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Optimizing embedded systems, where the optimization of one depends on the state of another, is a formidable
computational and algorithmic challenge, that is ubiquitous in real world systems. We study flow networks,
where bilevel optimization is relevant to traffic planning, network control, and design, and where flows are
governed by an optimization requirement subject to the network parameters. We employ message passing
algorithms in flow networks with sparsely coupled structures to adapt network parameters that govern the
network flows, in order to optimize a global objective. We demonstrate the effectiveness and efficiency of the
approach on randomly generated graphs.
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Many problems in science and engineering involve hier-
archical optimization, whereby some of the variables cannot
be freely varied but are governed by another optimization
problem [1]. As a motivating example, consider the task of
designing a network (e.g., a road or communication network)
that maximizes the throughput of commodities or informa-
tion flow. While the designer controls the network parameters
(upper-level optimization), traffic flows are determined by the
network users who maximize their own benefit (lower-level
optimization) [2]. Therefore, the designer needs to adapt the
network intricately, taking into account the reaction of net-
work users. Similarly, many physical systems admit a certain
extremization principle for given controllable system param-
eters, e.g., minimal free energy in thermal equilibrium [3],
electric flows in resistor networks that minimize dissipation
[4,5], and entropy maximization and parameter optimization
that are used across disciplines in inference and learning
tasks [6,7]. Adapting system parameters to extremize a given
objective requires bilevel optimization, which considers both
system parameters and the inherent optimization of the phys-
ical variables.

Bilevel optimization is intrinsically difficult to solve [8].
In fact, even the simple instance where both levels are lin-
ear programming tasks is NP-hard [9,10]. Generic methods
for bilevel optimization include (i) bilevel programming ap-
proach, by expressing the lower-level optimization problem as
nonlinear constraints and solving the bilevel problem as global
optimization [11,12]; (ii) gradient descent method by comput-
ing the descent direction of the upper-level objectives while
keeping the valid lower-level state variables [13,14]. The for-
mer introduces complicated nonlinear constraints, making the
reduced single-level problem difficult in general, while the
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latter can be challenging in computing the descent direction
[8]. Moreover, such generic methods do not utilize existing
system structure to simplify the task.

In this Letter, we develop message-passing (MP) algo-
rithms to tackle bilevel optimization in sparse flow networks.
The advances presented in this work are three-fold: (i) the
derived MP algorithms are intrinsically distributed, scalable,
and generally efficient; (ii) they are applicable to bilevel opti-
mization problems with combinatorial constraints, which are
difficult for generic bilevel programming approaches; (iii)
these algorithms can successfully deal with nonsmooth flow
problems, having potential applications for transport based
approaches in machine learning [15–17].

Routing Game. We focus on a network planning problem
in the routing game setting, widely used in modeling route
choices of drivers [18]. Users on the road network make
their route choices in a selfish and rational manner, where the
corresponding Nash equilibrium is generally not the most ben-
eficial for the global utility, measured by the total travel time
of all users [2,19]. The operator’s task is to set the appropriate
tolls or rewards on network edges to reduce the total travel
time while taking into account the reactions of users to the
tolls [20–22]. Recently, the idea of reducing traffic congestion
by economic incentives to influence drivers’ behaviors has
regained interest [23–25], partly due to the deployment of
smart devices and data availability [26–28]. Here, we focus
on the algorithmic aspect of toll optimization.

The road network is represented by a directed graph
G(V, E ), where V is the set of nodes (junctions) and E
the set of directed edges (unidirectional roadways), having
one connected component. Users routing from an origin
node i0 to a destination node D would select a path
P = ((i0, i1), (i1, i2), ..., (in−2, in−1), (in−1,D)) by minimiz-
ing their total travel time

∑
e∈P �e(xe), or alternative cost,

where the edge flow xe represents the number of users choos-
ing edge e and �e(xe) is the corresponding latency function. It
is assumed that �e is monotonically increasing with the edge
flow xe. The social cost is defined as the total travel time of
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(a) (b)

FIG. 1. (a) Top: a directed road network section with a junction
node i. Bottom: the corresponding factor graph representation; node
i is a factor node and is marked by a square. (b) Bilevel MP for
toll planning. Blue arrows indicate the directions of messages. The
equilibrium flow x∗

e is determined in the lower level, while the toll τe

is set in the upper level.

