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Extreme wave excitation from localized phase-shift perturbations
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The modulation instability is a focusing mechanism responsible for the formation of strong wave localizations
not only on the water surface, but also in a variety of nonlinear dispersive media. Such dynamics is initiated from
the injection of sidebands, which translate into an amplitude modulation of the wave field. The nonlinear stage of
unstable wave evolution can be described by exact solutions of the nonlinear Schrödinger equation (NLSE). In
that case, the amplitude modulation of such coherent extreme wave structures is connected to a particular phase-
shift seed in the carrier wave. In this Letter, we show that phase-shift localization applied to the background,
excluding any amplitude modulation excitation, can indeed trigger extreme events. Such rogue waves can be
for instance generated by considering the parametrization of fundamental breathers, and thus by seeding only
the local phase-shift information to the regular carrier wave. Our wave tank experiments show an excellent
agreement with the expected NLSE hydrodynamics and confirm that even though delayed in their evolution,
breather-type extreme waves can be generated from a purely regular wave train. Such a focusing mechanism
awaits experimental confirmation in other nonlinear media, such optics, plasma, and Bose-Einstein condensates.
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The formation of extreme wave events, so-called rogue
waves, can be understood and modeled by the nonlinear
Schrödinger equation (NLSE) or its higher-order forms [1–4].
One way to control such rogue waves in a laboratory environ-
ment is by the use of fundamental breather solutions in the
form of time-periodic, doubly localized, and space-periodic
forms. These are also known as the Akhmediev breather
(AB) [5], Peregrine breather (PB) [6], and Kuznetsov breather
(KB) (also referred to in the literature as the Kuznetsov-
Ma breather) [7–10], respectively. Such solutions are based
on long-wave perturbation of a regular wave train with a
precise dedicated phase-shift of the carrier at a specific lo-
cation and instant. Even though being exact solutions of a
universal weakly nonlinear wave model, breather waves are
crucial in understanding the formation of extreme events in
different dispersive wave systems governed by nonlinear-
ity [11–17]. While modulation instability (MI) is usually seen
as a mechanism that leads, through the amplification of side-
bands, to a strong amplitude modulation, these phase-shifts
always accompany such MI-induced amplitude reshaping. In-
deed, the initial temporal phase profile, or equivalently, the
input phase relationship in Fourier space (i.e., the relative
phase between the MI sidebands and the central carrier),
have a deep impact on the type of amplitude modulation

*yuchen.he@sydney.edu.au
†andy.witt@tuhh.de
‡norbert.hoffmann@tuhh.de

that develops upon propagation [18,19], as recently observed
experimentally [20–22].

A previous experimental study has revealed that locally the
same type of maximal breather compression can be achieved
by just starting from the solution’s amplitude modulation of
the carrier wave only and ignoring any local phase-shift in the
wave field for the determination of the experiments’ bound-
ary conditions [23]. The aim of this Letter is to show that
the initial phase-shift profile contains the leading information
that allows the breathers to undergo the peak growth and
focusing process even when the input amplitude modulation
is suppressed. Indeed, our experimental investigation provides
evidence that extreme wave events can be solely triggered by a
localized phase-shift perturbation (PSP) of a breather solution
while ignoring the amplitude modulation information. Thus,
the boundary condition consists of a regular wave train with a
localized PSP as determined by a fundamental breather wave
envelope. Our wave maker’s motion can be controlled in such
a manner to locally adjust its motion to accurately generate
such initial and small perturbations in a regular carrier.

