1/3) to the viscous hydrodynamic regime
(α = 1). However, we did not explore the early-time behavior
of SDSD characterized by the potential-dependent regime and
the fast mode.

The primary objectives of this work are to obtain the
growth laws for the early-time kinetics. The growth exponent
for the wetting-layer thickness at early times is α ≈ 1/5 for
the power-law surface potential with n = 3. This is consistent
with the phenomenological theory of SDSD [49] discussed
in the Supplemental Material, Sec. II [82]. As time evolves,
the potential-dependent growth crosses over to a very rapid
regime with an exponent α ≈ 3/2. The short-lived accelerated
growth in t ∈ (60, 100) (see Fig. 3) is the first numerical
observation of the fast-mode kinetics observed in experiments
by Wiltzius, Cumming, and others [58–60].

How do we comprehend the fast-mode kinetics seen
for the growth in the wetting-layer thickness? The earlier
studies reported in the literature were not conclusive: the
primary reason was that the regime was very short-lived and
was suggested to be transient [58,75,76]. To this end, we
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FIG. 3. The time dependence of R1(t ) on a log-log scale for the
CW morphology. The results are presented for the power-law surface
potential −εa/zn. Main figure: the wetting-layer growth when the
surface potential is specified by n = 3, corresponding to van der
Waals’ interaction. The straight lines having slopes 1/5, 1/3, and 1
correspond to the potential-dependent, diffusive, and hydrodynamic
regimes, respectively. Inset: R1(t ) vs t for the potential specified by
n = 1, 2, 3, and 4. The solid line with slope 3/2 suggests the fast
mode observed by Wiltzius and Cumming [58].

perform our simulations for different values of n (as defined in
V (z) ∼ z−n), and also examine the effect of varying the range
of the surface potential. We show these results in the inset of
Fig. 3 where we plot R1(t ) vs t for n = 1, 2, 3, and 4 (n = ∞
will correspond to a δ-function potential). Conspicuously, the
crossover from the potential-dependent regime to the univer-
sal fast-mode regime is seen for all the values of n. However,
the regime is indeed short-lived, following the experiments
[58,75,76]. It is worthwhile to mention here that the growth
exponent for R1(t ) is nearly the same (i.e., R1(t ) ∼ tα with
α ≈ 3/2) for all n values in the fast-mode regime. Therefore,
we conclude that the fast-mode kinetics also follows a uni-
versal power-law growth with an exponent 3/2, in addition
to the diffusive (α ≈ 1/3) and viscous hydrodynamic (α ≈ 1)
regimes. In contrast, we find different power-law behaviors
for early time (before the fast mode triggers) as we change n.
Consequently, we label this as the potential-dependent regime.
We study this regime in the Supplemental Material (SM),
Sec. V [82].

We now recall Tanaka’s argument [76,78,87] for the ob-
served large exponent α ≈ 3/2. Due to the pressure gradient
between the interconnected bicontinuous tubes of the wetting
component and the surface, a flux estimated as J ∼ (γ /η)a2 is
developed. Here, γ , η, and a (see SM Fig. S2) denote surface
tension, viscosity, and tube radius, respectively. In the case
of strong wettability, the tubes are hydrodynamically flushed
towards the surface, and the coating dynamics is observed
via lateral spreading of a droplet near the surface. The on-
set of the fast mode occurs when the tubes get connected
with the surface droplets. This regime ends when the sur-
face droplets merge to form a complete coating or wetting
layer. The radius of the droplet Ls(t ) (see SM Fig. S2) in
3D grows as dL2

s /dt ∼ (γ /η)a2. Now, applying Siggia’s law

FIG. 4. The wetting-layer thickness R1(t ) with time t on a log-
log scale for a short-ranged surface field V (z) = −εa exp(−z/z0).
The parameter z0 is set to 0.5, and the field strengths are εa = 0.6
(green square) and εa = 1.2 (red circle). It is significant to see the fast
mode in this case too. At late times, the plot exhibits the diffusive and
hydrodynamic regimes, in succession. Inset: Early time behavior of
R1(t ) illustrating a logarithmic growth. The straight line has a slope
z0 ln(εat/z2

0 ).

a(t ) ∼(γ /η)t the growth of the wetting-layer thickness is
obtained as R1(t ) ∼ Ls(t ) ∼ [(γ /η) t]3/2. This agrees with the
earlier experimental observations [58–60] and our present MD
simulations. The scaling behavior of the crossover time (t1)
from the potential-dependent regime [R1 ∼ (εa t )1/(n+2), see
SM] to the fast mode regime can be estimated as

t1 ∼ ε2/(3n+4)
a

(
η

γ

)(3n+6)/(3n+4)

. (3)

The crossover from the fast mode to diffusive growth [R1 ∼
(γ t )1/3, see SM] occurs at t2 ∼ η9/7/γ .

