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Stiffening or softening of elastic media: Anomalous elasticity near phase transitions
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We present the general theory of Ising transitions in isotropic elastic media with vanishing thermal expansion.
By constructing a minimal model with appropriate spin-lattice couplings, we show that in two dimensions near
a continuous transition the elasticity is anomalous in unusual ways: the system either significantly stiffens with
a hitherto unknown unique, positional order logarithmically stronger than quasi-long-range order, or, as the
inversion asymmetry of the order parameter in its coupling with strain increases, it destabilizes when system size
L exceeds a finite threshold. In three dimensions, stronger inversion-asymmetric couplings induce instability to
the long-range positional order for all L. Sufficiently strong order parameter-displacement couplings can also
turn the phase transition first order at all dimensions, concomitant with finite jumps in the elastic modulii across
the transition. Our theory establishes a one-to-one correspondence between the order of the phase transitions and
anomalous elasticity near the transitions.
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Elastic media, e.g., crystals, are paradigms of broken
continuous symmetry phases with positional order (PO) in
condensed matter systems. The interplay between the broken
symmetry Goldstones modes (i.e., phonons) and the long-
range correlated order parameter close to continuous phase
transitions in broken symmetry phases can significantly affect
the material properties of systems, e.g., binary alloy crys-
tals, polymerized, or tethered networks in binary fluids [1,2],
magnetic crystals, and even in vivo systems like biological
cells [3]. Previous studies [4,5] suggested that the universal
scaling properties of the second-order transitions are unaf-
fected by the elasticity, although the elastic modulii could get
depressed and display anomaly at the onset of supersolid tran-
sition [5] as a result of the elasticity-superfluid order coupling.
In a seminal study, Ref. [6] discussed the generic instability
of an elastic solid near a continuous Ising transition, except
when dTc/dV = 0, where Tc and V are the Ising transition
temperature and system volume, respectively. In this case,
Ref. [6] argued that the spin and the elastic degrees of freedom
decouple, leaving each one unaffected by the other, with van-
ishing or zero thermal expansion (ZTE) in the thermodynamic
limit.

In this letter we specifically study continuous Ising tran-
sitions in isotropic elastic media, e.g., a gel, with ZTE
and investigate the measurable macroscopic properties near
the phase transition. To this end, we present the general
theory of Ising transitions in isotropic elastic media with
ZTE, by constructing a suitable minimal model that includes
generic spin-lattice interactions while maintaining the ZTE
conditions. Unexpectedly in this model, we find anomalous
elasticity, belonging to a hitherto unstudied universality class,

*sudip.bat@gmail.com
†abhik.123@gmail.com, abhik.basu@saha.ac.in

making two-dimensional (2D) elastic media either stiffer or
unstable near the transitions. This shows that in an elastic
solid coupled to Ising spins, the position and spin fluctua-
tions are not independent of each other in the ZTE limit, or
dTc/dV = 0. Our theory revises the conclusions of Ref. [6]
for an isotropic elastic media at dTc/dV = 0.

For our work, we conceptualize a schematic, purpose-built
minimal spin-lattice model with interactions near the ZTE
limit. We consider a conceptual spring network model for
gels, with each node carrying an Ising spin interacting with
its nearest neighbor ferromagnetically, to illustrate the generic
macroscopic properties near the phase transitions. We delin-
eate the interactions from the physical considerations that both
the spin-spin exchange interaction strengths and the spring
constants should be locally affected by the interactions, which
are chosen to maintain ZTE. For simplicity, we assume that
the spin-spin interaction rises quadratically with the local
strains for small strains. We further allow a local spin-lattice
coupling that depends quadratically on the strain but linearly
on the spin, and provides “local magnetic field-like” contri-
butions. This manifestly breaks the Ising symmetry, being
asymmetric or selective on the local spin state. Although such
an Ising symmetry breaking term is unexpected in a ZTE
system with magnetic or electronic origin, it, however, can in
principle exist in potential soft-matter realizations of the sys-
tem [7]. Quadratic dependence on strains of the interactions
ensures vanishing thermal average of the strain, ensuring ZTE.
Alternatively, we could imagine the spring constants of the gel
to depend both linearly and bilinearly on the nearest-neighbor
spins. Instead of studying the discrete lattice model directly,
we take a Landau-Ginzburg (LG) continuum approach for
this system, which is particularly suitable to extract large-
scale universal properties [8]. In this approach, we describe
the system by a continuous Ising order parameter φ and
symmetric strain tensor ui j ≡ (∂iu j + ∂ jui + ∂ium∂ jum)/2 [8],
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where u(x) is the displacement of position x in the undistorted
system [8,9]. We develop a generic and testable theory of the
system as a thin, 2D sheet and in the bulk (dimension d > 2).
Our most surprising result is that in two dimensions close to a
second-order transition at temperature T = Tc, the elasticity is
anomalous: The system either significantly stiffens or softens,
controlled by the order parameter-strain couplings. When the
order parameter-strain couplings are weakly asymmetric in
φ, the elastic modulii diverge in the long wavelength limit,
and the system considerably stiffens vis-à-vis away from Tc.
Indeed, we find for a system of size L and microscopic cutoff
(of the order of lattice constants) a0,

