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Large deviations in chaotic systems: Exact results and dynamical phase transition
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Large deviations in chaotic dynamics have potentially significant and dramatic consequences. We study
large deviations of series of finite lengths N generated by chaotic maps. The distributions generally display
an exponential decay with N , associated with large-deviation (rate) functions. We obtain the exact rate functions
analytically for the doubling, tent, and logistic maps. For the latter two, the solution is given as a power series
whose coefficients can be systematically calculated to any order. We also obtain the rate function for the cat map
numerically, uncovering strong evidence for the existence of a remarkable singularity of it that we interpret as
a second-order dynamical phase transition. Furthermore, we develop a numerical tool for efficiently simulating
atypical realizations of sequences if the chaotic map is not invertible, and we apply it to the tent and logistic
maps.
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Introduction. Classical chaos is a fundamental property
of a host of natural systems. It describes the unpredictabil-
ity of deterministic dynamical systems, due to exponential
growth of uncertainties in the initial conditions—the “but-
terfly effect.” This notion gives rise to effective statistical
descriptions of chaotic systems that form the foundations of
statistical mechanics, for example, in terms of standard or
anomalous diffusion [1–5]. Rare events (large deviations) in
chaotic dynamics can be extremely important, as they can
have significant and potentially catastrophic consequences.
One important example is extreme weather events such as
heat waves or floods [6–12], whose probabilities are espe-
cially challenging to predict under today’s changing climate
conditions which preclude using only historical data to assess
their likelihood. Additional examples are found in dynamics
of stock markets [13], road traffic [14], populations [15–17],
and pandemics [18].

However, while large deviations in stochastic systems
have been extensively studied, both theoretically and nu-
merically [19–46], large deviations in deterministic, chaotic
systems have received somewhat less attention (see, however,
Refs. [6–12,16,47–63]). In particular, for chaotic systems
there are fewer existing exact analytic results for the rate
(large-deviation) function, which is a central object in the
study of large deviations (see the definition below). Of
particular interest are dynamical phase transitions (DPTs):
singularities of rate functions that lead to distribution tails
that are much larger or much smaller than one would naively
expect.

In principle, one would not expect there to be a fundamen-
tal difference between the large-deviation behaviors of chaotic
and stochastic systems, because symbolic dynamics maps
chaotic systems to stochastic ones. However, it is usually not
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straightforward to give explicit symbolic dynamics, so it is not
always easy to apply methods that work for stochastic systems
to chaotic ones. In numerical Monte Carlo (MC) simulations,
these difficulties are usually circumvented by adding a weak
noise term [6,7,64], although alternatives exist [65].

Let us define the class of problems that we study here. We
consider a sequence x1, . . . , xN of elements of Rd generated
by a chaotic map f (x) via xi+1 = f (xi ), where x1 is randomly
sampled from the invariant measure (IM) of the process ps(x).
We recall that the IM is the measure that is preserved by the
map f (x), i.e., if x is distributed according to the IM, so is
f (x). We quantify fluctuations in the system by studying the
full distribution of dynamical observables

A = 1

N

N∑
i=1

g(xi ), (1)

where g : Rd → R. The study of dynamical observables has
been an important theme in the ongoing research of large
deviations, and importantly for the following, it is amenable
to theoretical analysis via the powerful Donsker-Varadhan
(DV) formalism [19,23,27,43,44]. The DV theory is more
commonly formulated for stochastic systems, however, its for-
mulation for chaotic systems is straightforward and has been
known for some time [55,66,67]. Note that A is a deterministic
function of the initial condition A = A(x1). In the large-N
limit, for ergodic dynamics, A converges to its ensemble-
average value A → ∫

g(x)ps(x)dx ≡ a∗ with probability 1.
Individual realizations, however, deviate from this value due
to fluctuations in the initial condition x1. For the particular
case g(x) = ln |Jf (x)|, where Jf is the Jacobian determinant
[68,69], A corresponds to the finite-time Lyapunov exponent
[48–54,56–63,66], which describes the rate of separation with
respect to nearby trajectories over a finite time.

The DV framework predicts that, under fairly general con-
ditions, fluctuations obey a large-deviation principle (LDP)
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[27,55,66,67,70]

P(A = a) ∼ e−NI (a), N → ∞, (2)

where I (a) = − limN→∞ ln P(A=a)
N , the “rate function,” en-

codes the system’s dynamical behavior. I (a) is convex and
vanishes at its minimum, which is at a = a∗. Note that in
Markov chains (sequences generated by stochastic maps),
the initial condition is generally not important because it
is quickly “forgotten” as a result of the randomness of the
dynamics. In contrast, for a deterministic, chaotic system,
all of the randomness enters in the initial condition. As has
been known for quite some time [27,55,66,67], I (a) can be
calculated by solving an auxiliary problem of finding the
largest eigenvalue of a “tilted operator” which is related to
the generator of the dynamics, which in the present case is
the Frobenius-Perron operator. In this Letter, we carry out this
calculation explicitly and obtain the exact rate functions I (a)
for the doubling, tent, and logistic maps for particular observ-
ables [71]. For the cat map, we compute I (a) numerically,
uncovering strong evidence for the existence of a remarkable
singularity of it that we interpret as a DPT, which signals a
sudden change in the way that the system realizes a given
value A = a as a crosses the critical point. Furthermore, for
noninvertible maps f (x), we develop a MC algorithm that
efficiently samples realizations that reach unlikely values of
A by generating the sequence x1, . . . , xN in reverse order and
in a biased manner.

Theoretical framework. The theoretical framework that we
use to obtain the scaling (2) and calculate I (a) has been
known (in various forms) for decades [27,55,66,67], and we
recall it here for the sake of completeness. It is useful to
first consider the scaled cumulant generating function (SCGF)
λ(k), defined as 〈eNkA〉 ∼ eNλ(k). λ(k) is found by calculat-
ing the largest eigenvalue of a “tilted” (modified) generator
of the dynamics, where k ∈ R is the tilting parameter. The
existence of a nonzero λ(k) yields the scaling (2), and I (a)
is then obtained via a Legendre-Fenchel transform [27,66,67]
I (a) = supk∈R[ka − λ(k)].

We first note that if ρ(x) is the probability distribution
function (PDF) of some element x = xi, then the PDF of the
next element y = xi+1 is Lρ(y), where L is the Frobenius-
Perron operator,

Lρ(y) =
∫

ρ(x)δ(y − f (x))dx =
∑

z= f −1(y)

ρ(z)

|Jf (z)| . (3)

The SCGF λ(k) is equal to the logarithm of the largest (real)
eigenvalue of the “tilted” operator [21,27,66,67,73,74]

Lkρ(y) =
∫

ekg(x)δ(y − f (x))ρ(x)dx =
∑

z∈ f −1(y)

ekg(z)ρ(z)

|Jf (z)| .

(4)

Note that Lk=0 = L whose largest eigenvalue is eλ(k=0) = 1,
the eigenvector being the IM ps(x). It is convenient to de-
fine ψ (x) = ekg(x)ρ(x), so the equation Lkρ(x) = eλ(k)ρ(x)
becomes

L̃kψ (x) = ekg(x)
∑

z∈ f −1(x)

ψ (z)

|Jf (z)| = eλ(k)ψ (x). (5)

The calculation of the full distribution of A is thus mapped
to the auxiliary problem of calculating the largest eigenvalue
λ(k) of the operator L̃k [27,55,66,67]. We emphasize that λ(k)
depends on the observable in question through the function
g(x) which enters in Eq. (5). As a result, the rate function I (a)
too depends on g(x).

MC algorithm. We now describe our numerical algo-
rithm for the efficient MC simulation of unusual values of
A for noninvertible maps f (x). An alternative, statistically
equivalent method for generating random sequence realiza-
tions, in the form of a Markov chain, is by first randomly
sampling xN from the IM ps(x) and then stochastically gen-
erating the elements of the sequence in reverse order by
choosing xi from the set z ∈ f −1(xi+1) with probabilities
ps(z)/[ps(xi+1)|Jf (z)|] [74]. Such reverse simulations have
been employed successfully before (see, e.g., Ref. [65]). Im-
portantly, they involve stochasticity, and therefore they enable
one to bias the simulations, by choosing from among the
preimages with probabilities that are different to those given
above [65], a principle that we exploit in order to bias our
simulations toward atypical values of A. Let us demonstrate
this by considering the particularly simple case of d = 1, and
assume that every x has exactly two preimages z1, z2, with
ps(z1)/| f ′(z1)| = ps(z2)/| f ′(z2)|, as is the case for each of
the doubling, tent, and logistic maps considered below. We
define N indicator random variables ξ1, . . . , ξN , where ξi = 1
(0) if xi is the larger (smaller) of the two preimages of f (xi ).
From the definition of the stochastic reverse process, the ξi’s
are independent and identically distributed Bernoulli random
variables with P (ξi = 0) = P (ξi = 1) = 1/2, and as a result,
their sum B = ∑N

i=1 ξi is binomially distributed, P (B = b) =
(N

b )2−N . Using the law of total probability, we have

P(A = a) =
N∑

b=0

P(A = a | B = b)P (B = b). (6)

The reverse process can be simulated conditioned on B tak-
ing a specified value b, by (i) randomly choosing a subset
I ⊂ {1, . . . , N} of size b [each subset is chosen with the
same probability (N

b )−1], (ii) randomly sampling a number
xN+1 from the IM, and (iii) calculating x1, . . . , xN in reverse
order, where xi is given by the larger (smaller) preimage of
xi+1 if i ∈ I (i /∈ I). One then computes P(A = a | B = b)
from MC simulations of these restricted dynamics. Repeating
this process for b = 0, 1, . . . , N , one then computes P(A = a)
from Eq. (6). Atypical values of A are thus accessed, if they
tend to occur concurrently with atypical values of B.

Applications. We now apply these tools to study several
standard chaotic maps, beginning with the doubling map
f (x) = 2x mod 1, where x ∈ [0, 1] and z mod 1 is the frac-
tional part of z, with g(x) = x. Here, f −1(x) = {x/2, (x +
1)/2}, so Eq. (5) reads

ekx

2

[
ψ

( x

2

)
+ ψ

(
x + 1

2

)]
= eλ(k)ψ (x), (7)

whose solution,

ψ (x) = e2kx, λ(k) = ln[(1 + ek )/2], (8)
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gives the rate function through a Legendre transform [75,76],

I (a) = a ln a + (1 − a) ln (1 − a) + ln 2. (9)

As the reader may have noticed, I (a) is precisely the rate func-
tion that describes a binomial distribution (see, e.g., Ref. [43]).
We explain this coincidence in the Supplemental Material
(SM) [74] by calculating I (a) via an alternative method, pro-
viding a validation of (9).

Let us now consider the tent map, f (x) = 1 − |1 − 2x|,
again with g(x) = x. Before turning to the calculation of I (a),
we make two observations: (i) As we find in the SM [74],
A is strictly bounded from above by mN = maxx1∈[0,1] A(x1)
which, at N → ∞, converges to m∞ = 2/3, the nontrivial
fixed point of f (x). We therefore anticipate that the support
of I (a) is the interval [0, 2/3], which, as shown below, is
indeed the case. This is nontrivial, since the IM for the tent
map is uniform over the entire interval [0,1). (ii) If x1 ∼ 2−N ,
then A ∼ 1/N . The probability for this is ∼2−N , which, using
(2), leads to the bound I (0) � ln 2. Similarly, if |x1 − 2/3| ∼
2−N then |A − 2/3| ∼ 1/N , leading to I (2/3) � ln 2. In fact,
we find below that these inequalities are saturated, I (0) =
I (2/3) = ln 2.

Let us calculate I (a). For the tent map, Eq. (5) reads

L̃kψ (x) = ekx

2

[
ψ

(
x

2

)
+ ψ

(
1 − x

2

)]
= eλ(k)ψ (x). (10)

We now present an exact solution to Eq. (10), which we obtain
in the form of a perturbation theory in k that can be exactly
solved at all orders. The IM ps(x) is uniform over x ∈ [0, 1),
and indeed, one finds that for k = 0, ψ (x) = 1 and λ(k) = 0.
We expand in k,

ψ (x) = 1 + kψ1(x) + k2ψ2(x) + · · · , (11)

λ(k) = kλ1 + k2λ2 + · · · . (12)

Let us first find the solution to first order in k. Keeping terms
up to order O(k) in Eq. (10), we obtain

1 + k

2

[
2x + ψ1

(
x

2

)
+ ψ1

(
1 − x

2

)]
= 1 + k[λ1 + ψ1(x)],

(13)

whose exact solution is ψ1(x) = x, λ1 = 1/2. This perturba-
tive procedure can be explicitly carried out to arbitrary order
in k, yielding the exact rate function I (a). ψn(x) turns out to
be a polynomial of degree n, whose coefficients are found by
solving a set of linear equations. In the SM [74], we work out
the leading orders explicitly, and obtain

λ(k) = k

2
+ k2

24
− k3

72
+ 41k4

8640
+ · · · , (14)

whose Legendre transform is

I (a) = 6
(
a − 1

2

)2 + 24
(
a − 1

2

)3 + 588
5

(
a − 1

2

)4 + · · · .

(15)

We give the solution up to eighth order in the SM [74].
We now consider the logistic map [77] at the Ulam point,

f (x) = 4x(1 − x), where x ∈ [0, 1), with g(x) = x. The anal-
ysis is very similar to that of the tent map [74]. This time,

the support of I (a) is [0, 3/4], x = 3/4 being a fixed point of
f (x), with I (0) = I (3/4) = ln 2, and Eq. (5) reads

L̃kψ (x) = ekx
[
ψ

( 1+√
1−x

2

) + ψ
( 1−√

1−x
2

)]
4
√

1 − x
= eλ(k)ψ (x).

(16)

As in the tent map, we solve Eq. (16) perturbatively in k to
arbitrary order. Expanding

ψ (x) = ps(x)[1 + kψ1(x) + k2ψ2(x) + · · · ], (17)

where ps(x) = [π
√

x(1 − x)]−1 is the IM [78], and λ(k) =
kλ1 + k2λ2 + · · · , we again find that ψn(x) is a polynomial
of degree n whose coefficients can be found explicitly. In the
SM [74] we find

λ(k) = k

2
+ k2

16
− k3

64
+ 3k4

1024
+ · · · , (18)

whose Legendre transform is

I (a) = 4
(
a − 1

2

)2 + 8
(
a − 1

2

)3 + 24
(
a − 1

2

)4 + · · · .

(19)

The solution up to sixth order is found in the SM [74]. As
shown in Fig. 1, Eqs. (15) and (19) are in excellent agreement
with numerical computations of P(A = a) from biased MC
simulations with N = 50, and with semianalytic calculations
of I (a) obtained by computing the largest eigenvalue eλ(k) of
L̃k numerically using Ulam discretization [79], and then per-
forming the Legendre transform numerically. Also plotted are
the asymptotic behaviors of the rate functions near the edges
of their supports, which we obtain in the SM [74] by solving
the eigenvalue problems in the limits k → ±∞. Before mov-
ing on, we note that for the doubling, tent, and logistic maps,
I (a) = ln 2—which, in all these systems, equals the Lyapunov
exponent—at the edges of its support. We speculate that this
feature may be universal for d = 1.

We now turn to Arnold’s cat map, where we uncover strong
numerical evidence pointing at the existence of a remarkable
DPT in I (a). Here, d = 2, and xi = (yi, zi ) ∈ [0, 1] × [0, 1].
The cat map is defined by

f (y, z) = [(y + z) mod 1, (y + 2z) mod 1]. (20)

Its IM is uniform on the unit square. We consider g(y, z) =
(y + z)/2 [80]. f (y, z) is invertible, with |Jf (y, z)| = 1, so
Eq. (5) becomes

ek(y+z)/2ψ[(2y − z) mod 1, (z − y) mod 1] = eλ(k)ψ (y, z).
(21)

Equation (21) proved difficult to solve analytically or even
numerically, because of instabilities of the Ulam method (that
occur even for k = 0 [63,81]). Though we did not solve
Eq. (21), we are nevertheless able to predict some features of
I (a) by making the following observations: (i) The dynamics
are statistically invariant under the transformation (yi, zi ) →
(1 − yi, 1 − zi ). Therefore, P(A = a) = P(A = 1 − a) is ex-
actly symmetric, implying I (a) = I (1 − a). (ii) One can
check that the joint distribution of any pair (ξ1, ξ2) of distinct
elements taken from the set {y1, z1, . . . , yN,zN } is uniform on
the unit square, implying that ξ1, ξ2 are statistically indepen-
dent. Therefore, using 〈yi〉 = 〈zi〉 = 1/2 and Var yi = Var zi =
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FIG. 1. Rate functions I (a) that describe the full distributions P(A = a) at N  1 for the tent map (a) and logistic map (b). Solid lines were
obtained through numerical diagonalizations of L̃k from Eqs. (10) and (16), respectively. Dotted lines are the exact analytic solutions, evaluated
up to order O[(a − 1/2)4], Eqs. (15) and (19), respectively. Markers correspond to properly rescaled data from biased MC simulations with
N = 50 (see SM [74] for details). The points I (0) = I (2/3) = ln 2 in (a) and I (0) = I (3/4) = ln 2 in (b) are marked by •. Dashed lines
correspond to the asymptotic behaviors of the rate functions near the edges of their supports, that we calculate in the SM [74].

1/12, we find 〈A〉 = 1/2 and Var A = 1/(24N ) so, using (2),
we anticipate the parabolic behavior

I (a) = 12(a − 1/2)2 + o[(a − 1/2)2], (22)

corresponding to a Gaussian distribution of typical fluctu-
ations as described by (an extension of) the central limit
theorem. (iii) The Lyapunov exponents of the cat map are
±2 ln ϕ, where ϕ = (1 + √

5)/2 = 1.618 . . . is the golden
ratio. Therefore, if y1, z1 ∼ ϕ−2N , then the elements of the
sequence grow with i as yi, zi ∼ ϕ2i−2N , and as a result, A ∼
1/N . The probability for this is ∼ϕ−4N , leading to the bound
I (0) � 4 ln ϕ = 1.9248 . . . and similarly for I (1).

In Fig. 2(a), we plot I (a), which we computed from direct
MC simulations with N = 10 (since the cat map is invertible,
we could not use the algorithm introduced in this work, and
had to resort to direct MC simulations instead). Good agree-
ment with the prediction of Eq. (22) is observed at a � 1/2.
In addition, we found that the bounds given above for a = 0
and a = 1 are in fact saturated, I (0) = I (1) = 4 ln ϕ.

Far more remarkable, however, I (a) appears to behave
exactly linearly for a ∈ [0, ac] with ac � 0.3 [due to the sym-

metry I (a) = I (1 − a), this occurs symmetrically at a ∈ [1 −
ac, 1] too). This is seen more clearly in Fig. 2(b), where I ′(a)
is plotted. Indeed, I ′(a) appears to have a corner singularity
at a = ac, and to take a constant value I ′(a) � −4.7 for a ∈
[0, ac]. In the distribution (2), I (a) assumes the role of an ef-
fective free energy, and we therefore interpret this singularity
as a second-order DPT, because I (a) and I ′(a) are continuous
at the transition, but I ′′(a) jumps [82]. This (apparent) DPT
constitutes a central result of this Letter. At a ∈ [0, ac], we ex-
pect the system to display coexistence between the a = 0 and
a = ac states, meaning that for a fraction a/ac (1 − a/ac) of
the dynamics, the system will display the statistical behavior
that corresponds to a = 0 (a = ac). In particular, we expect
the distribution P(x|A = a) of each element in the sequence,
conditioned on observing a given A = a ∈ [0, ac], to be given
by the superposition

P(x|A = a) =
(

1 − a

ac

)
P(x|A = 0) + a

ac
P(x|A = ac) (23)

of the corresponding distributions conditioned on observing
A = 0 and A = ac, respectively. This interpretation draws an

FIG. 2. (a) Markers correspond to data from 2 × 1010 direct MC simulations with N = 10 for the cat map [74], showing good agreement
with the prediction (22) (dotted line) at a � 1/2. The points I (0) = I (1) = 4 ln ϕ are marked by •. (b) I ′(a), showing a corner singularity
(second-order DPT) at a = ac and a = 1 − ac, and taking constant values at a ∈ [0, ac] and at a ∈ [1 − ac, 1].
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analogy to DPTs that were found in stochastic systems (see,
e.g., Refs. [37,38,40]).

Discussion. We studied dynamical observables in the dou-
bling, tent, logistic, and cat maps. By using an existing
theoretical framework [27,55,66,67], we calculated the rate
functions exactly (for particular observables) in the former
three maps, where for the tent and logistic maps, our result
is given in the form of a perturbation theory that can be
solved to all orders. Moreover, we calculated the rate function
numerically for the cat map. The rate functions I (a) that we
found have interesting properties: (i) For the tent and logistic
maps, the rate functions are asymmetric although the IMs are
symmetric, and in fact even the rate functions’ supports differ
from those of the IMs. (ii) In all of the cases studied here,
the supports of the rate functions are related to fixed points
of the map f (x), and at the edges of their supports, the rate
functions take values that are related to the system’s Lya-
punov exponents. (iii) For the cat map, I (a) has a remarkable
singularity that we interpret as a second-order DPT, causing
unusual values of A to be far likelier than one would expect by
extrapolating from the central part of the distribution. It would
be interesting to extend our results to other maps and/or to
other observables.

As an alternative approach to ours, one could characterize
the set of initial conditions x1 for which A(x1) = a, since the

statistical weight of this set (according to the IM) gives P(A =
a). In the limit N → ∞, this set becomes

Sa =
{

x1| lim
N→∞

1

N

N−1∑
n=0

g[ f (n)(x1)] = a

}
. (24)

For instance, for f (x) = the doubling map and g(x) = x, Sa

is the set of numbers x1 ∈ [0, 1] whose binary representa-
tion has a ratio of 1 − a : a between zeros and ones [74].
One could then explore possible connections between our
rate function I (a) and various fractal dimensions of Sa (see
Refs. [66,67,83–87] where fractal dimensions were studied,
and in particular, phase transitions were found [66,83,84]).

Finally, in some stochastic systems, the scaling (2) was
recently found to break down and give way to anomalous
scalings of large deviations [88–98] or of the distributions’
cumulants [99,100]. It would be interesting to search for
anomalous scalings in deterministic, chaotic systems.
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