Further, as n increases (see inset of Fig. 3), the decrease
in the range of V (z) results in a reduced surface effect on
the wetting-layer growth. This increases the crossover time
to the fast mode. Nevertheless, the values of R1(t ) ∼ 0.75 σ

at the onset of fast mode and R1(t ) ∼ 1.25 σ at the onset of
diffusion-driven growth do not change with varying n and
remain almost fixed. We further make an important observa-
tion for the accelerated growth of R1(t ) ∼ 0.75 σ to R1(t ) ∼
1.25 σ implying the completion of first wetting-layer structure
with an average thickness ∼σ . This completion of the first
wetting layer (coating dynamics) is assisted by the domains
near the surface via the hydrodynamic pumping mechanism
(see Fig. S2 and movie SM2 [82]) [78].

We also simulated the present system with an exponential
wall potential V (z′) = −εaexp(−z′/z0) [see Eq. (2)] for the
surface at z = 0. Figure 4 shows the evolution of R1(t ) for two
different surface field strengths. The early-time regime is short
but our MD data is consistent with logarithmic growth R1(t ) ∼
z0 ln(εat/z2

0 ), as predicted earlier [24]. This is highlighted in
the inset of Fig. 4 on a log-linear scale. The main figure plots
R1 vs t on a log-log scale, which shows the late-time behav-
ior analogous to the long-ranged case. The wetting kinetics
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exhibits the usual power-law growth (R1(t ) ∼ tα). The univer-
sal diffusive regime (α = 1/3) is preceded by a transient faster
growth (α ≈ 3/2) associated with the fast-mode kinetics. We
conclude that the fast-mode kinetics is universal in nature.
Additionally, at very late times, we observe the well-known
viscous hydrodynamic regime with an exponent α ≈ 1. To the
best of our understanding, the results (for both short-ranged
and long-ranged interactions) presented in this work are the
first atomistic simulations which access all the growth regimes
of wetting kinetics.

Final remarks. In conclusion, we have performed extensive
molecular dynamics (MD) simulations of surface-directed
spinodal decomposition (SDSD) of symmetric fluid mix-
tures at a wetting surface. The symmetry-breaking surface
potentials studied here are long-ranged (power-law) and short-
ranged (exponential) potentials. We present results for various
growth regimes of wetting-layer thickness R1(t ) extracted
from the SDSD depth profiles. Each segment of the time
dependence of R1(t ) reflects a different transport mechanism
inaction responsible for different growth laws. The prime
focus of this work is to settle any controversy regarding
the existence of a universal fast-mode. In our simulations,
this is unambiguously seen as a crossover regime between
the potential-dependent growth and the universal diffusive
dynamics. Our evolution snapshots and movies show these
fast mode results from the rapid growth of droplets preced-

ing the formation of the wetting layer. This is enabled by
the emergence of bulk fluid tubes, which rapidly drain ma-
terial into the surface droplets. The corresponding growth
exponent is ≈3/2. This is consistent with the experimen-
tal works on binary polymer blends, a fluid mixture of
guaiacol and glycerol-water, etc., by Wiltzius, Cumming,
and others [58–60] and theoretical predictions by Tanaka
[78,86,87]. Regardless of the surface-field form, its range,
and strength, we find a fast mode with the universal growth
exponent ≈3/2. For the long-ranged surface potential, V (z) ∼
z−n, R1(t ) displays a power-law dependence with R1(t ) ∼
t1/(n+2) at very early times, supporting the phenomenological
theory [65]. Finally, in the case of short-ranged potential,
R1(t ) shows a logarithmic growth followed by fast-mode,
diffusive, and hydrodynamic regime. To the best of our under-
standing, the results (for both short-ranged and long-ranged
interactions) presented in this work are the first atomistic
simulations that access all the growth regimes of wetting
kinetics.
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