all users H = ∑
e∈E xe�e(xe), which is the overall objective of

the bilevel optimization problem.
We consider the limit of a large number of users, where

each user controls an infinitesimal fraction of the overall traf-
fic, such that the edge flow xe is a continuous variable. This is
termed the nonatomic game setting [19]. As the equilibrium
reached by the selfish decisions of users does not generally
achieve the lowest social cost, we seek to place tolls {τe} on
edges to influence users’ route choices. Gauging the mone-
tary penalty at the same scale as latency, users will choose
a path P that minimizes the combined total journey cost in
latency and tolls

∑
e∈P [�e(xe) + τe]. If tolls can be placed

freely on all edges, marginal cost pricing is known to induce
socially optimal flow for nonatomic games [21]. However,
it is usually infeasible to set an unbounded toll on every
road, which renders marginal cost pricing less applicable. We
therefore consider restricted tolls 0 � τe � τmax

e ; an edge e
is not chargeable when τmax

e = 0. For simplicity, we do not
consider the income from tolls to contribute to the social cost
[29]. In total, �i users are traveling from node i to a universal
destination D, where the case with multiple destinations is
discussed in the supplemental material (SM) [30]. The result-
ing edge flows satisfy the non-negativity xe � 0 and the flow
conservation constraints

Ri = �i +
∑
e∈∂ in

i

xe −
∑

e∈∂out
i

xe = 0, (1)

where ∂ in
i and ∂out

i are the sets of incoming and outgoing
edges adjacent to node i. It has been established that the
edge flows in user equilibrium (i.e., the Wardrop’s equilib-
rium [2]) can be obtained by minimizing a potential function
� = ∑

e∈E φe(xe) := ∑
e∈E

∫ xe

0 [�e(y) + τe]dy subject to the
constraints of Eq. (1) [31,32]. We emphasize that the potential
function �(x) only plays an auxiliary role in defining the
equilibrium flows; the values of � do not correspond to the
routing costs of users.

The lower-level optimization is a nonlinear min cost flow
problem, where edge flows are coupled through the conser-
vation constraints in Eq. (1), represented as factor nodes in
Fig. 1(a). We employ the MP approach developed in Ref. [33]
to tackle the nonlinear optimization problem. It turns the
global optimization of the potential into a local computation

of the following message functions:

�i→e(xe) = min
{xe′�0}|Ri=0

∑
e′∈∂i\e

[�e′→i(xe′ ) + φe′ (xe′ )], (2)

where ∂i = ∂ in
i ∪ ∂out

i and �i→e(xe) relates to the optimal
potential function contributed by the flows adjacent to node
i where the flow on edge e is set to xe, taking into account
flow conservation at node i. In Eq. (2), denoting e′ = (k, i),
we can write �e′→i(xe′ ) = �k→e′ (xe′ ); therefore only factor-
to-variable messages are needed. The message �k→e′ (xe′ ) can
be obtained recursively by an expression similar to Eq. (2),
but using the incoming messages from its upstream edges
{l → k|(l, k) ∈ ∂k\i}. Upon computing the messages itera-
tively until convergence, we can determine the equilibrium
flow x∗

e on edge e = (i, j) by minimizing the edgewise full
energy dictated by the nonlinear cost φe(xe) and messages
from both ends of edge e, defined as �full

e (xe) = �i→e(xe) +
� j→e(xe) + φe(xe).

This algorithm can be demanding when different values
of xe are needed to determine the profile of the message
�i→e(xe). To reduce the computational cost, we consider the
approximation of the message in the vicinity of some working
point x̃i→e as

�i→e(x̃i→e + εe) ≈ �i→e(x̃i→e) + βi→eεe + 1
2αi→e(εe)2,

(3)
where βi→e and αi→e are the first and second derivatives of
�i→e evaluated at x̃i→e, assuming the derivatives exist. For
a particular x̃i→e, the computation of the message function
�i→e(xe) in Eq. (2) reduces to the optimization of βi→e and
αi→e by using {x̃k→e′ , βk→e′ , αk→e′ |e′ = (k, i) ∈ ∂i\e}. The
working point x̃i→e is updated by pushing it towards the
minimizer x∗

e of the full energy �full
e (xe) gradually [30].