�a
u ≡ 〈ua(x)2〉 ∝ [ln(L/a0)]2/3, a = T, L, (1)

near Tc, which although it grows indefinitely, it does so con-
siderably slower than the usual ln(L/a0) dependence on L in a
2D crystal without any transition. Here ua(x) is the inverse
Fourier transform of ua(q), the component of u(q) trans-
verse (a = T ), and longitudinal (a = L) to the wave vector
q; uT (x) · uL(x) = 0. Further, the correlation function

〈[ua(x) − ua(x′)]2〉 ∝ [ln(r/a0)]2/3, (2)

for large r ≡ |x − x′| near Tc, which is significantly slower
growing with r than the more conventional ln(r/a0) scaling in
an ordinary 2D crystal. Equations (1) and (2) illustrate a hith-
erto unknown novel positional order logarithmically stronger
than the conventional quasi-long-range order (QLRO), which
we name SQLRO, and constitute an entirely new, heretofore
unstudied universality class for these systems. This is not
the only state of the system near Tc. Increasing the degree
of the inversion asymmetry of φ in its coupling with ui j

destabilizes the system with only short-range order (SRO)
as soon as the system size L exceeds a finite threshold. The
order parameter-strain couplings can turn the phase transition,
which is otherwise second order, into a first-order one. In that
case the elastic modulii are anomalous though in a different
way: They do not diverge; instead, they and hence �a

u (which
now shows QLRO) display finite jumps across the transition.

For bulk three-dimensional (3D) samples, the elasticity
is nonanomalous for weak inversion asymmetry; the system
displays positional long-range order (LRO) near Tc, indistin-
guishable from its behavior without any transition. Stronger
asymmetry can make the elastic modulii vanish for all L and
hence destabilizes the system for any L, unlike two dimen-
sions. Similar to two dimensions, φ-ui j couplings can turn the
phase transition a first order, across which the elastic modulii
and hence �a

u display finite jumps.
We now outline the derivation of these results; more details

and additional results are available in the associated long
paper (ALP) [10].

The LG free energy functional F of our minimal model,
obtained phenomenologically by gradient expansions of the
fields, must be rotationally and translationally invariant [8,9].
Hence, its dependence on u(x) must be through ui j . The form
of F , after dropping irrelevant terms, valid near a second-
order transition of φ, and for length scales much larger than

a0 is

F =
∫

dd x

[
r̃

2
φ2 + 1

2
(∇φ)2 + vφ4 + μ

(∇iu
T
j

)2 + λ̃

2

(∇iu
L
j

)2

+ (g1φ
2 + g1φ)

(∇iu
T
j

)2 + (g2φ
2 + g2φ)

(∇iu
L
j

)2
]
, (3)

Here r̃ ≡ T − Tc, v > 0 for thermodynamic stability. The
first three terms on the r.h.s. of (3), together identical to
F (u = 0), constitute the LG free energy for the Ising model
near its critical point in a rigid uniform lattice in the ab-
sence of any external field [8]. The μ and λ̃ terms give the
elastic free energy of a crystal with μ, λ̃ being the shear
and bulk elastic modulii [8]. There is no bilinear term in
uL, uT due to these being mutually orthogonal. Each of
the mixed anharmonic terms in (3) carries simple phys-
ical interpretations consistent with the interactions in the
schematic spin-lattice microscopic model above. For instance,
φ-dependent corrections to the local elastic modulii are given
by μ(φ) = μ + g1φ