To achieve this, we use specific phase-shifts proper to the
three fundamental breathers, as mentioned above, and show
that the extreme localization achieved in the wave flume
resembles those of pure breathers, even though being spa-
tially delayed with respect to the exact solution. In fact, the
smaller the phase-shift applied to the carrier, the better is
the agreement with the respective pure breather solution. All
observations are in reasonable agreement with the NLSE pre-
diction despite the very strong wave focusing reached. Our
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FIG. 1. (a)–(c) Akhmediev breather, contrasting spatiotemporal evolutions arising from (a) the full analytical solution and (b) the phase-
shift perturbation (PSP); (c) temporal profile of the exact solution compared to that generated from the PSP at the location of maximal
compression. (d)–(f) Peregrine breather, contrasting spatiotemporal evolutions arising from (d) the full solution and (e) the PSP; (f) comparison
of transverse profiles at maximal compression. (g)–(i) Kuznetsov breather, contrasting spatiotemporal evolutions arising from (g) the full
solution and (h) the PSP; (i) comparison of transverse profiles at maximal compression. Here, the adopted carrier wave steepness ak = 0.1 and
carrier amplitude a = 0.01 m. All waves are excited at x∗ = −30 m, i.e., 30 m ahead of the first focus point (x∗ = 0) of the exact solution.

results suggest that the analysis of ocean rogue waves should
also comprise the local phase information to fully understand
the early stage of formation.

The NLSE is the simplest framework to describe the
wave propagation of nonlinear dispersive waves [24]. For the
deep-water wave problem, the slowly varying wave envelope
�(x, t ) around the wave number k satisfies [2,25]
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where ω = √
gk is the dispersion relation, g being the gravita-

tional acceleration.
As a result of integrability a variety of steady and pulsating

solutions have been derived [26,27]. We will not recall the
parametrization of three fundamental breathers on a finite-
amplitude carrier as these have been discussed in many past
publications [10,28–30]. The family of ABs describe the non-
linear stage of MI and are periodic in time when considering
the framework (1), the PB is the limit case of zero modula-
tion frequency, i.e., infinite modulation period, and the KBs
the space periodic solution, which starts its evolution from a
solitonic perturbation on the carrier. As such, the KB never
converges to a uniform amplitude. All these solutions have
been observed in a variety of nonlinear dispersive media and,
for more details, we refer the reader to Refs. [10,28–31].
In water waves the boundary conditions at beginning of the
flume consist of a time series of surface displacements. The
latter are driving the wave maker while its mechanical mo-
tion is linearly proportional to the surface elevation signal
as determined by theory. To drive the wave maker and to
observe NLSE solitons or breathers, it is sufficient to use
the expression of surface elevation defined to first order of
approximation [31]

η(x, t ) = Re{�(x, t ) exp [i(kx − ωt )]}. (2)

Given an amplitude of the background a, the hydrodynamic
deep-water Akhmediev, Peregrine, or Kuznetsov breather

�(x, t ) can be parametrized as follows [10,20,32]:
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b = √
8a(1 − 2a), and � = 2

√
1 − 2a. For 0 < a < 0.5,

�(x, t ) is the Akhmediev breather (maximal growth rate
when a = 0.25), while for a > 0.5, �(x, t ) is the Kuznetsov
breather. When a −→ 0.5, �(x, t ) converges to the rational
Peregrine breather solution [6,29].

As mentioned in Ref. [23], each of these exact solutions
�(x, t ) can be written as the amplitude modulation function
A(x, t ) and a respective phase-shift φ(x, t ), both evolv-
ing in time and space. Mathematically speaking, �(x, t ) =
A(x, t ) exp[iφ(x, t )]. Also in the latter work, it has been shown
that wave-breather-like focusing can develop when starting
from boundary conditions at beginning of the flume, involving
the amplitude modulation only without consideration of the
breather-specific local phase-shift.

