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Fitting an active Brownian particle’s mean-squared displacement
with improved parameter estimation
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The active Brownian particle (ABP) model is widely used to describe the dynamics of active matter systems,
such as Janus microswimmers. In particular, the analytical expression for an ABP’s mean-squared displacement
(MSD) is useful as it provides a means to describe the essential physics of a self-propelled, spherical Brownian
particle. However, the truncated or “short-time” form of the MSD equation is typically fitted, which can lead
to significant problems in parameter estimation. Furthermore, heteroscedasticity and the often statistically
dependent observations of an ABP’s MSD lead to a situation where standard ordinary least-squares regression
leads to biased estimates and unreliable confidence intervals. Instead, we propose here to revert to always fitting
the full expression of an ABP’s MSD at short timescales, using bootstrapping to construct confidence intervals
of the fitted parameters. Additionally, after comparison between different fitting strategies, we propose to extract
the physical parameters of an ABP using its mean logarithmic squared displacement. These steps improve the
estimation of an ABP’s physical properties and provide more reliable confidence intervals, which are critical
in the context of a growing interest in the interactions of microswimmers with confining boundaries and the
influence on their motion.
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Overdamped active Brownian motion is often invoked to
describe the physics of experimental realizations of active
matter [1,2]. The “active Brownian particle’s” (ABP) motion
is described using Langevin dynamics in the overdamped
(inertia-free) regime and consists of an object simultaneously
subjected to thermal fluctuations and directed self-propulsion.
In this model, the particle moves with a constant velocity
V0 in the direction of its internal orientation axis û, which
fluctuates over time due to rotational Brownian motion [3].
Particles therefore travel ballistically over times shorter than
the characteristic timescale for rotational diffusion (persistent
motion), displaying diffusive motion (with a larger, effective
diffusion coefficient) at longer times, as their direction of
motion is randomized [4]. This model provides meaningful
statistical quantities such as an analytical description for the
mean-squared displacement (MSD) of spherical microswim-
mers, which often shows good agreement with experimental
findings [5]. Most analyses in the experimental literature on
microswimmers are in fact based on parameters estimated
by fitting the sample MSD to the ABP model, extracting
particle velocity V0, translational diffusivity DT , and rotational
diffusivity DR. In two spatial dimensions, the ABP model
prescribes the following expression for the MSD 〈�r2(τ )〉 as
a function of lag time τ [1,6]:

〈�r2(τ )〉 = 4DT τ + 2V 2
0

D2
R

(
DRτ − 1 + e−DRτ

)
. (1)
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The standard approach to parameter estimation from a defined
model is to use ordinary least-squares (OLS) regression [7,8]
following

θ̂ = argmin
θ

P∑
i=1

(Yi − fi,θ )2, (2)

where θ̂ is the vector of estimated parameters, Yi are indi-
vidual observations from the data set P (here given by the
sample’s MSD after a given lag time τ ), and fi,θ corresponds
to the values of the fitted model [here given by the theo-
retical prediction; see Eq. (1)]. argminθ finds the vector θ,
which minimizes the objective function. In practice, there are
two main strategies to determine the MSD of a population
of particles from their coordinates: one can perform either
an ensemble average or a time average over the displace-
ments. Ensemble averaging over many particles preserves the
statistical independence of the observations and efficiently
averages out spurious noise [9], but collecting sufficient statis-
tics in the dilute limit where Eq. (1) holds is experimentally
challenging.

Therefore, one often resorts to the calculation of the MSD
via time averaging the displacements of a few ABP tra-
jectories followed over time. Moreover, time averaging is
advantageous in that it describes the physics of individual
microswimmers, whereas studying the EMSD removes infor-
mation about the heterogeneities present within the system,
such as particles displaying atypical motion or changing
dynamics within different spatial domains [10]. The time-
averaged MSD (TAMSD) of a single particle at a lag time
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n�τ is calculated as

TAMSD |n�τ=
M−n∑
m=1

{r[(n + m)�τ ] − r(m�τ )}2

M − n
, (3)

where r[(n + m)�τ ] is the particle position at lag time n�τ

from its previous (reference) position r(m�τ ), for a trajectory
of length M. By collecting sufficiently long trajectories, there
is the implicit assumption that statistically robust averaging is
performed, which is required for accurate parameter estima-
tion with OLS.

