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The various regimes observed in the one-dimensional complex Ginzburg-Landau equation result from the
interaction of a very small number of elementary patterns such as pulses, fronts, shocks, holes, and sinks. Here
we provide three exact such patterns observed in numerical calculations but never found analytically. One is
a quintic case localized homoclinic defect, observed by Popp et al. [S. Popp et al., Phys. Rev. Lett. 70, 3880
(1993)], and the two others are bound states of two quintic dark solitons, observed by Afanasyev et al. [V. V.
Afanasyev et al., Phys. Rev. E 57, 1088 (1998)].
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I. INTRODUCTION

Slowly varying amplitudes of numerous physical phe-
nomena evolve in time according to the ubiquitous one-
dimensional complex Ginzburg-Landau (CGL) equation,

iAt + pAxx + q|A|2A + r|A|4A − iγ A = 0, (1)

in which the constants p, q, r are complex and γ is real. These
phenomena include pattern formation, spatiotemporal inter-
mittency, superconductivity, nonlinear optics, Bose-Einstein
condensation, etc.; see the reviews [1,2].

In the cubic case (r = 0), it describes, for instance, the
formation of patterns near a Hopf bifurcation (γ being the
distance from criticality) to an oscillatory state. The regimes
are extremely rich and, depending on the parameters, range
from chaotic (turbulent) to regular (laminar); see the phase di-
agrams in the plane [Re(p)/ Im(p), Re(q)/ Im(q)] [3, Fig. 1]
[4, Fig. 1(a)]. The observed patterns have been classified
[5, Fig. 1] according to both their homoclinic (equal values
of limx→−∞ |A| and limx→+∞ |A|) or heteroclinic (unequal
values) nature, and their topology: pulses, fronts, shocks,
holes, and sinks. For instance, the holes (characterized by
the existence of a minimum of |A|) can be either heteroclinic
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(such as the analytic solution of Bekki and Nozaki [6]) or
homoclinic (as displayed by numerical simulations of van
Hecke [4]). Of particular interest is the case when |A| can
vanish; since the phase arg A is then undefined, it can undergo
discontinuities, a feature which creates topological defects.
This “defect-mediated turbulence” [7] [8] is a major mech-
anism [9] of transition to a turbulent state, in addition to the
mechanism of phase turbulence.

The situation is similar in the complex quintic case (CGL5,
r/p not real) [5], and the importance of these coherent struc-
tures is their role of separators between different regimes;
cf. [5, Figs. 5,6]. All these coherent structures are indeed
observed both in physical phenomena and in numerical simu-
lations [3,4].

In Taylor-Couette flows between rotating or counter-
rotating cylinders [10], when a parameter varies, one first
observes the expected Benjamin-Feir instability, followed by
the occurrence of spatiotemporal defects (i.e., a vanishing of
|A|, which allows a discontinuity in the phase of A) and a
large variation of the amplitude. A similar behavior is also
observed in Rayleigh-Bénard convection (a fluid between two
conducting plates, heated from below) [11].

In nonlinear optics where t is a coordinate along the fiber
and x a transverse coordinate, the goal is to carefully select
the initial signal (for instance, one of the coherent struc-
tures) and to tune the parameters of the CGL equation in
order to minimize the attenuation during the propagation of
this signal. Various kinds of bright or dark solitons, or more
general “dissipative” solitons, can be used for this purpose
[12–14].
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There also exist other optical devices described by a sys-
tem [15, Eqs. (1)–(3)] involving a CGL-like equation for the
electric field. In these broad area, vertical cavity surface-
emitting lasers (VCSELs) with a single longitudinal mode,
two transverse coordinates (among them our x) are necessary
to describe the broad area and one observes, for instance, var-
ious patterns similar to those in spatiotemporal intermittency
[16,17].

From a more general point of view, there is a strong
evidence [18] that coherent structures govern the transition
between different scenarios of chaos.

Of special interest to our purpose is the fact that some of
the observed patterns have been represented by exact, closed
form, analytic expressions, such as the CGL5 heteroclinic
hole [6], a traveling wave with arbitrary velocity. Conversely,
it is reasonable to believe that every elementary observed
pattern could be associated to some analytic solution, to be
found; this is the motivation of the present work.

In this Letter, we consider the most challenging situation,
i.e., the so-called complex cases in which r/p is not real and,
if r vanishes, q/p is not real, respectively denoted CGL5 and
CGL3. This excludes the nonlinear Schrödinger (NLS) limit
(p, q real, γ zero), which does not display any chaotic regime.
Our interest is to look for exact traveling wave solutions (c
and ω real),

A =
√

M(ξ )ei[−ωt + ϕ(ξ )], ξ = x − ct . (2)

Such traveling waves are characterized by a third-order non-
linear ordinary differential equation (ODE); see (3) hereafter.

The current list of exact traveling waves is very short and
comprises only six solutions [19]: for CGL3, a homoclinic
pulse [20], a heteroclinic front [21], a heteroclinic source or
hole [6] [22, Fig. 5]; for CGL5, a homoclinic pulse [5], a
heteroclinic front [5], a homoclinic. source or sink [23,24].
Other elementary patterns exist, but they have only been
observed experimentally, an important one being a CGL3
homoclinic hole [4] [25, Fig. 1(b)].

A lot of effort has been devoted to the search for exact solu-
tions of CGL3/5, by essentially three methods, which we now
outline. A slight modification of the method of Hirota allowed
Bekki and Nozaki [6,21] to uncover two of the three above-
mentioned traveling waves of CGL3. By making heuristic
assumptions among the components of a three-dimensional
dynamical system equivalent to (3), van Saarloos and Ho-
henberg [5, Sec. 3.3] succeeded in obtaining two remarkable
solutions of CGL5: the pulse and the front solutions. In the
third method, building on previous work [26], Marcq et al.
[24] made an assumption for the complex amplitude A match-
ing the structure of singularities [27] and thus found the full
CGL5 source or sink.

In the present work, by combining two mathematical meth-
ods, we present new traveling waves, outlined in [27], and
moreover we prove that these are the only ones whose square
modulus M(ξ ) admits only poles as singularities in the com-
plex plane of ξ (in short, is meromorphic on C). Each such
meromorphic solution is characterized by a first-order nonlin-
ear ODE for M(ξ ).

Only three of these new solutions are bounded; they are all
homoclinic, decrease exponentially fast to a constant value at

infinity, and only exist for CGL5. One represents a topological
defect, previously observed experimentally [28, Fig. 3(b)] [29,
Fig. 4] for a set of parameters compatible with ours. The two
other traveling waves are bound states made of two CGL5
dark solitons; while in CGL3 the presence of sources inhibits
the formation of bound states of dark solitons [30], such bound
states have been numerically observed in CGL5 by Afanasjev
et al. [30, Fig. 4] and, more recently, in [31, Fig. 3(d)].

The three other solutions, outlined in [27] (one doubly
periodic for CGL3, one doubly periodic and one rational for
CGL5), are unbounded, but, under a small perturbation which
moves the poles outside the real axis x − ct , their analytic
expression becomes bounded and the corresponding periodic
patterns could be good approximations of a variety of peri-
odic patterns observed experimentally; this is currently under
investigation.

In the next section, we simply outline the mathematics
involved. Then, for each bounded solution, the amplitude A is
presented as a product of complex powers of entire functions.

II. THE METHOD

The method arises from a simple remark: in all presently
known exact traveling waves (six, recalled above), the only
singularities of the square modulus |A|2 = M in the complex
plane of ξ are poles. Conversely, let us make the only assump-
tion that M(ξ ) is meromorphic on C.

First, using Nevalinna theory [32], it has been proven [33]
that for all values of the CGL parameters p, q, r (complex),
γ (real) and of the traveling waves’ parameters c, ω (real),
for both CGL3 and CGL5, all solutions M(ξ ) meromorphic
on C are elliptic or degenerate elliptic and therefore obey a
nonlinear ODE of first order.

As a consequence, in order to find all meromorphic so-
lutions of both CGL3 and CGL5, only a finite number of
possibilities need to be examined. This is done by two
methods. The first method (Hermite decomposition [34]) rep-
resents M as a finite sum of derivatives of “simple elements”
admitting only one pole of residue unity [Weierstrass’ ζ (ξ )
[35] or its degeneracies k coth(kξ ) and 1/ξ ], while the second
one (subequation method [36,37]) builds the first-order ODE
obeyed by M(ξ ) and then integrates it. Full details can be
found in [27].

The modulus M(ξ ) obeys a third-order ODE [36],

(G′ − 2κiG)2 − 4GM2(eiM
2 + diM − gr )2 = 0,

G = MM ′′

2
− M ′2

4
− κi

2
MM ′ + giM

2 + drM3 + erM4,

ϕ′ = κr

2
+ G′ − 2κiG

2M2(gr − diM − eiM2)
, (3)

in which the real parameters dr, di, er, ei, κr, κi, gr, gi are
q

p
= dr + idi,

r

p
= er + iei,

c

p
= κr − iκi,

γ + iω

p
= gr + igi − 1

2
κrκi − i

4κ2
r . (4)

This ODE is the key to obtain all meromorphic solutions
M(ξ ) and, by the quadrature (3)3, the complex amplitude A.
These solutions occur for specific values of dr/di (CGL3) and
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er/ei (CGL5), which characterize the local behavior of Aeiωt

near a movable singularity ξ0 (i.e., whose location depends on
the initial conditions) [24,38],

Aeiωt ∼
{

(CGL3) A0(ξ − ξ0)−1+iα,

(CGL5) A0(ξ − ξ0)−1/2+iα,
α real. (5)

III. THE NEW ANALYTIC PATTERNS

A. CGL5, localized homoclinic defect

For the parameters

κi = 0,
er

ei
= 3

2
,

dr

di
= 29

15
,

gr

gi
= −12

35
, gi = 7d2

i

12ei

, (6)

there exists a first-order subequation,

[
M ′2 + eiM

(
M + 2di

3ei

)
P2

]2

− 4

3
e2

i M2P3
2 = 0,

P2 = M2 + 6di

5ei
M + d2

i

3e2
i

, (7)

in which a rescaling of M and ξ leaves no arbitrariness. If
p is not real, as usually assumed so as to be far away from
the integrable nonlinear Schrödinger situation, this pattern is
stationary (c = 0); otherwise it is moving with an arbitrary
velocity c.

In the original notation (p, q, r, γ , c, ω), the parameters
obey the constraints

cpi = 0,
prrr + piri

prri − pirr
= 3

2
, prqr + piqi

prqi − piqr
= 29

15
,

γ = (prqi − piqr )2

|p|2(prri − pirr )

(
− 7

12
pi − 1

5
pr

)
,

ω = (prqi − piqr )2

|p|2(prri − pirr )

(
7

12
pr − 1

5
pi

)
− p3

r

4|p|4 c2. (8)

The solution of this subequation [the invariance of (3) by
translation allows us to set ξ0 = 0],

M = −20
di

ei

coth2 kξ

2

(
coth2 kξ

2
− 1

)
(

5 coth2 kξ

2
− 3

)2

− 12

,

k2 = d2
i

15ei
= (prqi − piqr )2

15(prri − pirr )|p|2
, (9)

displays four simple poles ±ξA,±ξB,

coth
kξA

2
=

√
10

√
3 + 15

5
, coth

kξB

2
=

√
10

√
3 − 15

5
i,

(10)

and a shift of kξ/2 by one half-period iπ/2 (equivalent
to permuting cosh and sinh) makes M bounded for ei =
Im(r/p) > 0. In order to deduce the complex amplitude, one
computes the logarithmic derivative d log(Aeiωt )/dξ with A
defined by (2). By virtue of (3)3, this is a rational function

FIG. 1. CGL5. Homoclinic defect in dimensionless units
M/(di/ei ) vs kξ/2.

of coth(kξ/2), whose Hermite decomposition [34] is a finite
sum of shifted coth. Then its logarithmic primitive yields the
complex amplitude A as the product of powers of five sinh
functions,

A

A0
= e

−iωt + i
κr

2
ξ

sinh
kξ

2

×
(

sinh
k(ξ − ξA)

2
sinh

k(ξ + ξA)

2

)−1 + (3 + 2
√

3)i

2

×
(

sinh
k(ξ − ξB)

2
sinh

k(ξ + ξB)

2

)−1 + (3 − 2
√

3)i

2 ·

(11)

The modulus M displays a unique minimum M = 0. This
new analytic pattern decreases exponentially fast at infinity,
has the topology of a double pulse (Fig. 1), and is an exact
representation of a defect in CGL. The study of its stability
under small perturbations has not been performed in this Let-
ter; this will be investigated later.

Although defect-mediated turbulence is mainly observed
in two-dimensional CGL3 where this is a major mechanism
of turbulence [39] [22], it has also been reported in CGL5
[28, Fig. 3b] [29, Fig. 4] [22, p 278], where, for a destabi-
lizing CGL5 term (negative δ in the notation of Ref. [28])
compatible with the present numerical values (6), one ob-
serves a succession of phase slips (every time M vanishes),
which create hole-shock collisions, ending in a process of
as many annihilations as creations. Such a process is known
as “hole-mediated turbulence.” We must also mention that a
pattern topologically identical to the present defect has been
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numerically observed in a system of two amplitude equations
coupled quadratically [40, Fig. 2].

This exact pattern should be quite useful for determin-
ing the range of parameters for which topologically similar
patterns are stable or metastable. Indeed, choosing as the
initial data an analytic expression similar to (11), appro-
priate sets of parameters of CGL5 should considerably
shorten the duration of the transient regime and accord-
ingly increase the convergence towards a topologically similar
pattern.

B. CGL5, bound state of two dark solitons

When er/ei is one of the four real roots of

1089 − 81 327λ2 + 323 512λ4 + 456 976λ6 = 0,

λ = er

ei
, λ = ±0.1192, λ = ±0.4300, (12)

there also exists a four-pole subequation (see Appendix for
its coefficients) without any free parameter. To each of
these four values of λ = er/ei correspond two values
α1, α2 of the exponent α defined in (5), whose product is
α1α2 = −3/4,

λ = er

ei
= α

2
− 3

8α
,

λ = ±0.1192, α = (∓0.7550,±0.9934),

λ = ±0.4300, α = (∓0.5369,±1.397). (13)

The derivation of M, then A, follows exactly the same logic
as for the defect solution. The complex amplitude A is the
product of powers of six sinh functions,

A

A0
= e

−iωt + i
κr

2
ξ × sinh

k(ξ − ξN )

2
sinh

k(ξ + ξN )

2

×
(

sinh
k(ξ − ξA)

2
sinh

k(ξ + ξA)

2

)−1

2
+ iα1

×
(

sinh
k(ξ − ξB)

2
sinh

k(ξ + ξB)

2

)−1

2
+ iα2

.

(14)

The zeros (±ξA,±ξB) have their squares real and are the poles
of M; the other zeros (±ξN ) and their complex conjugates ±ξN

are the four zeros of M,

M = M0 + di

ei

(
K1 coth2 kξ

2
+ K2

)(
coth2 kξ

2
− 1

)

coth4 kξ

2
+ D1 coth2 kξ

2
+ D0

·

(15)

This defines two similar-looking (but different) homoclinic
patterns in the shape of a double well, whose aspect ratios
[min(M ):limξ→±∞ M:max(M )] are (1:7.46:11.5) (Fig. 2) and
(1:1.09:1.23) (Fig. 3).

Like for the defect pattern, these two patterns are stationary
if p is not real and they move with an arbitrary velocity if p is
real. They compare, at least qualitatively, quite well with the

FIG. 2. CGL5. The homoclinic bound state in dimensionless
units M/(di/ei ) vs kξ/2, for λ = ±0.4300, with aspect ratio
(1:7.46:11.5).

bound state of two CGL5 dark solitons, as reported in [30,
Fig. 4].

IV. CONCLUSION

On the numerical side, these exact patterns can be used as
building blocks to study the interaction of defects and dark

FIG. 3. CGL5. The homoclinic bound state in dimensionless
units M/(di/ei ) vs kξ/2, for λ = ±0.1192, with aspect ratio
(1:1.09:1.23).
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solitons with various other patterns. On the analytic side, more
exact traveling waves (with less constraints on p, q, r, γ , c, ω)
would necessarily be nonmeromorphic; this question will be
addressed in future work.
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APPENDIX: DETAILS OF CGL5 TWO HOMOCLINIC
BOUND STATES

The subequation has the structure
[
M ′2 + c6P2a(M )P2b(M )

]2 − c7P1(M )2P2a(M )3 = 0,

κi = 0, P1(M ) = M + c1,

P2a(M ) = M2 + c2M + c3, P2b(M ) = M2 + c4M + c5,

(A1)

with P1, P2a, P2b polynomials and c j constants.
Let us choose ei and di as scaling parameters. The fixed pa-

rameters, as well as three movable constants, are polynomials
of er/ei (denoted λ),

dr = diλ
828 038 745 921 + 7 649 070 764 998λ2 + 9 025 535 790 856λ4

1 386 644 084 775
,

gr = d2
i

ei

−58 513 290 148 629 717 + 1 113 015 753 503 375 224λ2 + 1 243 896 610 551 884 848λ4

178 728 931 719 095 040
,

gi = d2
i

ei
λ

119 473 478 956 925 997 − 1 651 180 178 874 084 664λ2 − 1 567 990 451 264 571 568λ4

1 608 560 385 471 855 360
,

k2 = d2
i

ei
λ

470 354 925 826 628 997 + 16 800 138 410 952 093 392λ4 + 15 744 055 491 100 758 536λ2

2 010 700 481 839 819 200
,

M0 = di

ei

−344 373 082 347 + 2 958 053 216 864λ2 + 3 382 994 698 928λ4

493 029 007 920
,

cothA

cothB
+ cothB

cothA
= 2i

√
3λ

16 223 643 − 41 722 436λ2 − 37 472 032λ4

6 800 175
, (A2)

TABLE I. CGL5 κi = 0. Numerical values of the two homoclinic
bound states. ei and di are arbitrary real (scaling).

Variable 1 2

er/ei = λ ±0.4300 ±0.1192
dr/di 0.7910 0.08068
grei/d2

i 1.062 −0.2375
giei/d2

i �0.06400 ±0.007092
α1 �0.5369 �0.7550
α2 ±1.397 ±0.9934
coth(kξA/2) -0.6093 i −0.8861 i
coth(kξB/2) 1.259 1.401
coth(kξN/2) 0.7331 2.319
(continued) -0.1430 i +2.098i
(a2ei/di )k 0.9531 i −0.2499 i
M0ei/di 0.6454 −0.6118
K1 -2.517 0.6230
K2 0.2024 −0.1193
D1 -1.215 −1.178
D0 -0.5889 −1.541

but cothA = coth(ξA/2), cothB = coth(ξB/2) and the four pa-
rameters K1, K2, D0, D1 of (15) are algebraic functions of λ.
They are obtained by equating the rational function (15) and
the Hermite decomposition (sum of four simple poles),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K1 = −kei

di
(a2 cothA +b2 cothB), b2 = i

√
3

eia2

,

K2 = kei

di
(a2/ cothA +b2/ cothB)(cothA cothB)2,

D0 = coth2
A coth2

B,

D1 = −(coth2
A + coth2

B).

(A3)

All numerical values characterizing the two bound state solu-
tions are listed in Table I.
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