The iterative updates of the coefficients {βi→e, αi→e} and the
working points {x̃i→e} constitute a perturbative version of the
original MP algorithm, which only requires to keep track of
a few coefficients rather than the full profile of �i→e, making
it tractable [33]. It has been shown to work remarkably well
in many network flow problems [34], while the algorithm
may not converge in problems with nonsmooth characteristics
[33]. We discover that the non-negativity constraints on flows
can result in a nonsmooth message function �i→e(xe), which
makes the approximation of Eq. (3) inadequate. One solution
is to approximate �i→e(xe) by a continuous and piecewise
quadratic function with at most two branches, where each
branch m is a quadratic function governed by three coeffi-
cients {x̃i→e, β

(m)
i→e, α

(m)
i→e}, as illustrated in Fig. 2(a). Taking

into account the nonsmooth structures, MP algorithms con-
verge well even in loopy networks and provide the correct
solutions [30]. We demonstrate the case of random regular
graphs (RRG) with degree 3 in Fig. 2(b).

For bilevel optimization, we notice that the cost func-
tion of the upper layer H (x) has a similar structure as
�(x). Therefore, one can apply a similar MP procedure as
Hi→e(xe) = min{xe′ }|Ri=0

∑
e′∈∂i\e[He′→i(xe′ ) + xe′�e(xe′ )]. The

message Hi→e(xe) can also be approximated by a piece-
wise quadratic function with at most one break point, where
each branch m has the form H (m)

i→e(x̃i→e + εe) ≈ H (m)
i→e(x̃i→e) +

γ
(m)

i→eεe + 1
2δ

(m)
i→e(εe)

2
. As the equilibrium state is determined

in the lower level, the working points {x̃i→e} in the lower-level
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(a) (b)

FIG. 2. (a) A nonsmooth message function �i→e(xe) with one
breakpoint. (b) Convergence of the single-level MP algorithm for
computing equilibrium flows in routing games in random regular
graphs with degree 3 of different sizes N = |V |. An affine latency
model �e(xe) = te(1 + sxe/ce) is considered, where te and ce are
the free traveling time and edge capacity, respectively, while s is a
sensitivity measure of latency to congestion [19]. Random sequential
schedule of MP updates has been used.

MP are also used for the upper level. The landscape of the
edgewise full cost H full

e (xe) = Hi→e(xe) + Hj→e(xe) + xe�(xe)
provides the information for setting the toll. Specifically, the
toll is updated by minτe H full

e (x∗
e (τe)), where the toll-dependent

equilibrium flow x∗
e is provided by the lower-level messages.

In practice, an approximate H full
e is sufficiently informative

for updating tolls. The basic structure of such bilevel MP is
illustrated in Fig. 1(b), while details are provided in the SM
[30].

We demonstrate the effectiveness of the proposed bilevel
MP algorithm for tasks on RRG in Fig. 3(a), where the setup
is the same as in Fig. 2(b). Experiments on other networks
and the cases of multiple destinations are discussed in the
SM [30]. Although bilevel message passing does not gen-
erally converge to a set of unique optimal tolls due to the
nonconvex nature of the problem, we found that the social
costs are reduced when tolls are updated during MP. The
scaling relation in the inset of Fig. 3(a) empirically indicates

(a) (b)

FIG. 3. Bilevel MP algorithm for routing games on RRG. (a) Ef-
fect of tolls on the fractional social cost reduction (H (x∗(τ)) −
HS )/(HN − HS ), where HS and HN represent the social costs at the
social optimum and the Nash equilibrium without tolls. Tolls τ are
recorded during bilevel MP updates, based on the resulting equilib-
rium flows x∗(τ) and social cost H (x∗(τ )). Each data point is the
average of 10 different problem realizations. Each sweep consists
of 40|E | local MP steps and 100 edgewise toll updates in a random
sequential schedule. A fixed number of sweeps without toll updates
are performed to warm up the system. Inset: panel (a) with x axis as
MP steps rescaled by |E |2. (b) Fractional cost reduction as a function
of the fraction of tollable edges on an RRG with N = 200. A random
selection of edges to be charged is compared with selections based
on edgewise full cost reduction H full

e (x∗
e ).

that the number of updates is O(|E |2) for achieving a given
cost reduction. Moreover, the MP algorithm can be imple-
mented in a fully distributed manner, unlike the generic global
optimization approach [30]. Note that we have utilized the
special setup of routing games here, where the social optimum
HS = minx H (x) can be obtained a priori for this benchmark.
Such information may be unavailable in other bilevel opti-
mization problems. The toll optimization problem can also be
tackled by the bilevel programming approach [11,12]; how-
ever, it requires a treatment with mixed integer programming,
which is centralized and generally not scalable, unlike the MP
approach [30].

