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We study synchronization in networks of delay-coupled electronic oscillators, so-called phase-locked loops
(PLLs). Using a phase-model description, we study the collective dynamics of mutually coupled PLLs and
report the phenomenon of heterogeneity-induced synchronization. This phenomenon refers to the observation
that heterogeneity in the system’s parameters can induce synchronization by stabilizing the states which are
unstable without such heterogeneity. In systems where component heterogeneity can be tuned and controlled,
we show how the complex collective self-organized dynamics can be guided towards synchronized states with
specific operational frequencies and phase relations. This is of importance for the technical applicability of self-
organized dynamics. In electrical engineering, for example, where components can be strongly heterogeneous,
our theoretical framework can inform the design process for networks of spatially distributed PLLs. The results
presented here are also useful in understanding the collective dynamics in ensembles of phase oscillators with
time-delayed interactions, inertia, and heterogeneity.
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The collective dynamics of ensembles of coupled-
oscillators has been explored extensively due to their numer-
ous applications [1–4]. In any realistic situation, oscillators
in such ensembles and their connections are not perfectly
identical either due to natural diversity, by design, or as a re-
sult of engineering limitations. Examples include system-level
variations arising in electronic devices due to unavoidable
irregularities in the production processes [5–7] or intrinsic
biophysical diversity leading to heterogeneous cellular oscil-
lators in a tissue [8–10]. Such heterogeneities are frequently
encountered in practice and can have significant effects on
the dynamics of a system. It is therefore crucial to ask how
the collective dynamics of oscillator ensembles is affected by
such heterogeneities.

In this work, we investigate the effects of heterogeneity on
a system of mutually delay-coupled electronic oscillators, so-
called phase-locked loops (PLLs). Arrays of such electronic
oscillators are used in, e.g., mobile and radio communications,
navigation systems, and antenna arrays. In such systems, ef-
ficient and concerted (synchronized) operations require an
accurate and precise timing, usually realized by hierarchi-
cal entrainment of electronic clocks through a dedicated and
precise reference oscillator. This hierarchical approach to syn-
chronization is widely used in electronic devices, though it has
its limitations, e.g., due to the accumulation of phase errors
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and increasingly difficult design constraints such as system
size increases [11,12]. Studies have suggested self-organized
synchronization based on mutual interactions in large spatially
distributed electronic systems as an alternative to address
these issues [13–19]. However, for both approaches, main-
taining robust synchronization and having effective control
over the resulting dynamics remain the key objectives for
the calibration and performance optimization of such systems
[19].

One of the practical difficulties in achieving these op-
erational requirements in real systems arises due to their
heterogeneous nature. Here we address how such het-
erogeneities affect the synchronization properties of such
systems. Apart from component heterogeneity, the complexity
introduced by time-delayed coupling, noise, and environmen-
tal effects (PVT variations) pose additional challenges to the
reliable operation of these devices [20–23]. Time delay, for
example, has significant effects on the collective dynamics,
especially when the systems are operating at high frequencies
and/or involved in long-range signal transmissions [24–27].
In fact, such systems are often designed to minimize these
undesirable but also unavoidable factors, e.g., time delays
and parameter heterogeneities, in order to reduce their ef-
fects on the collective dynamics [7,19,28]. Here we focus on
heterogeneities in the system—especially those related to the
processing, sensitivity, and signaling delays—which play vital
role for the collective behavior of mutually coupled PLLs.

In this rapid communication, we demonstrate that if hetero-
geneity can be controlled, it can actually be helpful to achieve
a required collective response in mutually delay-coupled os-
cillators. Specifically, we tune parameter heterogeneity to
induce robust synchronization in such systems, and we report
the occurrence of the phenomenon of heterogeneity-induced
synchronization. Further, it is shown that by adjusting pa-
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FIG. 1. Schematic of a phase-locked loop. The phase detector,
the loop filter, and the voltage controlled oscillator are denoted by
PD, LF, and VCO, respectively.

