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Effects of finite non-Gaussianity on evolution of a random wind wave field
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We examine the long-term evolution of a random wind wave field generated by constant forcing, by com-
paring numerical simulations of the kinetic equation and direct numerical simulations (DNS) of the dynamical
equations. While the integral characteristics of the spectra are in reasonably good agreement, the spectral shapes
differ considerably at large times, the DNS spectral shape being in much better agreement with field observations.
Varying the number of resonant and approximately resonant wave interactions in the DNS numerical scheme,
we show that when the ratio of nonlinear and linear parts of the Hamiltonian tends to zero, the DNS spectral
shape approaches the shape predicted by the kinetic equation. We attribute the discrepancies between the kinetic
equation modeling, on one side, and the DNS and observations, on the other, to the neglect of non-Gaussianity
in the derivation of the kinetic equation.
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Introduction. The long-term nonlinear evolution of random
wave fields is described by wave turbulence theory, which
links ensemble averaged quantities of the field to the spectral
density nk = n(k, t ), a function of wave vector k and time
t [1]. This quantity, proportionate to the Fourier transform
of two-point averages, is called the particle number, power,
or wave-action density in various contexts. Often, there is an
inverse cascade of this quantity towards large scales, leading
to the emergence of long waves due to resonant interactions
of shorter waves. Within the wave turbulence theory, the
process is described by the kinetic equation (KE), which ex-
presses time derivatives of the density in terms of this density
only [1,2]. Analytical and numerical solutions of this equa-
tion form the core of our understanding of the evolution of
random wave field on large timescales.

By far the most studied example of this evolution is pro-
vided by oceanic wind waves. The corresponding KE is
known as the Hasselmann equation [3], and is routinely sim-
ulated numerically for operational wave forecasting. From
the theoretical perspective, the wind wave example stands
out due to continuous worldwide testing of the forecasting
against observations, which gives a unique chance to verify
the assumptions underlying the wave turbulence theory.

While there is a consensus that the KE does capture the
main features of wave field evolution [4–8], there are major
discrepancies between the KE-based predictions and obser-
vations. The inherent property of the KE is the homogeneity
of the wave interaction term as a function of spectral energy
density [8]. This property leads to self-similarity of the solu-
tions in a wide range of wave generation conditions [9] and
allows us to formulate the basic laws of wind wave growth
independently of wind speed [8]. In an idealized situation
when a wave field is generated by constant wind, the KE pre-
dicts that the solution tends to a permanent self-similar shape,
with a characteristic enhanced peak and steep, nearly straight

spectral front, which evolves towards large scales following
the known asymptotic laws (e.g., Ref. [9]). As long as the
consideration is confined to the integral characteristics of a
wave field (such as a significant wave height, total energy, fre-
quency of the spectral peak), the self-similar picture of wind
wave development predicted by the KE is generally supported
experimentally [5,6,8]. However, a closer look at spectral
shapes reveals a major discrepancy: The observed spectral
shapes of young and mature sea states essentially differ [Joint
North Sea Wave Project (JONSWAP) and Pierson-Moskowitz
spectra, respectively] [10]. As waves mature, a decrease in the
spectral peakedness is observed [7,11–13]. The parametriza-
tion of the spectral shape of a fully developed sea, proposed in
Ref. [14], confirmed in a later reanalysis [15], and at present
widely accepted to be well assured statistically [11], is dif-
ferent from the shape of the self-similar KE solutions, having
a more rounded spectral front and peak with no pronounced
enhancement. The evolution of the spectral shape with fetch
with a decrease of peakedness and a continuous transition
to the Pierson-Moskowitz spectrum has been described in
a number of measurement-based studies [7,11–13]. At this
stage of wave field development, the spectral peak is no longer
under direct wind forcing, and the probability of breaking
events for dominant waves is low [15,16], so that the shape of
the peak should be determined primarily by nonlinear interac-
tions. Therefore, the fact that the KE is unable to reproduce
this spectral shape represents a major fundamental challenge.