However, there are several key assumptions that must be
satisfied when using least-squares regression: of these, two
can be violated when evaluating the MSD of an ABP. The ro-
tational and time symmetry of a theoretical ABP ensures that
consecutive nonoverlapping squared displacements are statis-
tically independent, but nonidealities in experimental systems
can create hidden correlations, thereby violating the as-
sumption of statistically independent measurements [11,12].
Furthermore, to increase the statistics, one typically evaluates
overlapping squared displacements when investigating ABPs,
which are in fact correlated (see below for further discussion).
This impacts the reliability of the estimated confidence in-
tervals, which can become unrealistically narrow. In the case
of statistically dependent measurements, confidence intervals
for estimated parameters can nevertheless be constructed by
fitting the model to bootstrapped datasets from experimental
values [11,13].

The second violation is the assumption of homoscedas-
ticity in the error terms of the MSD. There are two sources
for heteroscedasticity (nonconstant variance) within the error
terms of the MSD with lag time. First, as we show later, the
theoretical population variance of an ABP’s MSD increases
with lag time. Furthermore, the number of data points used
to estimate the TAMSD decreases with increasing lag time
when evaluating single trajectories, further amplifying the
sampling error. These factors, coupled with the presence of
localization errors at shorter timescales [14], create a situation
where there is an optimal lag time over which the TAMSD of a
particle should be evaluated to obtain proper fits of its physical
properties [15,16].

To this end, weighted least-squares (WLS) regression is
often implemented in order to reduce the dependence of the
fit on data points with greater variance, following

θ̂ = argmin
θ

P∑
i=1

wi,θ (Yi − fi,θ )2, (4)

where θ̂ is again the vector of estimated parameters, Yi are
the P data observations, wi,θ are the weights, and fi,θ is the
model fitted. Here argminθ now finds the vector θ, which
minimizes the weighted objective function. The objective
function can be weighted by the inverse of the analytical
expression of the population variance (here the variance of
the squared displacements) as an estimation of the sample
error of the mean [15,17]. The variance of the mean of
a random variable X , i.e., E[X ] = ∑N

i=1 Xi/N , can be ob-
tained using the variance sum law for uncorrelated variables

as

Var[E[X ]] = Var

[
N∑

i=1

Xi

N

]
= 1

N2

N∑
i=1

Var[Xi] = σ 2

N
, (5)

where N is the sample size, and σ 2 is the variance of the ran-
dom variable X . Thus, from Eq. (5), we obtain the following
expression for the weights wi,θ :

wi,θ = 1

Var[E[X ]]
= Ni

σ 2
i,θ

, (6)

where Ni is the number of statistically independent data points
contributing to each observation i, and σ 2

i,θ is the population
variance of each observation i, in terms of the fitted values θ.

Nonetheless, the standard approach in the literature is
parameter estimation from TAMSDs using unweighted least-
squares regression [18]. Additionally, perhaps the most
widespread expression that is fitted is the so-called “short-
time” MSD of ABPs [19] (7). First proposed by Howse
et al. for the analysis of Janus catalytic microswimmers [1],
the short-time MSD equation approximates the full MSD
[Eq. (1)] at an arbitrarily short time lag, typically defined as
10% of the characteristic persistence or rotational diffusion
time τR = 1/DR, using a Maclaurin series expansion assuming
τ/τR → 0 [6]

〈�r2(τ )〉 ∼ 4DT τ + V 2
0 τ 2. (7)

This simplification provides reasonable fits to the experi-
mental TAMSD of single particles under certain conditions,
particularly in relation to the extraction of microswimmer
velocities [1,18,20–23]. However, care should be taken when
fitting this truncated form of the MSD to short experimental
trajectories, as it can lead to the spurious detection of velocity
in the presence of experimental artifacts [24]. The problems
associated with the standard fitting of the truncated form
of the MSD were comprehensively demonstrated by Mestre
et al. [8]. Interestingly, their proposed solution was to expand
the Maclaurin series to higher polynomial orders. Nonethe-
less, we are interested in evaluating the fitting of the full
ABP’s MSD to the “short-time” regime, as the approximation
is simply that: an approximation of a theoretical model.