rameter heterogeneity, one can fulfill key requirements for
the efficient operations of such devices, i.e., the ability to
access a specific synchronized state with required operational
frequency and phase relation. For this study, we consider a
system of mutually delay-coupled PLLs [29,30]. These os-
cillators consist of three main components: a phase-detector
(PD) that receives external input and internal feedback signals,
a loop-filter (LF) to rectify (filter) these signals, and a voltage
controlled oscillator (VCO) as an output unit; see Fig. 1. The
dynamics of mutually delay-coupled PLLs is determined by
the instantaneous VCO frequency,

φ̇k (t ) = ωk + Kk

nk

∑
l

ckl

∫ ∞

0
dupk (u)X (φl , φk ),

with X (φl , φk ) = h
(
φl (t − u − τkl ) − φk

(
t − u − τ

f
k

))
. (1)

Here ωk denotes the intrinsic frequency of the kth PLL, Kk

represents its coupling strength, nk the number of input sig-
nals, and ckl reflects the connection topology. The convolution
of pk (u) and X (φl , φk ) represents the filtering process, where
X (φl , φk ) is the phase difference term from a phase detec-
tor signal and pk (u) the impulse response function of the
loop filter. The LF is a buffered chain of ak RC low-pass
filters characterized by its scale parameter bk , where the cutoff
frequency is given by ωc

k = 1/(akbk ). The filter’s impulse
response function pk (u) is given by the gamma distribution

pk (u) = u(ak−1) e−u/bk

bak
k �(ak )

with
∫ ∞

0
dupk (u) = 1. (2)

The diffusive term X (φl , φk ) = h[φl (t − u − τkl ) − φk (t −
u − τ

f
k )], where τkl corresponds to the time delay in the signal

transmitted from lth to kth PLL and τ
f

k the delay in the
PLL’s feedback signal. The coupling function h(·) depends
on the nature of the signals—for digital PLLs, the PD is an
XOR gate and h(·) is a triangular function �(·) [31], whereas
in analog PLLs, multipliers are used as a PD and h(·) is a
cosine function. This simple model allows us to study the ef-
fects of transmission and feedback time delays and parameter
heterogeneity on the collective dynamics of phase-oscillator
ensembles. It also incorporates inertial effects in the dynam-
ics as larger integration times (large bk , small ωc

k) imply a
more inert response of such systems [32]. Furthermore, note
that the convolution can be interpreted as a distributed delay,
with pk (u) being the delay distribution [26,32,33]. This phase
model is independent of the details of the underlying circuitry
and can be used to study the collective dynamics of ensembles
of oscillators with time-delayed coupling (including discrete
and distributed), inertia, and heterogeneity.

Our theoretical framework allows to precisely predict how
the system parameters have to be tuned to achieve robust

synchronization with specific synchronization frequency and
phase configuration. In the following, we discuss the gen-
eral case of a network of N oscillators, and then present
the analytically tractable case of two delay-coupled PLLs.
The conclusions drawn from the tractable case are helpful
to understand the behavior of N-coupled oscillators. For het-
erogeneous systems with larger N , even for N = 3, it is not
straightforward to obtain an explicit analytic form of the solu-
tions. However, a simplified solvable set of equations can be
obtained by inserting the general ansatz for phase-locked so-
lutions, i.e., φk = �t + βk , k = 1, 2, . . . , N into equations of
motion (1), which gives

� = ω1 + K1

n1
S1 = ω2 + K2

n2
S2 = · · · = ωN + KN

nN
SN ,

where Sk =
N∑

l=1

ckl h[−�τkl − βkl ]. (3)

In this equation, it is assumed that the delay in the
feedback signal is negligible, i.e., τ f → 0. The phase dif-
ferences between the kth and lth oscillator are represented
by βkl = (βk − βl ). Assuming β1 = 0 as a reference angle,
these N transcendental equations can be solved numerically
to obtain synchronized solutions characterized by N values:
(�,β2, . . . , βN ).