Next, we propose an extreme wave focusing mechanism,
which originates in a regular and amplitude-modulation-free
wave train, with a PSP, i.e., a localized phase-shift. While
a similar mechanism was originally investigated theoreti-
cally in Ref. [33] for abrupt phase jumps, in this Letter, we
rather consider the PSP obtained by impressing the localized
phase profile of the pure breather solution at a given distance
from the focus point. Examples of evolution, obtained from
the NLSE (1) are shown in Figs. 1(a)–1(c) for the AB, in
Figs. 1(d)–1(f) for the PB, and in Figs. 1(g)–1(i) for the KB.
In all examples x∗ = 0 stands for the first focus point, and
the PSP is excited at x∗ = −30 m. As shown, in all three
different breather cases considered, a strong wave envelope
compression is expected to occur in the condensate from
a PSP triggering only. We emphasize that the smaller the
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FIG. 2. The University of Sydney’s 30 m water wave tank
comprising a piston-type wave maker and an artificial-grass wave
absorbing beach installation.

amplitude modulation as defined by the exact solution, and
as such the smaller the phase-shift, the better the agreement
of maximal envelope compression profiles between the NLSE
solution and the one resulting from the PSP-initialization.
Note that similarly to the mechanism studied in Ref. [23], the
location of maxima deviates and is retarded compared to the
motion of the exact solution. Moreover, we can clearly notice
that deviations are rather substantial when considering the KB
case. The reason for this is that the solution never converges
to the background and thus triggering the boundary conditions
from a regular wave train with φKB(x∗, t ) will substantially
deviate compared to the AB- or PB-type dynamics. In any
event, the PSP-induced dynamics for both the PB and the KB
cases show a postfocusing dynamics dominated by fissions
into pairs of quasi-KB breathers with opposite velocities [23],
whose observation, however, requires wave facility with a
length far exceeding that of the present installation.

In the following we report on our experimental investiga-
tion. We adopt the same setup as described in Ref. [16] and
depicted in Fig. 2.

The wave facility has a length of 30 m with an effective
wave propagation distance of 25 m when considering the
wave absorbing installation opposite to the piston-type wave
maker. The water depth adopted is of h = 0.7 m and the
carrier wave number is chosen to satisfy operations in the
deep-water regime, i.e., kh > π . In fact, the carrier parame-
ters will be defined by the wave steepness parameter ak and
carrier amplitude a. The wave number k and wave frequency
ω are connected through the linear dispersion relation as
mentioned above. The wave gauges’ temporal resolution is
0.03 s while the spatial resolution is 0.3 m. To extract the
wave envelope dynamics in time and space, we first apply
the Hilbert transform to each collected and bandpass-filtered
surface elevation time series. A bandpass filter is crucial to
exclude the effects of bound waves and subsequent oscillation
of the wave envelope [2,34]. As a next step, we interpolate and
apply a moving-average smoothing. Moreover, we emphasize
that injected phase-shift φ(x∗, t ), as defined by the breather
solution, is chosen to be small to enable the proper generation
of a regular wave train by the wave maker. In fact, because the
linear wave maker’s transfer function is frequency dependent,
initiating the experiments from a large PSP could compromise
the steadiness of wave amplitude generation. As such, the PSP
must be small, i.e., as defined at a location of early stage of
breather initialization and focusing. Indeed, the smaller the
carrier perturbation of an AB or PB, i.e., the smaller x∗, the
smaller is the phase-shift [35,36]. The choice of x∗ is bound

FIG. 3. AB evolution for ak = 0.12 and a = 0.01 m with an ex-
pected amplitude amplification of 2.41 (the case of maximal growth
rate). (a) Propagation of the wave envelope as measured in the
flume. (b) NLSE simulations with the same boundary conditions as
in (a). (c) Experimental observation of the AB-PSP in the regular
background case. (d) NLSE simulations with the same boundary
conditions as in (c). (e) Analytical and phase-shifted AB wave el-
evation at 2.5 m from the wave maker, which corresponds to the
location of the first gauge G1. (f) Analytical and phase-shifted AB
wave elevation boundary conditions at x∗ = −16 m as implemented
in the experiments and simulations.

by the length of the wave facility to allow for the observation
of the complete first focusing within the tank length for either
the exact breather or the respective case of breather PSP in
the regular carrier wave. This also applies to the carrier wave
parameters, which must be cautiously chosen too. Note that
the imposed phase-shift is still larger than any experimental
noise.

