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Marginally stable current sheets in collisionless magnetic reconnection
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Noncollisional current sheets that form during the nonlinear development of spontaneous magnetic reconnec-
tion are characterized by a small thickness, of the order of the electron skin depth. They can become unstable to
the formation of plasmoids, which allows the magnetic reconnection process to reach high reconnection rates. In
this work, we investigate the marginal stability conditions for the development of plasmoids when the forming
current sheet is purely collisionless and in the presence of a strong guide field. We analyze the geometry that
characterizes the reconnecting current sheet, and what promotes its elongation. Once the reconnecting current
sheet is formed, we identify the regimes for which it is plasmoid unstable. Our study shows that plasmoids can
be obtained, in this context, from current sheets with an aspect ratio much smaller than in the collisional regime,
and that the plasma flow channel of the marginally stable current layers maintains an inverse aspect ratio of 0.1.
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Magnetic reconnection is a fundamental plasma process
that involves a rapid topological change of the magnetic field
leading to an efficient magnetic energy conversion. Mag-
netic reconnection typically occurs via current sheets (CS),
where nonideal plasma effects become important, allowing
the change of magnetic field line connectivity [1–3].

It is well established that the instabilities of thin CS,
that lead to the formation of plasmoids, have a fundamen-
tal impact on the reconnection rate [4,5]. Indeed, even in
the resistive magnetohydrodynamics (MHD) framework, the
development of plasmoids in the reconnection layer induces
a fast magnetic reconnection regime characterized by a re-
connection rate that can exceed the estimates based on the
Sweet-Parker (SP) theory [6,7] by several orders of magni-
tude. In collisional CS, it has been shown that plasmoids
develop when the Lundquist number S = LcsvA/(ηc2/4π ) ex-
ceeds the threshold value S� ∼ 104 [8]. Here, the Lundquist
number is defined with the length of the CS, Lcs. The other
quantities are the plasma resistivity η, the speed of light
c, and the Alfvén speed vA. The threshold value on the
Lundquist number, S�, separates the Sweet-Parker regime
from the plasmoid-mediated regime of collisional recon-
nection. In addition, it controls the reconnection rate Rrec

in the plasmoid-mediated regime, Rrec ∼ S−1/2
� vABup [9–12],

where Bup is the reconnecting magnetic field. The exten-
sion of the resistive reconnection regime with the inclusion
of the ion dynamics associated with the ion sound Larmor
radius, ρs, or the ion inertial length, di, complicates the
picture. Indeed, when the thickness of the reconnecting CS
shrinks below ρs (for reconnection with a guide field) or di

(for reconnection without guide field), the process becomes
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even faster and approaches Rrec ∼ 0.1vABup [13]. Given its
importance, the transition between the different regimes of re-
connection has been thoroughly investigated, and the current
understanding of reconnection driven by plasma resistiv-
ity has been summarized in the form of parameter space
diagrams [14–21].

In contrast, the marginal stability of reconnecting CS in
the collisionless regime has seen relatively little investigation.
This subject was approached in [14], in which it is argued
that, below the scales di or ρs, no plasmoids were formed.
Yet, it is acknowledged that reconnection in nature is of-
ten driven by collisionless effects beyond the resistive MHD
description.

In this Letter, we investigate a phase space described by
the two kinetic scales de (electron inertial length) and ρs,
compared to the current length Lcs. We show how the aspect
ratio of the marginally stable reconnection layer depends on
these relevant kinetic scales. We believe this study might also
be useful to support observational and experimental results.
In particular, recent observations revealed many reconnec-
tion onsets driven by electrons, in the presence of a strong
guide field, close to the dayside magnetopause and magne-
tosheath [22,23]. Moreover, in Ref. [23], current sheets having
a thickness of the order of the electron inertial length were
identified. A study also gave direct experimental proof of
plasmoid formation at the X point and at the electron scale in a
regime where no plasmoids were predicted by the theory [24].