Using this procedure, we now obtain the analytic form of
the solutions for N = 2 oscillators as follows. For this case,
the equations of motion are given by

φ̇1,2(t ) = ω1,2 + K1,2

∫ ∞

0
dup1,2(u)

× h[φ2,1(t − u − τ12,21) − φ1,2(t − u)]. (4)

This simple case can be used to illustrate the effects of
heterogeneous parameters on the collective behavior of the
systems with time-delayed coupling. The synchronized solu-
tions of this system are characterized by a global frequency
� and constant phase difference β, i.e., φ1(t ) = �t , φ2(t ) =
�t + β. Therefore, from Eq. (4) we find

� = ω1 + K1h(−�τ12 + β ) = ω2 + K2h(−�τ21 − β ). (5)

When h(·) ≡ �(·) (digital signals) [31], one can solve these
transcendental equation numerically to find synchronized so-
lutions. For analog signals, h(·) is a cosine function, and
the analytical expressions for synchronized solutions can be
obtained applying trigonometric identities. To utilize the ana-
lytic form of the solutions for the digital case, the triangular
coupling function can be approximated by its first harmonic
�(·) ≈ − cos(·). Note that the coupling function approxima-
tion introduces only small quantitative deviations but well
represents the qualitative behavior of such oscillators. For
this case, the solutions � and β are given by the following
interdependent transcendental equations:

� = ω̄ − K̄ cos(�τ̄ ) cos

(
��τ

2
+ β

)

+ �K

2
sin(�τ̄ ) sin

(
��τ

2
+ β

)
,
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β = −��τ

2
− sin−1

(
�ω

H

)
+ sin−1

[
�K cos(�τ̄ )

H

]
, (6)

where H = {[2K̄ sin(�τ̄ )]2 + [�K cos(�τ̄ )]2}1/2. The bar
and delta notation of parameters represents respectively their
average and difference. The transcendental nature of Eq. (5)
and Eq. (6) confirms the presence of multiple synchronized
solutions, which is a known property of time-delay coupled
oscillator systems [34,35].

In order to study how robust these solutions are, we
perform linear stability analysis by weakly perturbing the syn-
chronized state, φk = �t + βk + ξk; k = 1, 2, . . . , N and
study the nature of the perturbation dynamics, i.e., ξ̇k . Assum-
ing these perturbations evolve exponentially ξk ∼ exp(λt ), the
characteristic equation for the eigenvalues λ is given by

det (G − ζ · I) = 0, (7)

where ζ = 1, I is identity matrix and the elements of matrix
G are

Gi j =
(

c̃i jαi je−λτi j

λ
p̂i (λ) + fi(c̃, α)

)
. (8)

We denote c̃i j = ci j/ni, αi j = Ki h′[(−�τi j − βi j )], where
h′(·) is the derivative of function h(·) with respect to its
argument. p̂k (λ) = ∫ ∞

0 dupk (u) exp(−λu) = (1 + λbk )−ak is
the Laplace transform of the impulse response function, and
fi(c̃, α) = ∑N

j=1 c̃i j αi j . The largest Re(λ) of the set of solu-
tions λ determines the stability of such synchronized states,
either unstable [Re(λ) > 0], marginal stable [Re(λ) = 0], or
linearly stable [Re(λ) < 0].

Using this analysis, the behavior of synchronized solutions
along with their stability can be predicted. To demonstrate
our results, we consider a network of four PLLs (N = 4)
connected in a ring topology. These digital PLLs have detuned
intrinsic frequencies ωk ∈ 2π × N(0.978, 0.04) [rad kHz] and
coupling strengths Kk ∈ 2π×N(0.40875, 0.0015) [rad kHz].
Here N represents a Gaussian distribution described by
N(mean, deviation). Cutoff frequencies of the RC filters
(LF) [36] are initially equal and tuned to ωc

k = 2π ×
0.05 [rad kHz]. For this system, multiple synchronized states
exist due to the delayed coupling, and we plot them as a
function of the transmission delay in Fig. 2. The results from
linear stability analysis [Eq. (7)] are used to distinguish stable
[shown as solid-green (dark gray)] and unstable [shown as
dashed-gray (light gray)] solutions. Note that the frequencies
of the synchronized states and the associated phase difference
are independent of LF parameters, but they do become unsta-
ble for large integration time of the filter. Such instabilities
have not been observed in the absence of filtering processes
[34,35]. We highlight the branch of the solution that has be-
come unstable due to such an instability with dashed arrows
in Fig. 2. We find that this branch can be stabilized. However,
to our surprise, this occurs when parameter heterogeneity is
increased in the system.