In this work, we propose multiple approaches to improve
the fitting of the full ABP MSD model. We verify the robust-
ness of our approach by comparing it against the “standard”
approach of performing unweighted OLS regression on the
truncated form of an ABP’s MSD at short lag times. We begin
by considering the case where DT and DR are coupled by the
Einstein relation DT = d2

pDR/3 to avoid the introduction of
additional fitting parameters and thus allow a fair comparison
between the standard approach and our proposed alternatives.
In the final section of this study, we then treat DR as an ad-
ditional free fitting parameter, corresponding to experimental
situations where DT and DR are often decoupled. We eval-
uate the different fitting procedures against simulated ABP
trajectories using input values representative of experiments.
Specifically, in the coupled case, our ABPs are simulated
via Langevin dynamics [25], with an active velocity of V0 =
5μm s−1 and diffusivities DT = 0.2 μm2 s−1 and DR = 0.15
rad2 s−1. The simulations are numerically solved at 1 ms
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FIG. 1. Parameter estimation from fitting the truncated (blue)
and full MSD (red) expression to simulated data (estimates V̂0, D̂T

respectively normalized to the simulation inputs V0, DT ). The same
trajectory is fitted to increasing maximal lag times τmax , up to the
persistence time of an ABP (τR). We obtain 95% confidence intervals
by bootstrapping. Inset (right): Fits of DT for short τmax , indicating
the rapid deviation from the input simulation value when using the
truncated expression.

increments and sampled at 20 frames per second (fps) for 60 s
to replicate experimental videos.

Properly applied, there are several advantages to the stan-
dard approach of fitting the TAMSD at short timescales.
Generally, the scatter of the sample MSD will increase with
lag time. This increase not only is caused by the decrease in
data points for a trajectory of a given length, but also is due to
the growing correlation between sequential observations [see
Eq. (3)]. Therefore, the fitting of the MSD to unnecessarily
long lag times is generally discouraged [17]. By evaluating
the TAMSD over a time period during which the variance
does not grow significantly, the effects of heteroscedasticity
on parameter estimation are reduced [15]. Nonetheless, the
term “short lag times,” where the simplified expression holds,
is flawed since it is often arbitrarily defined and used in the
literature. Furthermore, by eliminating the opportunity to fit
DR, the truncated form of Eq. (7) removes characteristic infor-
mation on the physics of ABPs. Finally, for smaller particles,
the characteristic persistence time may be so short that only
a few data points can be used to fit the expression, unless ex-
periments are performed at very high frame rates, introducing
measurement error and reducing the accuracy of parameter
estimation [14].

There are, in fact, further model-specific problems associ-
ated with fitting the truncated form of the MSD. As seen in
Eq. (2), OLS regression is weighted towards larger values,
i.e., MSD values at longer lag times. If left untreated, the
fitting of the MSD will therefore be weighted towards the
“long-time diffusive” regime of the ABP [4]. Moreover, due to
the monotonically growing variance in the error terms of the
MSD (discussed below in more detail), this procedure assigns
greater importance to more uncertain values, leading to poorer
estimates. The effects of these considerations are illustrated
by comparing the estimates for DT and V0 obtained by fitting
the truncated and full form of the MSD equation to simulated
trajectories (see Fig. 1).

The problems of using Eq. (7) become quickly apparent
as the lag times evaluated increase beyond small fractions of
the characteristic relaxation time τR. As the estimated velocity

decreases, the fitted DT value rapidly increases to over an
order of magnitude greater than the simulation input (see
Fig. 1, blue). The inverse relationship between V0 and DT

can be understood by their respective contributions to the
overall MSD of an ABP. The increasingly diffusive nature of
an ABP’s motion with time [4] results in an overestimated DT

at the expense of a reduction in the fitted V0. This problem
is caused by the absence of the DR-related terms in Eq. (7),
which would otherwise result in the crossover to a long-time
diffusive regime (see Eq. (1)). In short, due to the system-
atic errors associated with using Eq. (7) we strongly advise
against its use when fitting the MSD of ABPs. To compare the
accuracy of our different fitting methods, we use the median
symmetric accuracy metric as described in [26]. By evaluating
the point estimates over the range of lag times studied, we
obtain errors of 14.5% for V̂0 and 799.2% for D̂T respectively
when using the truncated expression for an ABP’s MSD.