We assume a plasma immersed in a strong (guide) mag-
netic field of amplitude B0, resulting in low plasma β (the
ratio of plasma pressure to magnetic pressure). In order to
reduce the problem to a few essential ingredients, in our anal-
ysis we adopt a simple two-fluid model that retains electron
inertia effects, as well as ion sound Larmor radius effects.
Specifically, the equations governing the plasma dynamics are
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(see, e.g., [25])

∂ne

∂t
+ [φ, ne] = [A‖, ue], (1)

∂

∂t

(
A‖ − d2

e ue
) + [

φ, A‖ − d2
e ue

] = ρ2
s [ne, A‖], (2)

where A‖ and φ are the magnetic and electrostatic potentials,
ne = ∇2

⊥φ is the electron density perturbation, and ue = ∇2
⊥A‖

is the parallel electron velocity, also proportional to the cur-
rent density. The variables are normalized as {t, x, A‖, φ} =
{vAt̂/L, x̂/L, Â‖/(LB0), cφ̂/(vALB0)}, where the caret (ˆ) in-
dicates dimensional quantities and L is the characteristic
equilibrium scale length set by the equilibrium magnetic
field. The normalized magnetic field and the perpendicular
E × B velocity are related to A‖ and φ as B = ẑ + ∇A‖ ×
ẑ and u⊥ = ẑ × ∇φ, respectively. The parameters are de =√

mec2/4πe2n0/L and ρs =
√

Temic2/e2B2
0/L, corresponding

to the normalized electron skin depth and ion sound Larmor
radius, respectively. Ions are assumed to be cold. In Eqs. (1)–
(2), [ f , g] = ∂x f ∂yg − ∂y f ∂xg.

In order to analyze the marginal stability conditions of the
plasmoid instability in the collisionless regime, we conducted
a large number (∼30) of numerical simulations of the system
of Eqs. (1)–(2). The numerical solver is pseudospectral and
the advancement in time is done through a third-order Adams-
Bashforth scheme. We considered a periodic two-dimensional
(2D) domain 2Lx × 2Ly, resolved with a number of grid points
up to 2000 × 2400. On the other hand, in the figures pre-
sented in the paper, only a part of the computational domain
is shown. We set up an initial tearing unstable equilibrium
which, in dimensional variables, is given by φ̂(0)(x̂/L) = 0,
Â(0)

‖ (x̂/L) = B0L/ cosh2(x̂/L). An analogous setup has been
used for studying plasmoid formation by [26,27]. The tearing
stability parameter for this equilibrium is 	′

box,m = 2[(5 −
k2

y )(k2
y + 3)]/[k2

y (k2
y + 4)1/2]. This equilibrium is tearing un-

stable if 	′
box,m > 0, thus for a wave number ky = πm/Ly <√

5. We will always refer to 	′
box as being associated to the

mode m = 1, and we change its value by taking different box
lengths along the y direction. With this setup, one or several
tearing modes are initially unstable. The nonlinear evolution
of the dominant tearing mode (m = 1) of this initial setup
leads to the formation of a large magnetic island, character-
ized by a single X point where a slowly growing CS forms
self-consistently. At first, this newly generated CS is stable,
with a 	′

cs < 0. As it is slowly thinning, it eventually reaches
a 	′

cs > 0, and becomes therefore unstable to the secondary
plasmoid instability.

In the following, we characterize this reconnecting CS
according to the parameters de, ρs, and 	′

box. Specifically, we
measured the length and the width of the CS at a time t just
before the plasmoid onset. We define the measure Lcs, such
that, taking the variation from the highest current position
ue|X (ue evaluated at the X point), the standard deviation of
the current distribution from y = 0 to y = Lcs/2 equals unity,

i.e.,
√∑N

i=1[ue|X − ue(0, i	y, t )]2/N = 1, where 	y is the
distance between two grid points along y and N indicates
the number of points from y = 0 to y = Lcs/2. This method
makes it possible to account for the decrease of the current

FIG. 1. Characteristics of the reconnecting CS as a function of de

for fixed ρs = 0 and 	′
box = 60. The CS is unstable to the formation

of plasmoids in all five cases. For de = 0.05 and de = 0.6, we show
the color maps of ue with isolines of A‖ in black.

intensity along the layer. Once Lcs is identified, the half-width
of the CS, which we denote by δcs/2, corresponds to the
distance, along x, between ue|X and the position where the
current reaches the value ue(δcs/2, 0) = ue(0, Lcs/2). We also
measure the width and length of the outflow velocity channel
coming out from the end of the CS. The length Loutf corre-
sponds to the distance between the upward and downward
peaks in the distribution of uy = ∂xφ, while the width δoutf is
also measured with the standard deviation method. The aspect
ratios Acs = Lcs/δcs and Aoutf = Loutf/δoutf are also reported.