Combinatorial Problems. In practice, it may be infeasible
to charge for every edge, but desirable to choose a subset
of tollable edges for toll setting [35], which is a difficult
combinatorial optimization problem. As the cost landscape is
manifested locally by the message functions, we heuristically
select the tollable edges according to the largest possible re-
duction in edgewise full cost H full

e (x∗
e ) due to tolling, which

effectively selects the chargeable links as seen in Fig. 3(b).
Such combinatorial problems are generally very difficult
for traditional bilevel-optimization methods, while MP algo-
rithms can provide approximate solutions in some scenarios.

Another important class of combinatorial problems is the
atomic games which consider integer flow variables {xe} [36].
In principle, atomic games can be solved via the same MP
procedure as in Eq. (2), where the message �i→e(xe) is de-
fined on a one-dimensional grid. Using the techniques in
Refs.[37–41], the MP approach provides a scalable algorithm
to approximately tackle the difficult combinatorial optimiza-
tion of atomic games in a single level; it can also solve
instances of the bilevel toll optimization problems. However,
its performance is suboptimal in large networks and for cases
with heavy loads [30]. Nevertheless, we found some interest-
ing patterns of the optimal tolls in a realistic test case network
using this method [30].

Flow Control. We consider the problem of tuning net-
work flows to achieve certain functionality. In this example,
resources need to be transported from source nodes to desti-
nation along edges in an undirected network G(V, E ), where
the equilibrium flows {x∗

i j} minimize the transportation cost
C = ∑

(i, j)∈E
1
2 ri jx2

i j , subject to flow conservation constraints
similar to Eq. (1). The major difference of this model from
routing games is that the network is undirected, where edge
(i, j) can accommodate either the flow from node j to i or i to
j. The objective is to control the parameters {ri j} to reduce or
increase the flows on some edges. The task of reducing edge
flows has applications in power grid congestion mitigation
in the direct current (DC) approximation [42], where ri j is
related to the reactance of edge (i, j), controllable through
devices in a flexible alternating current transmission system
(FACTS) [43]. On the other hand, the task of increasing
certain edge flows has been used to model the tunability of
network functions, which is applicable in mechanical and
biological networks [44] as well as learning machines in meta-
materials [45].

As an example, we consider the task of flow control
such that the relative increments of flows on the targeted

edges T exceed a limit θ [44], i.e., ρi j = |xi j |−|x0
i j |

|x0
i j | − θ �
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(a) (b)

(c) (d)

FIG. 4. Bilevel optimization for flow control. An RRG (N =
200, degree 3) and a square lattice of size 15 × 15 are consid-
ered. The source and destination nodes, and the targeted edges are
randomly selected. (a) Left: MP for solving the lower-level equilib-
rium flow problem. Right: Computing gradients of the upper-level
objective function O. (b) Comparison of the gradients at initial r
computed by the MP approach (obtained by fixing r and passing
messages {mi→ j} and gradients { ∂O

∂mi→ j
}) and the GGD approach, with

|T | = 5, θ = 0.1. Inset: mean square error (MSE) of the gradients
by the MP approach during iterations, in comparison to the GGD
approach. Each sweep consists of 4|E | local MP steps. (c) MP for
minimizing the upper-level objective function O with θ = 0.1, where
one randomly selected control parameter is updated following the
descent direction every 4|E |/10 steps. (d) Fraction of successfully
tuned cases (satisfying O = 0) Psuccess out of 100 different problem
realizations of source/destination nodes, with |T | = 5, as a function
of the threshold θ .

0,∀(i, j) ∈ T (with x0
i j being the flow prior to tuning). It can

be achieved by minimizing the hinge loss (upper-level ob-
jective) O = ∑

(i, j)∈T −ρi j�(−ρi j ) =:
∑

(i, j)∈T Oi j , where
�(·) is the Heaviside step function. The task of congestion
mitigation in power grids can be studied similarly. We adopt
the usual MP algorithm to compute the equilibrium flows as

Ci→ j (xi j ) = min
{xki}|Ri=0

[
1

2
ri jx

2
i j +

∑
k∈Ni\ j

Ck→i(xki )

]
, (4)

where Ni is the set of neighboring nodes adjacent to node
i. The definition of the message Ci→ j (xi j ) differs from the
one of Eq. (2) in that it includes the interaction term on
edge (i, j), which yields a more concise update rule here.
Similar to Eq. (3), we approximate the message function by a
quadratic form Ci→ j (xi j ) = 1

2αi→ j (xi j − x̂i→ j )2 + const, such
that the optimization in Eq. (4) reduces to the computation
of the real-valued messages mi→ j ∈ {αi→ j, x̂i→ j} by passing
the upstream messages {mk→i}k∈Ni\ j , as illustrated on the left
panel of Fig. 4(a) [30]. Upon convergence, the equilibrium
flow x∗

i j can be obtained by minimizing the edgewise full cost
Cfull

i j (xi j ) = Ci→ j (xi j ) + Cj→i(xi j ) − 1
2 ri jx2

i j .
The variation of the control parameters {ri j} will impact

on the messages {mi→ j}, which in turn affects the equilib-
rium flows x∗ and therefore the upper-level objective O(x∗).