2 + g1φ, λ̃(φ) = λ + 2g2φ
2 + 2g2φ. Al-

ternatively, we could define a local critical temperature T ∗
c =

Tc − 2[g1(ui j )2 + g20(uii )2] and a term formally analogous
to “local magnetic field” hφ = −[g1(ui j )2 + g20(uii )2]. Cou-
plings g1, g2 � 0 due to thermodynamic stability reasons;
g1, g2, the “asymmetry” parameters, have arbitrary signs and
violate the Ising symmetry of φ. Such couplings which are
odd in φ, are frequently used in mixed soft matter systems,
where φ represents the local concentration difference in the
two components [7], although these odd in φ-anharmonic
terms vanish in systems with Ising symmetry at the micro-
scopic level, e.g., in a magnetic crystal. In order to generalize
the scope of our work, we include the Ising symmetry-
breaking spin-lattice interactions and study the model. The
form of F applies to systems with vanishing strain in the
zero-stress states [11]: 〈ui j〉 = 0 identically in the absence
of any external stress implying vanishing thermal expansion.
Furthermore, (3) implies dTc/dV = 0 [10]. The φ-ui j an-
hamornic terms in (3) are not considered in Ref. [6] even when
dTc/dV = 0.

In the absence of the anharmonic effects, F implies

〈uT (x)2〉 = T

2μ
ln

( L

a0

)
, 〈uL(x)2〉 = T

λ̃
ln

( L

a0

)
(4)

at all temperatures T . Near Tc, φ fluctuations are scale in-
variant and thus can “connect” distant parts of the system,
creating a correlated background for the elastic deformations.
The combination of thermal fluctuations and anhamornic ef-
fects can substantially modify the scaling behaviors given
in (4). To study this, we perform a one-loop momentum-space
renormalization group (RG) analysis [8] of the model (3).
Dimensional analysis gives that v has a critical dimension
of 4, whereas 2 is that of g1, g2, g1, g2 [10]; see also [5].
Therefore, the phase transition of φ is unaffected by (assumed
small) bare or unrenormalized g1, g2, g1, g2. The RG calcu-
lation is performed by integrating over the short wavelength
Fourier modes of φ(x) and u(x), followed by rescaling of
lengths and the long wavelength parts of φ and u [8,12]. From
the structure of (3), uT and uL are mutually independent.
We discuss the calculation for the renormalized correlation
function of uT ; the same for uL is done analogously. The
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(a) (b)

FIG. 1. RG flow diagram in the α1-β1 plane. (a) In two di-
mensions, the inclined red line is the separatrix given by Eq. (10).
(b) d > 2: The horizontal red line is the separatrix given by β = ε/2.
The small circle on the β1 axis is the unstable fixed point (0, βc ).
Other arrows indicate the flow directions.

perturbative RG procedure outlined above gives the following
differential recursion relations for μ, g1, g1:

dμ

dl
= μα1 − μ

β1

2
, (5)

dg1

dl
= −εg1 − 2

Tcg2
1

μ

Sd	
ε

(2π )d
− Tcg4

1

8μ3

Sd	
ε

(2π )d
, (6)

dg1

dl
= −ε

2
g1 + Tcg3

1

2μ2

Sd	
ε

(2π )d
− 2Tcg1g1

μ

Sd	
ε

(2π )d
. (7)

Here Sd is the surface area of a d-dimensional unit sphere, ε ≡
d − 2, exp(l ) is the length rescaling factor, and 	 = 2π/a0

is an upper wave-vector cutoff. Flow Eqs. (5)–(9) in turn
gives the RG flow equations for two effective dimensionless

couplings α1 ≡ Tcg1Sd

(2π )d μ
	ε, β1 ≡ Tcg2

1Sd

(2π )d μ2 	
ε :

dα1

dl
= −εα1 − 3α2

1 − β2
1

8
+ α1β1

2
, (8)

dβ1

dl
= −εβ1 + 2β2

1 + 6α1β1. (9)

In two dimensions, ε = 0; the only fixed point of (8) and (9)
is α1 = 0, β1 = 0. Its stability property is intriguing: It is
stable (i.e., attractive) along the α1 axis, but unstable (i.e.,
repulsive) along the β1 axis. Thus, starting from any initial
value (α1(l = 0), β1(l = 0)) = (α10, 0), the system flows to
the origin (0, 0) implying stability, whereas starting from any
initial value (0, β10) the system flows away from the origin,
indicating instability. The separatrix, an invariant manifold
under RG in the (α1, β1) plane, that separates the stable phase
from instability can be obtained by using (8) and (9) along
with the condition d (β1/α1)/dl = 0 [13]. This, for small
α1, β1, is a straight line