We first focus on the limit ρs = 0 shown in Fig. 1. As
discussed in Ref. [28], in this limit δcs ∝ de. To better show the
geometry, the colored contour maps of ue with superimposed
contour lines of A‖ in black are shown for certain cases in
Fig. 1 as well as in Fig. 2. For low values of de, a high
and uniform current density allows the parallel alignment of
a high density of magnetic field lines (see color map of ue

for de = 0.05 and ρs = 0). On the other hand, for high de

values, the current is not uniform enough along the layer
for the magnetic field lines to line up perfectly, since their
density decreases in the region where the current is weaker
(see de = 0.6 and ρs = 0). As we discuss below, this latter
case is less likely to develop plasmoids. Finally, in the limit
ρs = 0, we obtain the approximate scalings Lcs ∝ d−1/10

e and
Acs ∝ d−1

e .
When ρs is taken into account, ion sound Larmor effects

can become important and the CS changes into a cross shaped
structure aligned with the magnetic island separatrices [25].
Indeed, in Fig. 2, when ρs is increased (for ρs ∼ de), a part at
the end of the layer splits to extend along the separatrices (see
de = 0.05 and ρs = 0.05). Here, the measured Lcs still corre-
sponds to the length distributed symmetrically on both sides
of y = 0. We measured Lcs ∝ ρ−1/2

s . As for the aspect ratios,
they scale as Acs ∝ ρ−0.6

s and Aoutf ∝ ρ−1/2
s . For the series of
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FIG. 2. Same measures as Fig. 1 but for fixed de and varying ρs.
For 	′

box = 60 and de = 0.05, all five cases are plasmoid unstable.
For 	′

box = 14.3 and de = 0.1, plasmoids grow only when ρs � 0.4.
For ρs = 0.05 and ρs = 0.5, we show the color maps of ue with
isolines of A‖ in black.

simulations with 	′
box = 14.3 and de = 0.1, the reconnection

process occurs without forming any plasmoids (gridded red
region) until ρs ∼ 0.4.

For ρs � de and 	′
box = 60 (green diagonally striped re-

gion), the aspect ratio Acs is sufficiently large and one
plasmoid emerges from the center of the CS. This corresponds
to a low wave-number fluctuation that develops in the CS,
which is entering the nonlinear phase.

For ρs 	 de (green dotted region), the CS reaches a perfect
cross shape [25]. This very different geometry can still lead to
a more complex plasmoid formation. Indeed, in the regime
ρs 	 de, the first plasmoids that break up the CS are symmet-
rically located above and below the X point. This process is
detailed in Fig. 3. We observe four main phases: (I) formation
of the X -shaped current, (II) its ends meet to form a local
Y -shaped CS, (III) plasmoids emerge and enter the nonlinear
phase, (IV) they are expelled by the outflow and the center

FIG. 3. Time evolution of the parallel current density. The plots
show the color maps of ue, while black lines are contour lines of A‖.
For this simulation de = 0.085, ρs = 0.3, and 	′

box = 30.

FIG. 4. CS characteristics for varying 	′
box at fixed de = 0.085

and ρs = 0. From left to right: color maps of ue with isolines of A‖
in black for 	′

box = 14.3, 	′
box = 38, 	′

box = 240, and plot of the CS
widths, lengths, and aspect ratio as a function of 	′

box.

plasmoid emerges. This type of plasmoid onset takes place
for ρs > 0.4 	 de in Fig. 2.

We now discuss the dependence on the 	′
box parameter,

for ρs = 0 and for ρs 	 de. In order to clearly identify a
CS, we have considered large 	′

box values, which vary from
11.3 to 240. Even for large values of 	′

box, the thinning of
the current sheet generated at the X point remains slower
than the growth of the plasmoids. For ρs = 0 (Fig. 4), the Lcs

depends linearly on 	′
box, as in the resistive case [26,29–31].

