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Solitary routes to chimera states
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We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to
the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the
thermodynamic limit we demonstrate how solitary states, after emerging from the synchronous state, become
chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with
an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive
chaos. We demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions,
due to different numbers of incoherent oscillators.
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Introduction. Solitary states in coupled oscillator
systems—a counterpart to classical solitons in spatially
extended systems—are an interesting nonlinear pattern and
have recently received much attention from researchers [1–9].
They play an important role as a cornerstone to more complex
self-organized states [10–13], e.g., in power grid models or
neuronal systems. Here, we will use them to explain the
origin of another intriguing nonlinear phenomenon in coupled
oscillator systems, namely, the emergence of coherence and
incoherence patterns, called chimera states [14]. They are
characterized as dynamical states, where in a self-organized
process a population of homogeneous oscillators splits into
coherent and incoherent parts. Since their discovery [15],
it was a major open question how their emergence can be
explained by a stepwise supercritical scenario [16]. Only
recently, two results in this direction have been obtained.
Haugland et al. [17] showed how they arise in a system with
global nonlinear coupling in a cascade of cluster splittings,
after in [18] clustering has been identified as a prerequisite for
chimera states. In [19] Franović et al. showed a completely
different scenario where in an array of excitable phase
oscillators with attractive and repulsive coupling, coherence
and incoherence patterns arise from a coherent Turing pattern
by a homoclinic bifurcation with subsequent transition to
extensive chaos.

In this Letter, we disclose another route to the emergence
of chimera states. We use a system of globally coupled
FitzHugh-Nagumo (FHN) oscillators to demonstrate how
solitary states can become an entry point to such patterns of
localized extensive chaos. This transition occurs as follows
(Fig. 1). For a fixed value of coupling strength parameter,
the system demonstrates a periodic solitary state, where a
single solitary oscillator performs an independent periodic
motion [red (gray) trajectory in Fig. 1(a)], while all other
oscillators form a stable synchronized cluster moving along
the limit cycle of the FHN system in the oscillatory regime
[black trajectory in Fig. 1(a)]. Upon a variation of the coupling
strength the temporal dynamics of the solitary oscillator be-
comes chaotic [Fig. 1(b)]. For even lower coupling strengths

we obtain solutions with several incoherent oscillators, each
displaying an independent chaotic motion [Fig. 1(c)]. The
results in Fig. 1 were obtained from random uniform initial
conditions. Note that all states coexist with the stable fully
synchronized solution and may coexist with stable solutions
with other cluster types. However, the solitary states in pan-
els (a) and (b) are the most probable ones, when random
initial conditions are chosen. In the parameter regime of the
chimera state, shown in panel (c), we observe the coexistence
of several similar states with different numbers of incoherent
oscillators, which we will discuss below in more detail.

Here, we provide a detailed study of this transition pro-
cess. First, we use a thermodynamic limit description for a
bifurcation analysis of the solitary states and demonstrate the
transition to chaos in a classical period doubling cascade.
Identifying in this way the parameter conditions and suitable
initial conditions, we show how the chaotic solitary state gives
rise to multiple coexisting chimera states characterized by dif-
ferent numbers of incoherent oscillators. Based on a Lyapunov
analysis, we show that they represent coexisting attractors
with extensive chaos of different Lyapunov dimension.

Our model is a globally coupled system of N identical FHN
oscillators:

ε
dui

dt
= ui − u3

i

3
− vi + σu(ũ − ui ) + σv (ṽ − vi ),

dvi

dt
= ui + a, ũ = 1

N

N∑

j=1

u j, ṽ = 1

N

N∑

j=1

v j, (1)

i = 1, . . . , N , where ui and vi are the activator and inhibitor
variables of the ith oscillator, respectively, and ε determines
the timescale separation between the fast (u) and the slow (v)
variable. The strength of the coupling to the mean fields ũ and
ṽ is given by σu and σv , respectively. Throughout the Letter we
fix the threshold parameter a = 0.5 in the oscillatory regime
(|a| < 1) far away from the Hopf bifurcation and use a mod-
erate timescale separation ε = 0.1.
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FIG. 1. Phase portraits of different types of solutions for glob-
ally coupled FHN oscillators (1). Trajectories of coherent (black)
and incoherent (in color) oscillators. (a) Periodic solitary state at
σu = 0.14; (b) chaotic solitary state at σu = 0.12; and (c) chimera
state with four incoherent oscillators at σu = 0.11. Other parame-
ters: N = 100, a = 0.5, ε = 0.1, and σv = 0.15. All results were
obtained from random initial conditions, uniformly distributed in
the intervals ui ∈ [−2.2, 2.2] and vi ∈ [−1.2, 1.2] for an integration
time of T = 5000 using the LSODA method of the PYTHON package
scipy.integrate with an initial time step of dt = 0.01.