To demonstrate this behavior, which we termed
heterogeneity-induced synchrony in our system of coupled
digital PLLs, we consider heterogeneous LF cutoff
frequencies for our system and analyze its effects on the
stability using Eq. (7); see Fig. 3. We introduce heterogeneity
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FIG. 2. Synchronized solutions characterized by their global fre-
quency � and phase difference β as a function of mean time delay τ̄

for a system of four (N = 4) coupled detuned digital PLLs. Results
are obtained for homogeneous transmission delays (�τ = 0) and
homogeneous cutoff frequencies (�ωc = 0, ωc

k = 0.052π [rad kHz],
k = 1, 2, 3, 4). Stable and unstable solutions are shown by solid
green (dark gray) and dashed gray (light gray) curves [37], respec-
tively. The arrows on one of the unstable solution branch points to an
unstable synchronized state, which we consider for heterogeneity-
induced stabilization (see Figs. 3 and 4).

in the LF cutoff frequencies by drawing their values from
Gaussian distribution ωc

k ∈ 2π × N(0.05, 0.018). Figure 3
shows that the unstable synchronized states observed for
homogeneous cutoff frequencies can be stabilized by
introducing heterogeneity in the systems. The stabilization of
synchronized states that we predicted can also be verified by
simulating the time evolution of the system’s dynamics. In
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FIG. 3. Stabilization of synchronized solution branch using het-
erogeneous cutoff frequencies ωc

k in four (N = 4) coupled DPLLs.
Heterogeneous cutoff frequencies are ωc

k ∈ 2πN(0.05, 0.018) while
the rest of the parameters are unchanged. The solid green (dark gray)
and dashed lines (light gray) denote stable and unstable synchronized
branches, respectively. We see that the stable branches get extended
towards larger mean-delay values as a result of heterogeneity in
cutoff frequencies (see Fig. 2 for comparison).
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FIG. 4. Simulation results obtained with homogeneous (upper
plot) and heterogeneous (lower plot) parameters for the system
of four (N = 4) coupled DPLLs. For both cases, (a) shows the
time variations of oscillator frequencies φ̇k (k = 1, 2, 3, 4). The
frequency spectrums, phase-space (φ1, φk={2,3,4}) behaviors, and
frequency-space (φ̇1, φ̇k={2,3,4}) behaviors are shown in (b) (c), and
(d), respectively. We see that unstable synchronized state (with time-
dependent frequencies) in the homogeneous system can be stabilized
in heterogeneous system with different cutoff frequencies. The trans-
mission delays are fixed at τ̄ = 0.751 ms pointed at by the arrow in
Figs. 2 and 3.

Fig. 4 we examine the dynamics of both homogeneous (upper
subfigure) and heterogeneous systems (lower subfigure) by
evolving them computationally. For the homogeneous case,
we observe that frequencies φ̇k do not settle to a constant
value and show oscillations; see upper subfigure (a) and
(d). This indicates desynchronized dynamics due to unstable
synchronized states. Additionally, the frequency spectrum in
(b) indicate the presence of multiple frequencies, therefore
the phases plotted in (c) also do not show constant phase
differences. However, by introducing heterogeneity through
cutoff frequencies, we are able to stabilize synchronized
dynamics (see lower subfigure). In this case, we can clearly
see a single synchronized frequency (a), (b), and (d) and
constant phase differences (c). We also have verified this
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FIG. 5. The variation in the phase difference between first and
second oscillator β21 is plotted as a function of delay heterogeneity
�τ for a system of N = 4 coupled digital PLLs. Delay heterogeneity
is introduced in all the incoming and outgoing signals to or from first
oscillator in the following manner: τ12 = τ13 = τ14 = (τ̄ − �τ/2)
and τ21 = τ31 = τ41 = (τ̄ + �τ/2), while mean delay is kept fixed
at τ̄ = 0.536 ms. Stable and unstable analytic solutions are shown
in solid green (dark gray) and dashed gray (light gray) curves, re-
spectively. One can observe that the global frequency and its linear
stability are unaffected by �τ , while phase difference β21 has linear
dependence on �τ . The arrow points to an arbitrary phase difference
value β∗ which can be achieved by tuning delay heterogeneity to a
pertinent value indicated by �τ ∗.