In contrast, the bootstrapped confidence intervals of the
estimated parameters using Eq. (1) more often include the true
simulation input values for different maximal lag times τmax

and also converge to reasonable values as the lag time evalu-
ated approaches the characteristic rotational relaxation time τR

(see Fig. 1, red). Fitting Eq. (1) also carries the advantage of
not assuming a limited short-time regime, enabling the fitting
to longer lag times and thus providing more data points for
better parameter estimation. Errors on the model parameters
estimated are improved to 0.6% and 12.1% for V̂0 and D̂T ,
respectively. We again emphasize that we do not fit DR as
a free parameter here but instead assume that the Einstein
relation DT = d2

pDR/3 holds and fit Eq. (1) accordingly. How-
ever, decoupling DT and DR better approximates experimental
situations where the presence of confining boundaries [27],
activity [28–30], or external fields [31] can have a different
effect on rotation and translation respectively.

Despite the significant improvement in estimating the
physical parameters of an ABP by using the full form of its
MSD equation, this operation still does not address underlying
statistical issues such as heteroscedasticity of the data. The
presence of heteroscedasticity can be clearly observed in the
residuals of the fitted ABP model (see Fig. 2, top row, red).
One of the most frequently used heuristic approach to address
heteroscedasticity is to log transform the data and fit the
model’s log-transformed analog. Log transforms work partic-
ularly well for right skew, constantly positive, and increasing
data, such as the case for the ABP’s MSD. Studying the “mean
logarithmic squared displacement” (MLSD) has previously
been suggested to improve the estimation of the distribution
of anomalous diffusion coefficients in a population of hetero-
geneous particles [10].

By fitting the log-transformed (cyan) data, we observe a
clear reduction of the heteroscedasticity of the residuals. This
provides improved estimated fits and confidence intervals ob-
tained from bootstrapping, and we obtain percentage errors of
the point estimates of 0.5% and 2.3% for V̂0 and D̂T respec-
tively. In Fig. 2 (bottom row), we highlight the improvement
in fitting after this simple preprocessing step, evaluating the
same trajectory as in Fig. 1 but now with the log-transformed,
full MSD ABP fit included as a comparison to the full fit
without log transformation. We see both a reduction in the
width of the confidence intervals and a smaller difference
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FIG. 2. Top row: Plots of the residuals from the mean squared
displacements based on the point estimates in the bottom row for
τmax/τR = 1 as a function of lag time τ . Left (red): Residuals of
Eq. (1) fitted to unprocessed data (MSD). Right (cyan): Residuals
of log[Eq. (1)] fitted to log-transformed data (MLSD). The extent
of heteroscedasticity is clearly reduced, as the variance remains
relatively constant with τ after log transformation. Bottom row: Pa-
rameter estimation without (red) and with (cyan) log transformation
of the data and the model.

between the point estimate and the input simulation values.
In particular, the estimates for DT are notably improved.

As a next step, we turn to WLS regression as a tool for
determining the parameters of an ABP. As previously al-
luded to, within the WLS regression approach, one typically
relates the weights to the variance of the expectation value
[see Eq. (6)]. Under the assumption that all observations are
statistically independent, the variance of the expectation value
can be obtained from the population variance itself, using the
variance sum law as shown in Eq. (5). Where applicable, we
will follow this approach and specify the weights in terms
of the theoretical result for the variance of the mean-squared
displacement [5,32,33]

σ 2(τ ) = 〈�r4(τ )〉 − 〈�r2(τ )〉2

= 16D2
T τ 2 + 16DT τ

V 2
0

D2
R

(
DRτ − 1 + e−DRτ

)

+ V 4
0

D4
R

(
4D2

Rτ 2 − 22DRτ + 79

2
− 64

3
DRτe−DRτ

−320

9
e−DRτ − 4e−2DRτ + 1

18
e−4DRτ

)
. (8)

We note that this result is an exact representation of the
variance of the mean only if nonoverlapping squared dis-
placements are considered. For overlapping displacements, a
proper analysis requires additional covariance contributions
in Eq. (5), describing the correlation between subsequent dis-
placements. In that case, we will still employ Eq. (8), however,
as an approximation, and without the contributing term of