We do not obtain plasmoids for 	′
box � 14.3, in agreement

with [32] where this regime is shown to be prone to the
development of the Kelvin-Helmholtz instability. In the cases
with 21 � 	′

box � 38, one plasmoid emerges and breaks up
the reconnecting CS. For 	′

box = 240, two other plasmoids are
formed when the reconnecting CS becomes more elongated
(unstable) as 	′

box increases. In the limit ρs = 0, the outflow
channel follows the CS and we observe indeed the scaling
Aoutf ∝ 	′

box (not shown here).
For ρs 	 de (Fig. 5), on the other hand, the case with

	′
box = 14.3 is plasmoid unstable. In this regime, the small-

scale current layer pattern located inside the magnetic island,
identified in Refs. [32,33], is visible on the two left panels.
Increasing 	′

box allows to significantly increase Lcs, and to
therefore compare the regimes ρs < de and ρs > de for var-
ious current sheet lengths. This makes it possible to see that
the role of ρs is only relevant in marginally stable cases. If
Lcs/de is large enough, the current sheet becomes unstable
regardless the value of ρs. Additionally, in the case of large

FIG. 5. CS characteristics for varying 	′
box at fixed de = 0.085

and ρs = 0.3. From left to right: color maps of ue with isolines of A‖
in black for simulations with 	′

box = 14.3, 	′
box = 38, 	′

box = 240,
and aspect ratio of the outflow velocity channel before the onset of
plasmoids.
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FIG. 6. Parameter space diagram that identifies where the plas-
moid instability leads to the break up of the CS. The cases that give
plasmoids (green dots) are above either the A(1)

� or A(2)
� threshold. The

threshold A(2)
� is approximated by the scaling L(2)

cs,�/de ∝ Lcs/ρs from
Eq. (4).

	′
box, a notable difference between the two regimes is in

the number of plasmoids. The regime ρs > de appears to be
prone to the formation of a higher number of plasmoids.
In the rightmost panel of Fig. 5, we show the measured
aspect ratio of the outflow velocity channel just before the
appearance of the first plasmoid. For the least unstable re-
connecting CS (	′

box = 14.3), we measured Loutf = 1.21 and
δoutf = 0.12, which implies a steady state reconnection rate
of Rrec ∼ (δoutf/Loutf )vABup ∼ 0.1vABup. The red area corre-
sponds to stable cases. The green striped area corresponds to
the onset of only one plasmoid located at the center of the
CS. Finally, the green dotted region corresponds to the cases
where the first plasmoids emerge from a local Y -shaped CS
(as described in Fig. 3).

We can construct a parameter space diagram (Fig. 6),
analogously to what was done for reconnection induced by
plasma resistivity [14,15,34], which allows one to identify
the collisionless plasmoid regimes that take place once a
reconnecting layer of a certain length is formed. Accord-
ing to our numerical simulations, the critical aspect ratio
above which plasmoids break up the reconnecting CS is
A(1)

� = (Lcs/δcs)(1)
� ∼ (Lcs/de)(1)

� ∼ 10 when de 	 ρs. On the
other hand, for ρs � de, the plasmoid formation has a differ-
ent threshold A(2)

� = (Lcs/δcs)(2)
� , and the simulations indicate

A(2)
� < A(1)

� .
We can evaluate A(2)

� by taking inspiration from the
plasmoid instability theory presented in Refs. [35–37]. We
consider a forming CS in which the amplitude of the tear-
ing mode grows as A‖(k, t ) = A0 exp (

∫ t
t0

γ (k)dt ′), where γ

and k are the tearing mode growth rate and wave number,
respectively, while A0 is the magnetic flux amplitude at t0.
The plasmoid half-width is given by w(k, t ) = 2(A‖a/Bup)1/2,
where A‖ is evaluated at the resonant surface and a is the half-
width of the CS. We verified that the CS profiles are well fitted
by a Harris sheet [38], for which 	′

cs = 2[(ka)−1 − ka]/a.
Given that the CS is slowly shrinking toward a finite width,
we assume that, just before the plasmoid onset, the CS is
in nearly steady-state and we neglect its time dependence.
From Eqs. (1)–(2), one can derive the dispersion relation of

the collisionless tearing mode for arbitrary values of 	′
cs [39].