Bifurcations of solitary states in the thermodynamic limit.
Cluster states are self-organized patterns arising naturally in
systems of identical units with global symmetric coupling.
Each cluster type is characterized by a partition of the set
of oscillators into subsets (clusters) with ui = u j and vi = v j

whenever two oscillators i and j belong to the same cluster.
By the symmetry of the system, this induces a corresponding
dynamically invariant subspace, allowing a low-dimensional
description of these states [20]. The situation with only one
cluster, i.e., all oscillators behaving identically, corresponds
to (global) synchrony. The dynamics of a cluster state can be
described by a reduced system within the invariant subspace
with one pair of variables u, v for each cluster and the cluster
sizes represented by corresponding weights in the mean fields
ũ, ṽ. Note that symmetry-breaking bifurcations, which are
transversal to the invariant subspace, are not covered by the
reduced system.

A specific type of cluster states are solitary states, where
N − 1 oscillators constitute one big cluster (“bulk”), while the
remaining single oscillator forms a (trivial) second cluster. For
the thermodynamic limit of large system size N → ∞, the
mean fields ũ, ṽ are equal to the bulk variables ub, vb and we
obtain

ε
dub

dt
= ub − u3

b

3
− vb,

dvb

dt
= ub + a,

ε
dus

dt
= us − u3

s

3
− vs + σu(ub − us) + σv (vb − vs),

dvs

dt
= us + a, (2)

FIG. 2. Bifurcations in the thermodynamic limit (2).
(a) Branches of synchronous and solitary states for varying σu

and fixed σv = 0.15. Synchronous branch (dotted horizontal line)
with transcritical instability (TC, green triangle). Bifurcating
solitary branch [stable (unstable) parts are solid (dashed)] with fold
bifurcation (LP, red square), period doublings [PD1, dark and PD2,
light-blue (shaded) diamonds; see inset panel], and onset of chaos
[PD∞, yellow (light shaded) diamond]. (b) Parameter plane (σu, σv)
with curves of fold (red solid), period-doubling (blue dashed), and
transcritical (green dash-dotted) bifurcations. Regions of stable
solitary states (red hatched shading), period-doubled solitary states
[blue (light) shading], and chaotic solitary states [yellow (dark)
shading]. The densely dotted horizontal line indicates the σv value
of panel (a). Other parameters are ε = 0.1 and a = 0.5.

where the coupling term in the equations for the bulk variables
vanishes. Therefore, the solitary oscillator can be interpreted
as a probe particle driven by a mean field to which its variables
us, vs do not contribute. We will use this system to study
the emergence of stable solitary states and their transition
from a periodic to a chaotic regime. To this end we em-
ploy a numerical bifurcation analysis based on path-following
methods using the software AUTO-07p [21]. The bifurcation
diagram in Fig. 2(a) shows a branch of synchronous periodic
states (dotted horizontal line) and a bifurcating branch of
periodic solitary states (dashed and solid black curve) for
varying σu at fixed σv = 0.15. The synchronous state does
not depend on the coupling σu, but its stability changes—a
well-known phenomenon [22] sometimes called Benjamin-
Feir instability [23]. This instability manifests itself in the
reduced system [Eqs. (2)] as a transcritical bifurcation [TC;
green triangle in Fig. 2(a)]. The dashed horizontal branch left
of this bifurcation corresponds to the now unstable synchro-
nized solution, whereas the dotted upper left branch is stable
only in the reduced system, but has no corresponding stable
solution in the full system. The bifurcating branch of solitary
states (black dashed curve) turns around in a fold bifurcation
(SN; red square), where it gains stability and gives rise to
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FIG. 3. Period-doubling cascade leading to a chaotic solitary
state. Top: Sampled values of us at Poincarè section ub = 0 for the
thermodynamic limit N = ∞ (black) and for the finite-size system
with N = 100 [red (gray)]. Bottom: First and second Lyapunov ex-
ponent for N = ∞ (black) and N = 100 [red (gray)]. The vertical
lines indicate the first two period doublings and the onset of chaos for
the thermodynamic limit (dotted) and the finite-size system (dashed,
with names in the top panel). Colors (shading) as in Fig. 2. Attractor
crisis at σu ≈ 1.1504 (N = ∞) and σu ≈ 0.1153 (N = 100).