β1 = �1cα1, �1c ≡ 1
2 (−12 +

√
240); (10)

see Fig. 1(a). Separatrix (10) is repulsive: by expanding
around (10), (8), and (9) give β1(l )/α1(l ) ∼ 1/l → 0, when
α10, β10 lie in the stable region, i.e., below the line (10)
in the α1-β1 plane in the thermodynamic limit. Therefore,
systems whose starting parameters lie below the separatrix
not only flow to the origin, they also move away from the
separatrix with increasing length scale; see Fig. 1(a). Thus,
in the long wavelength limit, the system is effectively identi-

cal with those having no inversion asymmetry; the inversion
symmetry of φ, although absent at small scales, appears as an
emergent symmetry in the thermodynamic limit. On the stable
side of the separatrix, using (5) we find the renormalized,
scale-dependent shear modulus μ(l ) ∼ l1/3, which implies
wave-vector-dependent μ(q) ≈ μR[ln(	/q)]1/3, in the long
wavelength limit, where μR is the amplitude of the renormal-
ized shear modulus. This means the elasticity is anomalous,
analogous to the well-known anomalous elasticity found in
3D smectics [14]. This in turn gives, as shown in detail in the
ALP [10],

〈|uT (q)|2〉 ≈ Tc

2μR[ln(	/q)]1/3q2
, (11)

for small q close to Tc. Inverse Fourier transform
of (11) gives (1) and (2). Thus, both 〈|uT (q)|2〉 and
〈[uT (x) − uT (x′)]2〉 are significantly suppressed in the
long wavelength limit vis-à-vis their values away from Tc, a
hallmark of SQLRO. Results (11) together with (2) illustrate
the novel state of the elastic media near Tc and define a
universality class with unique features that has not been
studied before. Thus, in a ZTE system with microscopic Ising
symmetry, i.e., of magnetic or electronic origin, β1 = 0 iden-
tically, and the results (11) and (2) are generic and observable
without any additional fine tuning of the control parameters.
For ZTE systems of soft matter origin with nonzero
microscopic Ising symmetry-breaking anharmonic spin-
lattice interactions, β1 is nonzero microscopically. Hence, to
observe (11) and (2) additional tuning making the “RG initial
values” α1(l = 0), β1(l = 0) lying below the separatrix is
required.

We now turn to the region above the separatrix in Fig. 1(a),
which flows away from the origin. This region is accessible in
potential soft matter realizations of ZTE systems by additional
tuning to make the “RG initial values” α1(l = 0), β1(l = 0)
lie above the separatrix. In this region, β1(l ) diverges, whereas
α1(l ) vanishes as l exceeds a nonuniversal value of l , con-
trolled by the microscopic model parameters. This in turn
means that the system flows towards negative μ. While it is
not possible to follow these flows all the way to μ = 0 (since
β1 diverge there breaking down our perturbation theory), this
signals breakdown of elasticity and loss of PO in large enough
systems. This region of the parameter space therefore corre-
sponds to a phase with only SRO.

Whether or not the system destabilizes depends surpris-
ingly upon the small-scale or unrenormalized values of the
model parameters. The above results can be used to show that
for �1 < (>)�1c ≡ g2

1/(μg1), a combination of the unrenor-
malized parameters, SQLRO ensues (gets unstable with SRO).
Phase diagrams in (1) g1-μ for a fixed g1 and (2) g1-g1 for a
fixed μ in Fig. 2(a) and 2(b), respectively, follow directly from
this threshold relation. Both phase boundaries are parabolas,
as can be seen from the instability threshold.

On the unstable side of the separatrix, β1(l ) 
 α1(l ) for
large l; (5) reduces to dμ

dl ≈ −μ
β1

2 . Solving, we obtain

μ(l ) ≈ μ(l = 0)

(
1

2β10

)1/4[
l − 1

2β10

]1/4

(12)
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(a) (b) (c)

FIG. 2. Schematic phase diagram in the (a) g1-μ plane. The blue shaded region with μ > 0 corresponds to positional SQLRO at 2D and
LRO at 3D near Tc. The white region outside has SRO. (b) g1-g1 plane. The middle light green region indicates SQLRO in two dimensions.
The region outside has SRO. (c) g2

1-L plane in two dimensions near Tc. The red curved line demarcates regions with SQLRO and SRO. The
region left to the vertical broken blue line corresponds to SQLRO for any large L. The region between the vertical blue line and the curved red
line corresponds to systems having a finite L < ξ , a threshold for PO; for L > ξ only SRO is possible.