Until recently, the KE as the model of long-term wind wave
field evolution did not have an alternative (a generalization
proposed by Ref. [17], although useful, in the large time limit
tends to the KE and, hence, does not resolve the contradic-
tion). This situation was changed when a direct numerical
simulation (DNS) algorithm capable of long-term simulations
of random wave fields was proposed [18–20]. The algorithm
is based on the Zakharov equation, from which the KE is
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derived, and performs simulations with ensemble averaging
without any statistical assumptions. DNS simulations without
wind showed, in particular, that in contrast to the KE pre-
dictions, the DNS spectra have a less steep, more rounded
spectral front and a considerably wider and lower peak [20].
At the same time, no apparent reason to question the ba-
sic assumptions underlying the wave turbulence theory (e.g.,
smallness of non-Gaussianity, wide separation of timescales)
has been found, and an explanation of the discrepancies re-
mained outstanding.

In this Letter, we identify the origin of the discrepancies as
the neglect of small but finite non-Gaussianity in the deriva-
tion of the KE itself, rather than in the underlying theory. In
order to get a closed equation in terms of nk, one has to ex-
press the six-point correlator in terms of two-point ones only,
neglecting the four-point cumulants in the expansion [21].
This approximation, equivalent to the assumption of random
initial phases [22], leads to the aforementioned homogeneity
property, absent in the primitive equations, and contradicts the
established picture of weak turbulence, according to which
the wave field evolution is due to the nonlinear regeneration
of non-Gaussianity [23]. Thus, the KE takes into account
finite nonlinearity (the asymptotic expansion in powers of
nonlinearity retains cubic terms), but assumes infinitesimal
non-Gaussianity. Crucially, according to the KE the spectral
shape is the same for all levels of nonlinearity, including
infinitesimal nonlinearity. In this sense, the neglect of finite
non-Gaussianity does not allow one to properly capture the
effects of finite nonlinearity either.

To consider the effects of finite non-Gaussianity on the
long-term evolution of a random wave field, we examine by
DNS the evolution of a wave field generated by constant
wind, and compare it with the KE results. In both models,

the evolution tends to self-similarity, and the integral charac-
teristics of the spectra are close to each other. However, the
shape of the DNS spectra is quite different, with a lower, less
pronounced peak. Introducing integral characteristics of the
non-Gaussianity linked to the coarse-graining parameter of
the numerical scheme, we find the wave spectrum dependence
on non-Gaussianity, and demonstrate that the DNS spectral
shape converges to the KE one when the non-Gaussianity
tends to zero. This enables us to attribute the origin of the
discrepancy to the neglect of non-Gaussianity in the KE
derivation.

Theoretical background and numerical methods. We con-
sider gravity waves on the surface of deep fluid governed by
the Zakharov equation [1]

i
∂b0

∂t
= ω0b0 +

∫
T0123b∗

1b2b3δ0+1−2−3 dk123. (1)

Here, b(k) is a canonical complex variable in Fourier space,
k is the wave vector, k = |k|, and ω(k) = (gk)1/2 is the
linear dispersion relation. The compact notation used des-
ignates arguments by indices, e.g., T0123 = T (k, k1, k2, k3),
δ0+1−2−3 = δ(k + k1 − k2 − k3), an asterisk means complex
conjugation, and t is time.

For wave fields with the 2 ↔ 2-type dominant resonant
process (1) is often taken as the primitive equation (thus,
higher-order resonances are neglected). Then the statistical
description of a wave field can be obtained in terms of cor-
relators of b(k, t ) as [17]

∂n0

∂t
= 2 Im

∫
T0123J (1)

0123δ0+1−2−3 dk123. (2)

where n0 is the second-order correlator, 〈b∗
0b1〉 = n0δ0−1, and

J (1)
0123 is the four-point cumulant. In the next order [21],

(
∂

∂t
− i�ω

)
J (1)

0123 = 2i
∫

{T0456δ0+4−5−6I156234 + T1456δ1+4−5−6I056234 − T2456δ2+4−5−6I014356 − T3456δ3+4−5−6I014256}dk456,

(3)

where �ω = ω0 + ω1 − ω2 − ω3, and I012345 is the six-point
correlator. Since the six-point cumulant is neglected, I012345

is reduced to a lengthy expression containing pair correlators
and four-point cumulants. Thus, the system of equations for
two- and four-point correlators is closed. However, to obtain
the closed equation for nk, we must neglect all four-point
cumulants in the expansion for I012345, retaining only the
leading-order term. Such a reduction is equivalent to the Gaus-
sianity assumption. The resulting KE is

∂n0

∂t
= 4π

∫
T 2

0123 f0123δ0+1−2−3δ(�ω)dk123, (4)

where f0123 = n2n3(n0 + n1) − n0n1(n2 + n3). Equivalently,
the KE can be derived by assuming initial random phases [22].

The neglect of weak non-Gaussianity in the derivation of
the KE makes its right-hand side a homogeneous function of
n(k) [8]. This means that the shape of the solutions for spectra
provided by the KE corresponds to the case of infinitesimal
amplitude. Thus the role of finite amplitude effects remains
unknown. In an attempt to study these effects, we compare

numerical simulations based on the KE and the Zakharov
equation (1). The Zakharov equation is simulated using the
original algorithm, described in Ref. [20]. All parameters of
the algorithm are the same as in Ref. [20], except for three
modifications. First, in contrast to the simulations of swell
in Ref. [20], we add wind forcing according to Ref. [24],
for all k < 4.84. Second, to accommodate the wider angular
distribution of the wind wave spectra, we increase the range
of angles, retaining the same angular resolution. Thus, the
computational grid contains 161 logarithmically spaced wave
numbers in the range 0.25 � k � 9 and 71 angles in the range
−7π/9 � θ � 7π/9. Third, a DNS algorithm with wind forc-
ing can only be functional if a certain parametrization of
wave breaking is employed. Here, we do not attempt to model
the physical process of wave breaking, but intermittency in
individual realizations makes it necessary to limit the growth
of some wind amplified harmonics. To this end the follow-
ing empirical rule is introduced: If the nondimensional value
εk = 0.5

√
2ωnk/g/πk exceeds εc, where nk is the discrete

wave action of a harmonic under forcing, then the forcing
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(a)

(b)

FIG. 1. Development of wave action spectrum n(k) under con-
stant wind U = 2c1, shown in steps of approximately 300τ1, where
c1 and τ1 are the characteristic phase speed and period, corresponding
to k = 1. (a) KE, WRT algorithm, and (b) DNS, with λk = 0.03 on
a 161×71 grid. Wave-number ranges of forcing and dissipation are
indicated by arrows.

is changed to damping until εk � 0.1εc, when it is resumed.
For the simulations with the 161×71 grid, εc is set to 0.01,
resulting in a small number of “breaking events,” usually
between 0 and 5 for each realization at every time step. A
detailed discussion of the structure of the DNS algorithm and
the role of parameters λk and εc, with a number of additional
simulations, is provided in the Supplemental Material [25].

For the KE simulations, we use the standard Webb-Resio-
Tracy (WRT) algorithm, provided by van Vledder, and a
101×51 grid with the same range of wave numbers and a full
circle of directions. Wind forcing is identical for both models,
and dissipation is applied to k � 6.25.

Results. First, we perform simulations of the wave field
development from zero initial condition under forcing by con-
stant wind with speed U = 2c1, where c1 is the phase speed
corresponding to k = 1, close to the peak wave number at
the end of the evolution. The DNS simulation is performed
with averaging over 100 realizations. Development of the
wave action spectrum n(k) with time for both numerical meth-
ods is shown in Fig. 1. A comparison of the panels shows

that both solutions tend to self-similar behavior, and that the
asymptotics of duration-limited wave growth under constant
wave action flux, known from the analysis of the KE [9],
are respected in both cases. However, the spectral shapes,
which are initially close, differ considerably at later stages
of the evolution. Although the spectral slope in both cases
corresponds to the theoretical value for the inverse cascade
of wave action k−23/6 [21], the DNS spectra have a less
steep, more rounded spectral front and a considerably wider
and lower peak. Similar differences were reported earlier for
simulations of wave evolution without wind forcing [20]. In
the present case, the KE evolution also demonstrates a slightly
faster downshift rate.

Due to the homogeneity property of the KE, the self-
similar spectral shape is the same for all levels of nonlinearity,
and the downshift rate has a simple scaling law [8]. If the dis-
crepancies between the KE and the DNS are due to the effects
of non-Gaussianity unaccounted for by the KE, they are ex-
pected to decrease at lower levels of nonlinearity. Simulations
with lower wind forcing indeed show that the difference in the
downshift rate decreases, but the difference in spectral shapes
persists. Our aim to compare the DNS and the KE evolution
in the small nonlinearity limit cannot be done by simply de-
creasing the wind speed, since wind-generated waves always
have a certain finite steepness.

Here, we use another approach, which is helped by the
particular design of the DNS algorithm. The algorithm is
based on the idea of coarse graining of a wave field [20],
which relaxes the resonance condition into k0 + k1 − k2 −
k3 = �k. In contrast to the standard condition �k = 0, the
wave vector and frequency mismatches satisfy �ω/ωmin <

λω, |�k|/kmin < λkω̄/ωmin, where ωmin and kmin are the mini-
mum values of frequency and wave number in the quartet, ω̄ is
the mean frequency, and λω and λk are the detuning parame-
ters. A crucial role is played by the coarse-graining parameter
λk . If λk = 0, the wave field in the canonically transformed
space, in which both the Zakharov equation and the KE op-
erate, is free (Gaussian) regardless of the amplitude, since a
logarithmically spaced grid with λk = 0 allows no nontrivial
wave interactions and, hence, no evolution. When λk is in-
creased, the number of approximately resonant interactions
(with fixed λω = 0.01) grows approximately quadratically
with λk , while the rate of spectral evolution, measured by
the rate of change of various integral parameters, quickly
increases, until it reaches saturation at a certain value λk ,
dependent on the grid resolution. Since in Ref. [20] the value
λk = 0.03 was found to be optimal for the 161×71 grid, this
value was used while computing the DNS evolution shown
in Fig. 1. For the purpose of this study, it is convenient to
use λk as a way to create wave fields with the same level of
nonlinearity ε, but different levels of non-Gaussianity. In order
to avoid discreteness artifacts at a low number of interactions,
we use, along with the 161×71 grid, the refined 321×71 grid,
setting εc = 0.0075 and λk in the range 0.003 � λk � 0.03.
Non-Gaussianity can be measured as the ratio of the nonlinear
part of the ensemble averaged Hamiltonian H̄ [19],

H̄NL = 1

2

∫
T0123〈b∗

0b∗
1b2b3〉δ0+1−2−3 dk0123, (5)

and its linear part H̄L = ∫
ω0n0 dk0.
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FIG. 2. Non-Gaussianity as measured by μ, the ratio of statis-
tically averaged nonlinear and linear energy as a function of the
coarse-graining parameter λk . μ is averaged over 600 characteristic
periods of the final stage of evolution before the spectral peak reaches
kp = 1.

The evolution of all wave fields is traced by the DNS
with the same wind forcing as above, until the peak of the
wave action spectrum n(k) reaches kp = 1. Under the wind
forcing, the linear and nonlinear parts of the Hamiltonian both
grow with time, but their ratio μ = H̄NL/H̄L is approximately
constant at the self-similar stage of evolution. The nonzero
value of μ, although very small, is a prerequisite for spectral
evolution. Figure 2 shows the value of μ averaged over the
last 600 periods of evolution before reaching kp = 1 for both
grids, as a function of λk . Non-Gaussianity quickly grows
with an increase of λk , approaching saturation at λk � 0.03.
Meanwhile, the spectral evolution, as described by various
integral parameters, does converge for both grids, and is very
close between them. Formally, the value of λk required for
the simulation can be made smaller by a further refinement of
the grid, although in practice this is limited by the available
computational resources. In particular, on the refined 321×71
grid the number of wave interactions exceeds 109 already for
λk = 0.01.

We are mainly interested in the shape of the spectrum.
At the self-similar stage of evolution the spectral shape is
characterized by the self-similar function U for the duration-
limited evolution, n(k) = at23/11U (bkt6/11), where a and b are
constants [9]. The simulated self-similar spectral shapes U (ξ )
are shown in Fig. 3. While the spectral slope depends on the
parametrization of breaking more than on λk , the shape of
the spectral front demonstrates a clear dependence on λk . For
small λk , the wave field has relatively few wave interactions
(about 108 on the 321×71 grid at λk = 0.003), and the evolu-
tion is very slow, although the self-similar state is eventually
reached, with the spectral front of the shape function U (ξ )
close to the KE shape function. With the increase of λk from
zero, the shape function quickly approaches a different form,
with a more rounded front and a wider peak, resembling the
Pierson-Moskowitz spectral shape.

FIG. 3. Self-similar shape function U (ξ ), ξ = kt6/11, extracted
from the numerical solutions at the last 1000 wave periods of evo-
lution. Shapes at every 100 periods are shown in light colors, and
the final curve is in a darker color of the same hue, normalized
for U (1) = 1. Numerical models used are the KE and the DNS on
161×71 (DNS161) and 321×71 (DNS321) grids for different values
of λk .

For many applications, the evolution and prediction of the
integral characteristics of the spectra, such as significant wave
height, is of particular importance [4]. The key question is
whether the evolution of integral characteristics can be af-
fected by the effects of finite non-Gaussianity for realistic
wind speeds. To clarify this point, we plot in Fig. 4 the evo-
lution of significant wave height Hs obtained with the KE and
the DNS for various values of λk . Figure 4 demonstrates that
with an increase of λk the DNS evolution of Hs converges,
remaining slightly slower than that predicted by the KE, but
following the same asymptotic rate of increase known for the
KE in the case of constant action flux [9]. The difference
between the KE and the DNS is mostly manifested in the
spectral shape, while the difference in significant wave height

FIG. 4. Evolution of significant wave height Hs: DNS on 161×71
and 321×71 grids for different values of λk vs the KE simulation.
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is relatively small and appears to be due to breaking that
effectively reduces the forcing. Simulation of the KE with
wind forcing reduced by 5% makes the difference insignifi-
cant.

Discussion. Studies of wave kinetics based on the KE rely
on the homogeneity of the right-hand side of the equation with
respect to the spectrum. This property is an artifact of the
neglect of non-Gaussianity effects. In this Letter, we show that
although non-Gaussianity is weak, in the long term it leads to
a considerable discrepancy in the spectral shape. At the same
time, the integral parameters of a wave field appear to be much
less affected, with the error remaining within the uncertainty
introduced by wave breaking, which the DNS modeling has
to take into account. The spectral shape obtained by the DNS
appears to be in much closer agreement with observations of
mature sea states than the KE spectral shape.

The present study and its findings have numerous impor-
tant implications. First, they are of crucial importance for all

applications where the shape of the wave spectrum is signif-
icant, rather than just its integrated description, in particular
for probability estimates of extreme wave events, design or
coastal hazard risk assessments, sediment transport models,
etc. Second, it is well known that the wind wave models
based on the KE are optimized for certain frequency and di-
rectional resolutions against the available measurements. The
knowledge of systematic errors in the models can drastically
improve the quality of such optimizations, and thus improve
the quality of wind wave modeling. Third, the findings of
this Letter provide insight on the role of non-Gaussianity in
kinetic models, which is significant for a wide context of wave
turbulence in various branches of physics.
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