stable periodic solitary states (black solid line). This stable
branch undergoes a supercritical period doubling bifurcation
[PD1; dark-blue (gray) diamond], where a stable branch of
period doubled solitary states (solid line in the inset) emerges.
By a subsequent period-doubling cascade chaotic solutions
similar to those shown in Fig. 1(b) arise. Having obtained
the bifurcation points for a fixed value of σv , we show in
Fig. 2(b) the corresponding bifurcation curves in the param-
eter plane (σu, σv). The green dash-dotted curve corresponds
to the transcritical instability of the synchronous state. The
region of stable periodic solitary states (shaded, hatched re-
gion) is bounded by the fold bifurcation curve (red solid) and
the period-doubling curve (blue dashed). Stable solitary states
with higher periodicity are found in the rather small region
[blue (light shaded)], before chaos takes over [yellow (darker
shaded)]. This region was obtained by scanning for a positive
leading Lyapunov exponent.

Chaotic solitary states. Next, we study the period-doubling
cascade of solitary states for a fixed value of σv = 0.15 and
decreasing coupling strength σu in the thermodynamic limit
and for a finite-size system with N = 100. To this end, we
analyze the sampled solution values us at a suitable Poincaré
section (Fig. 3, top panel) and the two largest Lyapunov ex-
ponents (bottom panel). For the finite-size system we observe
a slight shift to lower values of σu. In both cases at a critical
value of σu the chaotic attractor collapses in an attractor crisis
and the system falls back onto the synchronous state. In order
to validate the results of Fig. 2, we indicate the values of σu of
the first and second period doubling and the onset of chaos
both for the thermodynamic limit (densely dotted vertical
lines) and the finite-size system (dashed vertical lines).

Chimera states. In addition to the chaotic solitary states
that we have established so far, where a single oscillator
behaves chaotically and incoherent to the bulk, we demon-
strate now solutions with more than one incoherent oscillator.
We call a solution chimera state if all the oscillators apart
from a large bulk cluster behave incoherently, i.e., all clus-
ters except the bulk have size one. In this sense, a solitary
state is a chimera state with only one incoherent oscil-
lator. It turns out that chimera states appear in company
with the chaotic solitary state and both the parameter values
and initial conditions found in our bifurcation analysis of
the thermodynamic limit are a good starting point to find
them. Our strategy here is to pick a point (ūb, v̄b, ūs, v̄s) =
(−1.746 619,−0.029 879,−0.999 828,−0.774 970) on the
chaotic solitary trajectory of the thermodynamic limit sys-
tem, which we found for σu = 0.118, σv = 0.15 and generate
an initial condition for a finite-size system by initializing
a large number N − K of bulk oscillators at (ūb, v̄b). For
the remaining K potentially incoherent oscillators we use
independent small random perturbations of (ūs + δ, v̄s + δ),
equally distributed in a range of δ ∈ [−0.01, 0.01]. In order
to compensate the shift in σu for finite-size systems that
we have noticed before (cf. Fig. 3) we use in the simu-
lations a smaller value σu = 0.115. In this way we indeed
obtain four different chimera trajectories in systems with size
N ∈ {50, 100, 200, 400} and K ∈ {1, 2, 4, 8} incoherent oscil-
lators, respectively. We observe that the solitary state with
N = 50 and K = 1 upon doubling the system size induces
chimera states where the number K of incoherent oscillators
is doubled as well. In Fig. 4(a) we show the leading part of the
Lyapunov spectra for these states. We observe that the number
of positive exponents coincides with the number K of inco-
herent oscillators. This extensive behavior for large N is also
reflected by the Lyapunov dimension, which we estimated by
the Kaplan-Yorke formula. The fact that the dimensions, given
in the figure legend, are always bigger than K can be explained
by the fact that each incoherent oscillator, performing an inde-
pendent chaotic motion in the plane can make a contribution
of sightly more than one to the total attractor dimension. This
is different to the case of phase oscillators studied in [24],
where the Lyapunov dimension almost exactly coincides with
the number of incoherent oscillators.