As a starting point, our experimental investigation is initi-
ated by investigating the AB dynamics triggered by both exact
and PSP configurations as discussed above and illustrated in
Figs. 1(a)–1(c). The results are shown in Fig. 3.

All collected measurements of the exact time-periodic
breather show a reasonable agreement with NLSE theory.
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FIG. 4. PB evolution for ak = 0.1 and a = 0.01 m with an ex-
pected theoretical amplitude amplification of 3. (a) Propagation of
the wave envelope as measured in the flume. (b) NLSE simulations
with the same boundary conditions as in (a). (c) Experimental ob-
servation of the PB-PSP in the regular background case. (d) NLSE
simulations with the same boundary conditions as in (c). (e) Analyt-
ical and phase-shifted PB wave elevation at 2.5 m from the the wave
maker, which corresponds to the location of the first gauge G1. (f)
Analytical and phase-shifted PB wave elevation boundary conditions
at x∗ = −12 m as implemented in the experiments and simulations.

This applies for both the case when considering the pure AB
solution of the NLSE and the regular wave train in which the
AB-type phase-shift has been locally seeded. Remarkably, a
gradual focusing clearly emerges from the phase-shift seed-
ing, in agreement with the numerical NLSE expectations.

The same excellent agreement in the wave focusing is also
observed for case of PB, which is illustrated in Fig. 4.

In this case one particular feature of focusing from the
PSP in the background of constant amplitude becomes clear.
The retardation and delay in the focusing from the single
unstable Peregrine packet is noticeable. A similar feature has
been observed when ignoring the breather-specific phase-shift
and considering only the amplitude modulation [23]. These
observations also expose the limitations of our experimental

FIG. 5. KB evolution for ak = 0.1 and a = 0.01 m with an ex-
pected amplitude amplification of 3.3. (a) Propagation of the wave
envelope as measured in the flume. (b) NLSE simulations with the
same boundary conditions as in (a). (c) Experimental observation of
the KB-PSP in the regular background case. (d) NLSE simulations
with the same boundary conditions as in (c). (e) Analytical and
phase-shifted KB wave elevation at 2.5 m from the wave maker,
which corresponds to the location of the first gauge G1. (f) Ana-
lytical and phase-shifted KB wave elevation boundary conditions at
x∗ = −12 m as implemented in the experiments and simulations.

setup. Since we start from a small phase-shift value in the
carrier, the retardation of maximal wave focusing of the waves
would require a long fetch to observe interesting postfocusing
dynamics (recurrence, triangular patterns, etc.). This is also
the case for the KB. We chose the case of an amplitude
focusing factor of 3.3 and as the previous breather cases, the
two types of wave envelope dynamics are shown in Fig. 5.

We annotate that we employ the same color-bar scale in all
the figures to make significant wave focusing more distinct.
Overall, all cases show a reasonable good agreement with the
weakly nonlinear NLSE framework approximated from the
Euler equations to third order in steepness. That said, a typical
wave asymmetry is clearly noticeable in the experimental
data. The latter can be explained and modeled by the modified
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NLSE accounting for fourth-order effects in steepness in the
form of higher-order dispersion and mean flow [37–39]. These
effects captured by the modified NLSE [40] were also ob-
served and studied in more recent experiments in the context
of nonlinear wave-packet evolution [17,41,42].

In summary, we have reported an experimental study con-
firming a proof of concept that rogue waves can appear from
a localized PSP in a regular wave train. Such PSP can be for
instance constructed from breather solutions of the nonlinear

Schrödinger equation, and then seeded in a condensate. Our
wave tank measurements underline that nonlinear focusing
can be exhibited by PSP, confirming yet another focusing
mechanism beyond the wave modulation or superposition
principle. We anticipate future experimental studies exploring
such focusing dynamics in various wave systems governed
by dispersion and nonlinearity [11,43,44] and also the de-
velopment of theoretical techniques to predict such dynamics
within the NLSE framework and beyond [45,46].
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