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Thermodynamic skewness relation from detailed fluctuation theorem
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The detailed fluctuation theorem (DFT) is a statement about the asymmetry in the statistics of the entropy pro-
duction. Consequences of the DFT are the second law of thermodynamics and the thermodynamics uncertainty
relation, which translate into lower bounds for the mean and variance of currents, respectively. However, far
from equilibrium, mean and variance are not enough to characterize the underlying distribution of the entropy
production. The fluctuations are not necessarily Gaussian (nor symmetric), which means their skewness could be
nonzero. We prove that the DFT imposes a negative tight lower bound for the skewness of the entropy production
as a function of the mean. As application, we check the bound in the heat exchange problem between two thermal
reservoirs mediated by a qubit swap engine.
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Introduction. