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Exact expressions for the partition function of the one-dimensional Ising model
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We obtain exact closed-form expressions for the partition function of the one-dimensional Ising model in
the fixed-M ensemble, for three commonly used boundary conditions: periodic, antiperiodic, and Dirichlet.
These expressions allow for the determination of fluctuation-induced forces in the canonical ensemble, which we
term Helmholtz forces. The thermodynamic expressions and the calculations flowing from them should provide
insights into the nature and behavior of fluctuation-induced forces in interesting and as-yet unexplored regimes.
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I. INTRODUCTION

Except for the ideal gas, the Ising model is probably
the most well-known model in statistical physics. Its solu-
tion for the one-dimensional case with a temperature T and
external field h—and for the two-dimensional case in zero
external field—can be found in most textbooks of statistical
mechanics—see, e.g., Refs. [1–4]. Inspection of the literature
shows, perhaps surprisingly, that the solution of the Ising
model in one or any higher dimension is not available when
the magnetization M is fixed. In this Letter we fill that gap
and provide closed-form expressions for the cases of the
finite Ising chain with fixed total magnetization M under peri-
odic, antiperiodic, and free boundary conditions. The resulting
expressions, which involve hypergeometric functions, differ
nontrivially from corresponding expressions in the fixed-h
ensemble.

The lack of expressions for the one-dimensional Ising
model with fixed magnetization M is not due to a lack of
interest into the problem. We stress, as noted in Ref. [5], that in
customarily considered applications of the equilibrium Ising
model to binary alloys or binary liquids, if one insists on full
rigor, the case with M fixed must be addressed. Thus, there
have been attempts to solve the problem of Ising chain with
fixed M [5–7]. In Refs. [5,6] it is attacked via the transfer-
matrix method. Reference [5] reports success in deriving a
closed-form expression for the partition function for the case
M = 0 under periodic boundary conditions, when the chain
contains an even number of spins. In Ref. [6] the focus is
on the asymptotic behavior of the free energy of the Ising
chain with M = 0 and under periodic boundary conditions
and chain length N � 1 in the temperature regime when the
correlation length of the chain ξ is kept finite, i.e., excluding
the regime T → 0. In Ref. [7] the finite-size scaling functions
for the probability distribution of the magnetization in the one-
dimensional Ising model has been investigated. The functions

are evaluated in the limit T → 0 and N → ∞ with N/ξ kept
finite. Exact results for periodic, antiperiodic, free, and block
boundary conditions have been obtained. The approach used
there is based on a combinatorial approach to counting the
domains of up and down spins. This is similar to the approach
we use for our study of a fully finite Ising chain with periodic,
antiperiodic, and free boundary conditions.

Knowledge of the partition function leads to the calculation
of the Helmholtz free energy, which allows for the determina-
tion of a fluctuation-induced force in the fixed-M ensemble.
This can be achieved in a manner similar to the derivation of
the Casimir force for critical systems in the grand-canonical
T -h ensemble,

βF (ζ )
Cas (T, h, L) ≡ − ∂

∂L
f (ζ )
ex (T, h, L), (1.1)

where

f (ζ )
ex (T, h, L) ≡ f (ζ )(T, h, L) − L fb(T, h) (1.2)

is the so-called excess (over the bulk) free energy per area
and per kBT . Here, one envisages a system in film geome-
try ∞d−1 × L, L ≡ L⊥, with boundary conditions ζ imposed
along the spatial direction of finite extent L, and with total free
energy F (ζ )

tot . Here, f (ζ )(T, h, L) ≡ limA→∞ F (ζ )
tot /A is the free

energy per area A of the system. Along these lines we define

βF (ζ )
H (T, M, L) ≡ − ∂

∂L
f (ζ )
ex (T, M, L), (1.3)

where

f (ζ )
ex (T, M, L) ≡ f (ζ )(T, M, L) − L fH(T, m), (1.4)

with m = limL,A→∞ M/(LA), and fH is the Helmholtz free-
energy density of the “bulk” system. We will show that the
so-defined Helmholtz fluctuation-induced force has a behav-
ior very different from that of the Casimir force. Explicitly,
we will demonstrate that for the Ising chain with fixed M
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under periodic boundary conditions F (per)
H (T, M, L) can, de-

pending on the temperature T , be attractive or repulsive, while
F (per)

Cas (T, h, L) is only attractive. We note that the issue of the
ensemble dependence of fluctuation-induced forces pertinent
to the ensemble has yet to be studied. This issue is by no
means limited to the Ising chain and can be addressed, in
principle, in any model of interest. The analysis reported here
can also be viewed as a useful addition to approaches to
fluctuation-induced forces in the fixed-M ensemble based on
Ginzburg-Landau-Wilson Hamiltonians [8–10] in which one
studied the usual Casimir force.

Before turning to the specific calculations related to the
Ising chain with fixed magnetization we note that recently
one-dimensional and quasi-one-dimensional systems have
been the objects of intensified experimental interest—see,
e.g., Ref. [11] and references therein. Some of these, such
as TaSe3, are quasi-one-dimensional in the sense that they
have strong covalent bonds in one direction along the atomic
chains and weaker bonds in the perpendicular plane [12].
Others are more properly considered true one-dimensional
materials, in that they have covalent bonds only along the
atomic chains and much weaker van der Waals interactions
in perpendicular directions [13]. One-dimensional van der
Waals materials have emerged as an entirely new field, which
encompasses interdisciplinary work by physicists, chemists,
materials scientists, and engineers [11]. The Ising chain con-
sidered here can be seen as the simplest possible example of
such a one-dimensional material. Earlier experimental realiza-
tions of a one-dimensional Ising model have been considered
in Refs. [11,14–17]. The one-dimensional Ising model in a
transverse field has proven an important experimental realiza-
tion of a system with a quantum phase transition [17].

The Ising chain in a T -h ensemble manifests scaling behav-
ior in the vicinity of its zero-temperature ordered state, and it
is a test bed for exploring the influence of finite-size scaling
on critical properties, including the connection between the
behavior of fluctuation-induced forces in the critical regime
and scaling predictions [18,19].

Below, we describe the derivation of the exact results for
the partition function of an Ising chain with fixed magnetiza-
tion M under different boundary conditions. In what follows
we will assume a lattice constant a = 1, so that instead of L
we will use N as a measure of the length of the chain.

II. ISING CHAIN WITH FIXED M:
THE COMBINATORICS OF DOMAINS

As in the case of all boundary conditions considered here,
the partition function to be evaluated is the sum over spin
states of the Boltzmann factor

exp

[
K

N−1∑
i=1

sisi+1

]
, (2.1)

where each spin variable takes on the values ±1. Fixing the
total magnetism amounts to the constraint that the difference
between the number of up spins, N+, and the number of down
spins, N−, is equal to M.

The key step in the calculation of the partition function is
the determination of the number of ways in which the spins

FIG. 1. Top: The domain of up spins (in green) and of down spins
(in orange). Middle: The domains are each divided into four smaller
domains. Bottom: The smaller domains are now interspersed; see the
red arrows.

can arrange themselves into alternating spin-up and spin-
down domains, subject to the requirement of a fixed value
of the total magnetization, M. We start with equations that
express the relationships between M, the number of up spins,
N+, and the number of down spins, N−, along with the total
number of spins, N :

N = N+ + N− and M = N+ − N−. (2.2)

Inverting these equations we find

N+ = N + M

2
and N− = N − M

2
. (2.3)

For insight into the determination of domain statistics, we
look at, say, the fourth leading contribution in an expansion
of the partition function in powers of exp[−K]. We start with
a domain of N+ up spins. We then partition that domain into
four smaller domains. We do this by inserting three “slices”
into the domain, effectively three walls between adjacent
spins. We then partition a domain of N− down spins into four
smaller domains, which we insert between the domains of up
spins. The process is illustrated in Fig. 1.

We now calculate how many ways there are of subdividing
each domain into four subdomains. In the case of the spin-up
domain, that quantity is

(N+ − 1)(N+ − 2)(N+ − 3)/3!, (2.4)

which is the number of ways of inserting three partitions be-
tween adjacent spins in a linear array of N+ up spins. A similar
expression holds for the number of ways of subdividing the
domain of down spins. By making use of relations (2.3) and
multiplying the resulting expressions to obtain the number of
ways of subdividing both domains, we end up with the factor

[(N − 2)2 − M2][(N − 4)2−M2][(N − 6)2−M2]/[43(3!)2].
(2.5)

We now join the ends of the set of domains up so that they
form a ring, consistent with periodic boundary conditions, and
we rotate the ring around to find out how many ways we can
arrange the subdomains. This yields a factor of N . However,
because we take all possible lengths for the set of subdomains
we are overcounting by a factor of four, the number of pairs
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of domains. The overall factor is thus

N

4

[(N − 2)2 − M2][(N − 4)2 − M2][(N − 6)2 − M2]

43(3!)2
.

(2.6)
To obtain the complete expression, we multiply the above
by exp(−16K ), corresponding to the energy cost of the eight
walls between the eight domains of the periodically continued
array in Fig. 1.

In the general case of 2k alternating domains, the first
factor of 4 in the denominator of (2.6) is replaced by k, while
the two other factors become 4k−1 and (k − 1)!2. Thus, the
general form of the denominator is

4k−1k[(k − 1)!]2. (2.7)

Then, for the numerator one has

N
k−1∏
p=1

[(N − 2p)2 − M2]. (2.8)

Taking into account that the Boltzmann’s weight of a con-
figuration with 2k domains is exp[K (N − 4k)], for the
contribution of this configuration in the statistical sum one
obtains

Z term(N, M, K, k)

= N exp[K (N − 4k)]
∏k−1

p=1 [(N − 2p)2 − M2]

4k−1k[(k − 1)!]2
. (2.9)

The form of the right-hand side of (2.9) allows us to sum over
k from 0 to ∞ to obtain the partition function Z (per)(N, M, K ).
The result is a closed-form expression that is exact when N
and M are both even or odd integers with |M| < N , and that
smoothly interpolates between the exact expression for all
other values of N and M with |M| < N . The case |M| = N
is exceptional, but trivial to determine. The result is

Z (per)(N, K, M ) = NeK (N−4)
2F1

(
1
2 (−M − N + 2), 1

2 (M − N + 2); 2; e−4K
)
, (2.10)

where 2F1(α, β; γ ; z) is the generalized hypergeometric function [20].
Similar calculations [21] lead to expressions for the partition functions in the case of antiperiodic and Dirichlet boundary

conditions. When the boundary conditions are Dirichlet, we have

Z (D)(N, K, M ) = eK (N−1)
[
2e−2K

2F1
(

1
2 (−M − N + 2), 1

2 (M − N + 2); 1; e−4K
)

− 1
2 e−4K (M − N + 2) 2F1

(
1
2 (−M − N + 2), 1

2 (M − N + 4); 2; e−4K
)

+ 1
2 e−4K (M + N − 2) 2F1

(
1
2 (−M − N + 4), 1

2 (M − N + 2); 2; e−4K
)]

, (2.11)

and when the boundary conditions are antiperiodic, the partition function is given by

Z (anti)(N, K, M ) = eK (N−6)
[
2
(
e4K − 1

)
2F1

(
1
2 (−M − N + 2), 1

2 (M − N + 2); 1; e−4K
)

+N 2F1
(

1
2 (−M − N + 2), 1

2 (M − N + 2); 2; e−4K
)]

. (2.12)

As in the case of periodic boundary conditions, the ex-
pressions above for the partition function when boundary
conditions are Dirichlet and antiperiodic are exact except in
the case of perfect alignment of the spins, when M = ±N .

If we write M = mN and focus on the case N � 1, then
the exact expressions above approach different forms. In the
case of periodic boundary conditions, the partition function
becomes

Z (per)
lim (N, K, m) = 2

N

eNK xt√
1 − m2

I1(xt

√
1 − m2), (2.13)

where I1 is the modified Bessel function of order 1, and
xt = Ne−2K is the scaling combination N/ξt , ξt being the
correlation length [1] in the vicinity of the zero-temperature
critical point. This allows us to explore the scaling behavior
of thermodynamic quantities close to T = 0. Limiting forms
for the antiperiodic and Dirichlet partition functions can also
be obtained.

The explicit formulas (2.10)–(2.12) allow one to obtain
expressions involving derivatives with respect to the size N
and the total magnetization M of the Ising chain. This is
useful in the calculation of fluctuation-induced forces in the
one-dimensional Ising system. Because of the nature of the

ensemble in which the forces are generated, we refer to them
as Helmholtz forces. The determination of this kind of force
requires that we specify precisely what is held constant in
the finite Ising strip (the “film”) and the infinite Ising system
that borders it (the “bulk”). Three of the possibilities are (1)
constant total magnetization M, (2) constant magnetization
per site, m = M/N , and (3) constant number of up spins, N+.
The last is relevant to lattice gas models. Consideration of the
model leads to the following observations.

(1) In the case of periodic and antiperiodic boundary condi-
tions the degeneracy in the position of the borders between the
domains with respect to translation results in a contribution
to the Helmholtz free energy that is logarithmic in N . The
implies lack of a perfect scaling.

(2) When m in the fixed m ensemble is not equal to ±1, the
interfacial energy between the domains with coexisting phases
plays a key role in the statistical mechanics of the system.

It is well known that in the grand canonical ensemble, i.e.,
fixed h, the Gibbs free energy of the finite system approaches
the bulk limit exponentially in N (i.e., as e−αN with α > 0)
as N → ∞ for periodic boundary conditions. The properties
listed above imply that in systems with fixed m the Helmholtz
free energy possesses nonscaling contributions that vanish
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FIG. 2. The behavior of the function X (per)
H (K, m|N ) [see

Eq. (2.15)] with N = 100 and for m = 0.1, 0.3, and 0.5. We observe
that the function is positive for large values of K and negative for
relatively small values of K provided m is also relatively small. For
large m the force is always repulsive, irrespective on the value of K .
The same is also true for very small values of K , independent on the
values of m. The logarithmic behavior of the free energy of the finite
Ising chain with periodic boundary conditions noted in item (1) of
the comments above lead to the limit X (per)

H (K → ∞, m|N ) = 1.

significantly more slowly than this exponential approach to
the bulk behavior.

Note that m can also be seen as a sort of generalized
“charge,” or symmetry value, which is conserved both inside
and outside the system. Given the free energy derivable from
the partition function, one is in a position to determine the
fluctuation-induced Helmholtz force on a finite Ising chain in
contact with a “bulk,” a chain of infinite extent. The results of
such a calculation are shown in Figs. 2–4. Along the lines of
Eqs. (1.3) and (1.4), in terms of notations used specifically for

FIG. 3. The behavior of the function X (per)
H (K, m|N ) [see

Eq. (2.15)] with N = 100, 200, 300, 400, and 500. We observe that
the function is positive for large and for small enough values of K ,
while being negative for relatively moderate values of K , irrespective
of the value of N . The larger N , the stronger the repulsion is for a
small enough K ; the force in the latter regime is strongly repulsive,
irrespective of the value of N .

FIG. 4. The behavior of the scaling function X (per)
H (xt , m) for

m = 0.1. The inspection of the results obtained numerically from
Eq. (2.10) with N = 100, 200, 300, 400, and 500, and that one from
Eq. (2.13) demonstrate perfect scaling and agreement between each
other. We observe that the function is positive for large values of
xt , negative for relatively moderate values of xt , and again strongly
repulsive for small values of xt .

the Ising chain, the force is minus the derivative with respect
to N of the combined Helmholtz free energy

F = − ln[Z (per)(N, K, M )] + (N − N )FH(K, m). (2.14)

Here, FH is the Helmholtz free-energy density of a “bulk”
neighboring Ising chain. The term proportional to N can
be ignored as a background contribution to the overall free
energy. The quantities M, m, and K are kept constant in
the process of differentiation, after which M is set equal
to mN . This yields the fluctuation-induced Helmholtz force
F (per)

H (K, m, N ). Multiplying the result for F (per)
H (K, m, N ) by

N provides the function X (per)
H (K, m|N ),

X (per)
H (K, m|N ) = NF (per)

H (K, m, N ). (2.15)

Its behavior is shown in Figs. 2 and 3. Figure 2 shows its
behavior as a function of K for N = 100, and m = 0.1, 0.3,
and 0.5, while Fig. 3 shows it for m = 0.1 and N = 100, 200,
300, 400, and 500. Focusing on the scaling regime (K and N
both large compared to 1) we end up with the N-independent
scaling function X (per)(xt , m). Figure 4 shows the behavior of
this quantity as a function of xt for m = 0.1.

The plots in Fig. 2 show that the fluctuation-induced force
studied has a behavior that is similar to one appearing in some
versions of the big bang theory—strong repulsion at high
temperatures, transitioning to moderate attraction for interme-
diate values of the temperature, and then back to repulsion,
albeit much weaker than during the initial period of highest
temperature [22].

Our Letter demonstrates that one can define ensemble-
dependent fluctuation-induced forces and study their be-
haviors. It is worth noting that, as in the studied case of
Helmholz’s forces, their behaviors can be quite different from
the well-known one of the Casimir forces.
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