FIG. 3. (a) Definition of overlapping and nonoverlapping dis-
placements from the simulated trajectory shown in (b). (c) Number of
displacements as a function of lag time when overlapping (red) and
nonoverlapping (black) displacements are evaluated. (d) Normalized
variance of the MSD as a function of τ (σ1 is the variance at the
shortest lag time τ1 = 0.05 s), as derived by Eq. (8). (e) Correspond-
ing normalized weight at time τ (w1 is the weight at τ1 = 0.05 s)
extracted according to Eq. (4) as a function of τ for the TAMSD of a
single particle.

the number of observations. Equipped with this expression,
we can now investigate the presence of heteroscedasticity
in an ABP’s MSD and attempt to minimize its effects on
parameter estimation using WLS regression. As discussed
before, we stress that in an experimental context, there might
be further hidden correlations between square displacements
requiring special consideration, whose evaluation lies beyond
the aims of this work. As alluded to above, the TAMSD
of particles can be evaluated with one of two different ap-
proaches: by determining the overlapping or nonoverlapping
particle displacements [see Figs. 3(a) and 3(b)]. Evaluating
nonoverlapping squared displacements reduces the correlation
between subsequent observations of motion in experimental
scenarios and removes it entirely within the framework of the
ABP model. However, in this case, the decay in the num-
ber of displacements is hyperbolic, decreasing much more
rapidly than when overlapping displacements are evaluated
[see Fig. 3(c)]. Furthermore, using only nonoverlapping dis-
placements leads to a different sampling of points along the
trajectory depending on how many prime factors are present
in the number of the time step. These factors lead to a situation
where using overlapping displacements typically improves
fitting performance and is generally preferable [17].

We now discuss the potential benefits of applying the
weighting coefficient to minimize the effects of the large and
high-variance long lag time values in the objective function
[see Eq. (4)]. From Eq. (8), we find that the variance increases
with time [see Fig. 3(d)], and combined with the decay in
the number of observations [see Fig. 3(c)], we obtain with
Eq. (5) a weighting vector that rapidly decays with time [see
Fig. 3(e)]. This in turn demonstrates that the low numbers
of observations at longer timescales, which inherently have
a larger variance due to the nature of the TAMSD, will have a
significantly reduced influence on parameter estimation.
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FIG. 4. Top row: Parameter estimation using WLS regression
on nonoverlapping (green) and overlapping (purple) displacements.
Bottom row: Parameter estimation on overlapping displacements
using WLS regression (purple) and the MLSD (cyan).

We now fit the TAMSD of a single particle using WLS
regression, beginning with the analysis of nonoverlapping dis-
placements (see Fig. 4, top row, green). We obtain percentage
errors of 2.0% and 5.9% for V̂0 and D̂T , respectively, for
the point estimates. We note a significant instability in the
point estimates and confidence intervals, particularly for D̂T ,
in direct comparison to the fits obtained with the MLSD.
Therefore, we also evaluate the performance of WLS regres-
sion on overlapping displacements, noting that the underlying
assumption of statistically independent observations no longer
holds (see Fig. 4, top row, purple). We again highlight here
that the variance sum law no longer holds, and therefore we
weight the objective function for overlapping displacements
using only Eq. (8). Comparing the overlapping to the nonover-
lapping case, we find that the resulting confidence intervals
and point estimates for WLS regression are much narrower
and less subject to fluctuations. Under these conditions, we
observe percentage errors of 0.7% and 0.5% for V̂0 and D̂T ,
respectively. We expect this discrepancy arises, in large part,
from the statistical issues associated with evaluating nonover-
lapping displacements, as described in [17]. Motivated by the
improved parameter estimation, we continue to evaluate WLS
regression using overlapping displacements for the rest of this
work.

We now compare the performance of the MLSD and WLS
regression for parameter estimation from overlapping dis-
placements (see Fig. 4, bottom row). Although the resulting
confidence intervals are broader for the WLS regression than
for the MLSD, we note that in the former case the estimate for
DT is more stable, and the true simulation input parameters are
included for all values of τmax. We conclude that for a two-
parameter fit, where DT = d2

pDR/3, the estimates obtained
from WLS regression and OLS regression of the MLSD are
similar.