Coexisting chimera states with different Lyapunov dimen-
sions. In order to find coexisting chimera states with different
numbers K of incoherent oscillators, we repeated the nu-
merical calculations for N = 400 with a slightly different
paradigm for the choice of the initial conditions. To allow
also for a larger number of incoherent oscillators, we ini-
tialize only N − KI oscillators at the bulk values (ūb, v̄b) =
(−1.746 619,−0.029 879). For the remaining KI initially in-
coherent oscillators, we pick again random perturbations
of (ūs + δ, v̄s + δ), but now with the perturbations chosen
equally distributed in a larger interval δ ∈ [−0.12, 0.12]. Dur-
ing a transient, which we took in our simulations as Tt =
5000, some of these initially incoherent oscillators will be ab-
sorbed by the bulk cluster. In some cases, they may also form
small clusters, such that the final state is not a chimera state
according to our definition above. In most cases, however,
we obtain a chimera state, now with different numbers K ∈
{5, . . . , 11} of incoherent oscillators. Note that our choice of
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FIG. 4. (a) Lyapunov spectra of chimera states demonstrating
extensive chaos for various N (see inset) and K with fixed K/N =
0.02. (b) Lyapunov spectra and attractor dimensions D (see inset) of
coexisting chimera states for N = 400 and various K , σu = 0.115.
(c) Probability distribution p(K ) for 100 random initial conditions,
σu = 0.115. Colored bins: chaotic chimera states; hatched: other
states. (d) and (e) show the same as (b) and (c) for σu = 0.112. Other
parameters: KI = 15, ε = 0.1, and a = 0.5.

σu = 0.115 is already beyond the region of existence of the
chaotic solitary state for the thermodynamic limit shown in
Fig. 3, such that it is no surprise that we do not find a state
with K = 1 here. In Fig. 4(b) we show the leading part of
the Lyapunov spectra for these coexisting states. Again, the
number of positive exponents coincides with the number K of
incoherent oscillators. Whenever two different random initial
conditions lead to the same K , we observe that the spectra
and the corresponding Lyapunov dimensions coincide up to
numerical accuracy. A histogram with the relative number
of counts p(K ) is given in panel (c). Only a small part (the
hatched part of the histogram) of the resulting states are not
chimera states. In these cases, some of the K oscillators not
belonging to the bulk form smaller clusters and the dynamics
may be not chaotic, but periodic with a high period.

Figures 4(d) and 4(e) show the same information for
a slightly smaller parameter value σu = 0.112. We see a
qualitatively similar scenario where the number of incoher-
ent oscillators ranges in K ∈ {10, . . . , 14} and we obtained
chimera states for all initial conditions. We conclude that
changing σu towards smaller values shifts both the upper
and the lower bound of possible numbers K to larger val-
ues. Within this range we observe a unimodal Gaussian-like
distribution (cf. [25]), where a similar effect has been shown
for coexisting twisted waves in a system of coupled phase
oscillators. Interestingly, we see that the Lyapunov dimension
may even decrease towards larger K , indicating that each
single incoherent oscillator behaves “less chaotic” close to the
upper bound of possible K and hence the total dimension may
decrease for an increasing number of incoherent oscillators.

All these coexisting chimera states can, in principle, be
found from initial conditions chosen completely randomly, as
presented in Fig. 1. However, exploring fully this rich scenario
of coexisting states of different types, some of them with very
small basins of attraction and hard to find from random initial
conditions, goes beyond the scope of this Letter, where we
decided to focus our attention on the emergence of chimera
states and their coexistence.

Conclusion and outlook. While it is well known that self-
organized wave patterns typically coexist within an interval
of possible different wave numbers (Busse balloon [26],
Eckhaus stability region [27,28]), and also regular cluster
solutions in globally coupled oscillator systems coexist for
different cluster sizes [29,30], we show here the coexistence
of coherence-incoherence patterns with different numbers of
incoherent oscillators, which are in fact coexisting chaotic
attractors with different Lyapunov dimensions. The incoher-
ent oscillators in these coexisting attractors show extensive
chaos of different dimensions. The total share of incoher-
ent oscillators in a chimera state is a macroscopic quantity.
Hence, within the range of such shares, where stable chimera
states exist, we find, for large systems, an increasing num-
ber of coexisting attractors with their numbers of incoherent
oscillators increasing as well. We showed that, varying the
coupling parameter, this extensive scenario is linked to the
thermodynamic limit of the solitary regime, where the range
of admissible numbers of incoherent oscillators shrinks down
to one single oscillator in an infinitely large system. For
this case, the emergence of the chaotic motion of the single
incoherent oscillator could be shown in a period-doubling
cascade.
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