for large l . Of course, we cannot use (12) all the way to
μ(l ) ≈ 0 as β1(l ) diverges and the RG scheme breaks down.
Instead, as shown in the ALP [10], we can conveniently
use the bare perturbation theory to define a persistence or
correlation length ξ that is finite on the unstable side of
the separatrix, given by μ[l = ln(ξ/a0)] = 0. This gives, as
shown in ALP [10],

ξ = a0 exp
{
2πμ/

[
Tc

(
g2

1/2μ − g1
)]}

, (13)

as one approaches the instability threshold from the unstable
side [15]. Thus, as g2

1 → 2μg1, ξ diverges as an essential
singularity, surprisingly reminiscent of the behavior of the
correlation length near the Kosterlitz-Thouless transition of
the 2D XY model [8,16]. Physically, it is clear that as one
moves from the stable region to the unstable region crossing
the separatrix in the α1-β1 plane, the system undergoes a struc-
ture phase transition from a phase with positional SQLRO
to a phase with only SRO. Unsurprisingly, ξ is infinite on
the stable side of the separatrix. Equating ξ with L, we get
from (13) the maximum linear size that can show PO; see
Fig. 2(c) for a plot of L versus g2

1.
We now consider bulk systems with d > 2, d = 3; i.e.,

ε = 1 is the physically relevant dimension. We focus on the
fluctuations of uT , and an equivalent analysis for uL can be
done exactly in the same manner; see ALP [10]. Flow Eqs. (8)
and (9) give two fixed points for ε > 0: (1) (α1 = 0, β1 = 0),
i.e., the origin, which is linearly stable, and (2) (α1 = 0, β1 =
ε/2), unstable along the β1 direction, but stable along the
α1 direction; see Fig. 1(b). In fact, separatrix β1 = ε/2, a
straight line parallel to the α1 axis, determines that systems
with microscopic model parameters in the region below the
system flow towards the origin rapidly. As shown in the ALP,
at this stable fixed point, μ does not diverge in the thermody-
namic limit unlike in two dimensions but is a constant. Thus,
elasticity is nonanomalous, with 〈uT (x)2〉 being bounded, i.e.,
a constant independent of L, which is a telltale signature of po-
sitional LRO, and is indistinguishable from its behavior away
from Tc. On the other hand, systems whose starting parameters
lie above the separatrix flow towards the β1 axis but away
from the origin, making β1(l ) diverge and α1(l ) vanish again
rapidly. Correspondingly, μ(l ) flows to zero for all L. When
β1 increases beyond ε/2, corresponding to g1 rising above a
threshold, the system undergoes a structural phase transition
in which it loses LRO and displays just SRO, akin to liquids.
As shown in ALP [10], bare perturbation theory reveals that
as soon as β10 > 2 + 2α10, fluctuation-corrected μ becomes

negative, giving complete loss of LRO, independent of L, un-
like in two dimensions. Indeed, ξ for which μ(ξ ) = 0 abruptly
changes from very large to zero (or very small), as one crosses
the separatrix from the stable to the unstable sides. See Fig. 2
(left) for a schematic phase diagrams in the g1-μ plane for
d > 2.

For compressible systems with bulk modulus λ̃ and longi-
tudinal displacement uL, exactly analogous results and phase
diagrams for both two and three dimensions exist; see the
ALP [10].

So far we have tacitly assumed that the second-order phase
transition of φ is unaffected by the displacement-order pa-
rameter couplings. How correct is that? We first consider
the case with microscopic Ising symmetry, i.e., the couplings
g1, g2 vanish. In this case, in order to have a second-order
transition, it is required that under mode elimination, ve, the
fluctuation-corrected v at any intermediate scale never turns
negative. This may not hold true for sufficiently strong order
parameter-strain couplings. In the anticipation that ve can
actually turn negative, we extend F by adding a v6φ

6 term
in it with v6 > 0 for thermodynamic stability reasons. We
consider the inhomogeneous fluctuation corrections to v that
originate from g1, g1, g2, g2, which themselves do not depend
upon v explicitly. These contributions are finite but negative:
we get [10]

βcve ≡ βcv − 2dT 2
c

(
β2

c g2
1

4μ2
+ β2

c g2
2

λ̃2

)
	d

(2π )d
, (14)

valid for all d � 2. Now, for ve > 0, the v6φ
6 term is un-

necessary. The phase transition of φ is unaffected by the
order parameter-strain couplings and remains a continuous
transition belonging to the Ising universality class. If, how-
ever, ve < 0, then a v6φ

6 term must be taken into account for
reasons of thermodynamic stability. In that case, φ now under-
goes a first-order transition with the order parameter m ≡ 〈φ〉
jumping of magnitude [|ve|(2v6)]1/2. We thus conclude that
in ZTE systems with microscopic Ising symmetry, sufficiently
strong spin-lattice couplings necessarily turn the second-order
transition into a first-order one.