stabilizing behavior through experiments for a two oscillator
system—these results are shown in a related publication
[32]. We found that as the cutoff frequencies are tuned
[36] from identical (ωc

1,2 = (0.055, 0.055)2π [rad kHz]) to
heterogeneous values (ωc

1,2 = (0.0148, 0.0957)2π [rad kHz]),
a transition is observed from a desynchronized state with
different frequencies and time-dependent phase difference
to a stable synchronized state with common frequency and
constant phase difference.

So far we have illustrated how component heterogeneities
can be used to recover synchronization in a system of delay-
coupled electronic oscillators. Another important objective in
engineered or electronic systems is to control the phase rela-
tions between the oscillators in synchronized states. This is
required for, e.g., “beamforming” and communication-related
applications of such electronic oscillators [38–41]. In the fol-
lowing we discuss a method to control the phase dynamics
through tunable heterogeneity in the transmission delays. This
method is particularly effective for controlling phase rela-
tions as changes in the delay heterogeneity do not alter the
frequency and stability of a synchronized state so long as
the mean delay τ̄ is kept constant. We observe that β has a
linear dependence on the delay heterogeneity �τ ; see Eq. (6)
and Fig. 5. Due to this linear dependence, the resolution
with which the time delays (and hence �τ ) can be changed
determines how precisely β can be controlled. The result
has been experimentally verified for a two-oscillator system
(experimental details discussed in [32]) and shows how a
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synchronized state with a specific phase difference β can be
achieved by appropriately tuning the delay heterogeneity.

In conclusion, we analyze the effects of heterogeneity
on the synchronization of delay-coupled electronic oscilla-
tors, so-called phase-locked loops (PLLs). We demonstrate
how tuning parameter heterogeneity can be used to con-
trol its collective response and achieve synchronized states
with desired properties, i.e., specific operational frequen-
cies and phase relations. Thus, we analytically predict the
occurrence of a unique phenomenon: stabilization of syn-
chronized states through parameter heterogeneity. In addition
to the heterogeneity in LF cutoff frequencies and coupling
strengths, similar stabilizing effects have been observed with
feedback-delay heterogeneity as well [32]. This outcome is
counterintuitive since heterogeneity, in general, is expected to
create hindering effects on synchrony [7–9]. Recent studies
have conjectured similar interesting scenarios where struc-
tural and parametric asymmetries can generate new symmetric
(synchronized) states [42–45]. Here, however, symmetric
states already exist in the homogeneous setup and can be
stabilized by tuning parameter heterogeneities. In our sys-
tem, the introduction of heterogeneity, for example, in the LF
cutoff frequencies, reduces the destabilizing effects of inert
dynamics induced by filtering. Further research is necessary
to understand the connection between these seemingly similar
behaviors resulting from asymmetries and heterogeneity. An-
other extension would be to experimentally study collective
dynamics of large oscillator arrays, which is necessary for
implementing these results in large-scale practical applica-
tions. Technological utilization of these results includes the

synchronization layer design of distributed electronic systems
such as mobile communication systems, navigation systems,
and antenna arrays, with the potential to bring significant
improvement to currently available state-of-the-art technol-
ogy. In applications, the tuning of component heterogeneity
can be restricted by technical limitations. Hence, the effec-
tiveness of heterogeneity-induced synchronization and control
depends on how well heterogeneous parameters can be con-
trolled in the system. In PLLs for example, the time delays,
coupling strengths, and component characteristics such as
cutoff frequencies can be controlled and used for guiding the
collective response as required by the application. Moreover,
our analysis provides a general framework and sets the basis
for studying collective dynamics of systems with parameter
heterogeneity, inertia, and coupling delays. Thus, these results
are also useful in understanding collective behavior of oscilla-
tor ensembles in other disciplines, e.g., the self-organization
of biological oscillators [46,47], neural networks [48,49],
social [50], and technological networks [17,19,51,52]. Imple-
mentations of these results to design real electronic devices
are currently underway and have shown promising initial out-
comes [53].
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