Specifically, one considers the effect of the change of ri j on
the targeted edge flows {x∗

pq}(p,q)∈T , derived by computing the

gradient ∂O
∂mi→ j

. The targeted edges provide the boundary con-

ditions as ∂Opq

∂mp→q
= ∂Opq

∂x∗
pq

∂x∗
pq

∂mp→q
,∀(p, q) ∈ T . As the messages

from node i to j are functions of the upstream messages, i.e.,
mi→ j = mi→ j ({mk→i}k∈Ni\ j ), the gradients on edge i → j are
passed backward to its upstream edges {k → i}k∈Ni\ j through
the chain rule, as illustrated in the right panel of Fig. 4(a). The
full gradient on a nontargeted edge k → i can be obtained by
summing the gradients on its downstream edges, computed as

∂O
∂mk→i

=
∑

l∈Ni\k

∑
mi→l ∈{αi→l ,x̂i→l }

∂O
∂mi→l

∂mi→l

∂mk→i
. (5)

The gradient messages { ∂O
∂mk→i

} are passed in a random and
asynchronous manner, resulting in a decentralized algorithm.

The gradient with respect to the control parameter on the
nontargeted edge (k, i) can be obtained straightforwardly as

∂O
∂rki

=
∑

m∈{α,x̂}

(
∂O

∂mk→i

∂mk→i

∂rki
+ ∂O

∂mi→k

∂mi→k

∂rki

)
, (6)

which serves to update the control parameter in a gradient
descent manner rki ← rki − s ∂O

∂rki
with certain step size s. The

gradient for targeted edges can be similarly defined [30]. The
control parameters are bounded to be ri j ∈ [0.9, 1.1], achieved
by necessary thresholding after gradient descent updates. In
this flow model, the gradient ∂O

∂rki
can be calculated exactly,

leading to a global gradient descent (GGD) algorithm. How-
ever, the GGD approach requires computing the inverse of
the Laplacian matrix in every iteration, which can be time
consuming for large networks. On the contrary, the gradients
are computed in a local and distributed manner in the MP
approach. Similar ideas of gradient propagation of MP have
been proposed in Refs. [46,47] in the context of approximate
inference, which are usually implemented centrally in the re-
versed order of MP updates, unlike the decentralized approach
presented here.

The gradient computed by the MP algorithm provides an
excellent estimation to the exact gradient, as illustrated in
Fig. 4(b). For bilevel optimization, we do not wait for the
convergence of the gradient passing, but update the control
parameters during the MP iterations to make the algorithm
more efficient. It provides approximated gradient information,
which is already effective for optimizing the global objective,
as shown in Fig. 4(c). The MP approach yields similar success
rates in managing the network flows for different thresholds
compared to the GGD approach as shown in Fig. 4(d), demon-
strating the effectiveness of the MP approach for the bilevel
optimization.

In summary, we propose MP algorithms for solving bilevel
optimization in flow networks, focusing on applications in the
routing game and flow control problems. In routing games,
the objective functions in both levels admit a similar struc-
ture, which leads to two sets of similar messages being
passed. Updates of the control variables based on localized
information appear effective for toll optimization. However,
the long-range impact of control variable changes should
be considered in some applications. This is accommodated
by a separate distributed gradient-passing process, which is
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effective and efficient in flow control problems. Leveraging
the sparse network structure, the MP approach offers efficient
and intrinsically distributed algorithms in contrast to global
optimization methods such as nonlinear programming, which
is more generic, but is generally not scalable and therefore
unsuitable for large-scale systems. The MP approach provides
effective algorithms for bilevel optimization problems that
are intractable or difficult to solve by global optimization
approaches, such as combinatorial problems. We believe that
these MP methods provide a valuable tool for solving diffi-
cult bilevel optimization problems, especially in systems with
sparsely coupled structures.

Source codes of this work can be found in Ref. [57].
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