For nonzero inversion symmetry breaking or the selec-
tivity parameters, additional tuning is necessary to access a
second-order transition. This is because fluctuations generate
a gφ3 term in F , where g is a coupling constant of arbitrary
sign. This allows us to generalize the Landau-Ginzburg free
energy F to F̃ = F + ∫

dd xge φ3, giving a generic liquid-
gas-like first-order transition [8,10] with an order parameter
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jump m = −ge/(2v) at a transition temperature T ∗ = Tc +
9g2

e/(16v) [8]. To proceed further, we integrate out the strains
in F̃ perturbatively in the coupling constants, generating a
“dressed” free energy in terms of the dressed parameters,
which depends only on φ. By shifting φ → φ + φ0 and choos-
ing φ0 appropriately the effective coefficient of φ3 can be
made to vanish in a manner analogous to the liquid-gas tran-
sition; see the ALP [10] for more details. In terms of the
shifted φ, F̃ has the same form as F , albeit with shifted model
parameters. The requirement of ZTE remains satisfied due to
the absence of terms in the free energy functional that are
odd in the displacement u. Note also that in this case βve

in (14) is to be supplemented by an additional finite negative

contribution 2dT 4
c ( β4

c g4
1

32μ4 + β4
c g4

2

λ̃4 ) 	d

(2π )d [10]. Again, if ve > 0 a

second-order Ising transition follows, and a v6φ
6 term is not

necessary. In the vicinity of this transition, our above results
on the anomalous elasticity then ensue. On the other hand,
if ve < 0, a first-order transition ensues with an order pa-
rameter jump m = [|ve|(2v6)]1/2. Thus, even in the presence
of Ising-symmetry breaking spin-lattice coupling terms, al-
though the transition is generically first order, a second-order
Ising transition can be accessed by tuning the model param-
eters reminiscent of the second-order transition in liquid-gas
systems. This second-order transition can get converted into
a different first-order one for sufficiently strong spin-lattice
interactions. Across such first-order transitions, the elastic
modulii are finite, but still anomalous in the sense given below.

Near a first-order transition, fluctuations of φ do not have
long-range correlations, and as a result, all the corrections to
μ at 2D are finite (and small). In a mean-field description that
suffices near a first-order transition we get, as shown in ALP,

μT <T ∗ = μT >T ∗ + (
g1 − g2

1/μ
)
m2 �= μT >T ∗ , (15)

valid at all dimensions, where T ∗ is the first-order transition
temperature. Thus, depending upon the relative magnitudes of

g1 and g1, μ(T < T ∗) can be larger or small than μ(T > T ∗),
with a finite jump in its value at T ∗, related to the jump in
the order parameter. Therefore at 2D, 〈uT (x)2〉 should scale
as ln(L/a0) corresponding to QLRO with an amplitude that
shows the jump. In contrast, across a second-order transition,
the elastic modulii do not display any jump; instead they
either continuously increase or decrease (and approach zero
for large enough systems) as Tc is approached from either
side. In three dimensions, 〈uT (x)2〉 shows conventional LRO
on both sides of T ∗, differing only by a finite jump. At any
dimension, for very large g1, μ(T < T ∗) can even turn neg-
ative, signaling instability, and SRO. A similar relation exists
for λ̃. We thus establish a one-to-one correspondence between
the order of phase transitions and anomalous elasticity around
the transition temperature. Detailed derivation of all these
results in addition to a plethora of others are available in
the ALP [10].

We have thus developed the theory of Ising transitions in
isotropic elastic media with vanishing thermal expansion. This
theory predicts anomalous elasticity with the system either
stiffening or softening near the transitions, being controlled by
the strain-order parameter couplings. These are in contrast to
Ref. [6] due to the absence of the spin-lattice anharmonic in-
teraction terms there even at dTc/dV = 0. Our theory should
be a guideline to theoretically study of ZTE materials of
diverse origin, including electronic magnetism and soft matter
systems [17], which are in great demand in high-precision
applications [18,19]. Experiments on purpose-built synthetic
ZTE systems [18–21] in the future should help to verify our
results.
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