FIG. 5. Parameter estimation of an ABP’s MSD where DT and
DR are uncoupled, using WLS regression (purple), MLSD (cyan),
and the third-order truncation of the MSD equation (orange). Top
row: Comparison of the three fitting approaches. The truncated ex-
pression clearly performs worse, particularly at larger τmax (see the
estimates for DT and DR). Bottom row: Only the MLSD and WLS
regression are represented for better visualization.

So far, we have considered only particles satisfying the
ideal condition where DT and DR are related by the Einstein
relationship for freely diffusing spherical particles. However,
in many situations, e.g., when in proximity with a solid wall,
DT and DR are likely to be decoupled [2,27–30], and it
is therefore important, in most experimental realizations of
ABPs, to fit these parameters separately. We account for these
circumstances by modifying the value of DT , while keeping
the same value of DR in our simulations. In particular, we
modify the translational diffusivity by applying Faxen’s cor-
rection factor to DT , as if to mimic the presence of a solid wall
250 nm away from the particle surface [34]. This correction
approximately reduces the theoretical DT value we initially
used by half.

In Fig. 5 we compare the performance of the MLSD and
WLS regression approaches when estimating the parameters
V0, DT , and DR (blue and purple, respectively). For the MLSD,
we determine percentage errors of 1.5%, 7.8%, and 7.9% for
V̂0, D̂T , and D̂R, respectively, for the point estimates across
all the lag times evaluated, while for the WLS regression we
obtain corresponding errors of 1.4%, 8.7%, and 5.9%. We also
study the truncated MSD equation expanded to third order,
as outlined in [8] (Fig. 5, top row, orange). This expression
is obtained by evaluating the Maclaurin series expansion of
Eq. (1) to the third order

〈�r2(τ )〉 ∼ 4DT τ + V 2
0 τ 2 − V 2

0

3τR
τ 3. (9)

We find that as before, the truncated form of the full MSD
equation is not able to satisfactorily capture the input simu-
lation parameters, an effect which is particularly noticeable
for DT as τmax increases, as previously observed in Fig. 1. We
determine percentage errors of 1.6%, 32.2%, and 24.4% for
V̂0, D̂T , and D̂R respectively. We note the use of the median
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function in the median symmetric accuracy metric [26], and
the effect this has on the measured accuracy relative to the
instability observed in Fig. 5 (top row, orange).

When evaluating overlapping displacements using WLS
regression and the MLSD, we note a remarkable overlap in
both the point estimates and confidence intervals (see Fig. 5,
bottom row). This observation indicates that both the log
transformation and weighting of the data have a similar ef-
fect on addressing the heteroscedasticity present in an ABP’s
MSD. In both instances, we also note the instability of the
short-time estimates for DR, which is unsurprising given the
independence of the MSD from DR at short lag times [see
Eq. (7)].

In conclusion, the ABP model provides a useful framework
to study the motion of microswimmers and extract meaningful
physical properties from mean quantities. However, “blind”
fitting of MSDs can affect results, as hidden correlations
may arise in experimental systems. Therefore, we recommend
constructing confidence intervals by bootstrapping in almost
all experimental situations. We additionally always advise
against the use of the truncated form of the MSD equation.
Further steps beyond fitting to short lag times should also
be taken to treat the heteroscedasticity of an ABP’s MSD. In
particular, we find that log transforming the data before fitting
the MLSD equation outperforms standard approaches used
in literature, and provides similar estimates as WLS regres-
sion using the theoretical variance of an ABP’s MSD. With
this approach, overlapping displacements can be evaluated,

significantly increasing the amount of data available. Further-
more, the simplicity of fitting log-transformed data to shorter
lag times should assist in its widespread uptake. We never-
theless stress that we have studied simulated data of an ideal,
noninteracting ABP model, neglecting, e.g., the presence of
torque in the Langevin force balance [28,35], a situation that
is often observed in experiments due to nonsymmetric surface
modification [36] or shape [37], which can significantly affect
the fitting of model parameters. Signatures for an angular
propulsion velocity should therefore be additionally investi-
gated when analyzing experimental trajectories, and its effect
duly included in the fits. We have also not treated the ef-
fect of ABP speed on the coupling between DT and V0 [38]
and experimental errors from static and dynamic localization
errors [10,15,16,39]. These are nevertheless critical factors
which should be considered when designing experiments and
analyzing data.
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