For the marginally stable CS, one can consider the limit
δin	

′
cs 
 1, with δin indicating the width of the inner tearing

layer. In this case, the full dispersion relation [39] reduces
to γ (1) = [�(1/4)/2π�(3/4)]2	′2

csd
3
e k/a for ρ2

s 
 d2
e , while

γ (2) = 	′
csdeρsk/aπ when ρ2

s 	 d2
e .

We denote by τ� = Lcs,�/vA the timescale for the plasma
to be expelled from the CS because of the Alfvénic outflow.
If the magnetic flux amplitude becomes nonlinear (with plas-
moid half-width wnl) in a time shorter than τ�, the CS is
broken by at least one plasmoid. Otherwise it remains stable.
Therefore, taking w(k, τ�) = 2(A0a/Bup)1/2e

1
2 τ�γ , the thresh-

old for the plasmoid formation can be written as

τ�γ = 2 ln

[
wnl

2

(
Bup

A0a

)1/2]
. (3)

Assuming that the needed amplification factor of the magnetic
flux perturbation is the same for the ρ2

s 
 d2
e and ρ2

s 	 d2
e

cases, requiring τ
(2)
� γ (2) ∼ τ

(1)
� γ (1), making use of the numer-

ical result (Lcs/de)(1)
� ∼ 10, and considering that for (ka)2 


1 we have 	′
csk ∼ 1/a2 ∼ 1/d2

e , with k ∝ 1/Lcs, gives us the
threshold condition

Lcs

de
= L(2)

cs,�

de
∝ Lcs

ρs
. (4)

We identified a proportionality coefficient for which the pro-
posed scaling, shown by the dashed blue line in Fig. 6,
correctly captures the plasmoid formation that occurs for
significantly lower values of the CS aspect ratio when
Lcs/ρs � 1.

While the aspect ratio of the CS controls the plasmoid
growth, the aspect ratio of the plasma flow channel regu-
lates the rate of inflowing plasma via mass conservation.
For de 	 ρs, the aspect ratios Acs and Aoutf essentially co-
incide since the plasma behaves as a one fluid. Therefore,
for an incompressible flow in steady state, the marginal
stability threshold A(1)

� ∼ 10 yields the reconnection rate
Rrec ∼ 0.1vABup. On the other hand, for ρs � de, two-fluid
effects lead to a decoupling of the plasma flow chan-
nel from the electric current density, and in this case we
find that Rrec ∼ (δoutf/Loutf )(2)

� vABup ∼ 0.1vABup even when
A(2)

� 
 A(1)
� . Since the global reconnection rate is controlled

by the marginally stable CS [13], eventually Rrec ∼ 0.1vABup

in the entire green and blue parameter space regions of Fig. 6.
In summary, we have identified, with two-fluid numerical

simulations and analytical arguments, the marginal stability
conditions for the development of plasmoids in collisionless
reconnecting CS, in the strong guide field regime. We find that
in the collisionless regime, reconnecting CS are unstable to
the formation of plasmoids for critical aspect ratios that can be
as small as Lcs/δcs � 10. For the marginally stable CS, we find
that the aspect ratio of the outflow channel is Loutf/δoutf ∼ 10
independent of the microscopic plasma parameters. A new
phase space diagram spanned by Lcs/de and Lcs/ρs for col-
lisionless reconnection is presented. Our results, obtained by
means of a collisionless fluid model with strong guide field,
yield a threshold for plasmoid formation, measured in terms
of the ratio between the plasma size and the sonic Larmor
radius, that appears to be smaller than the one predicted by
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Refs. [14,40] based on kinetic simulations. Our results allow
one to separate the collisionless laminar regime of reconnec-
tion from the collisionless plasmoid-mediated regime. The
properties of the marginally stable CS obtained in this study
contribute to the understanding of the rate of collisionless
reconnection mediated by the plasmoid instability.
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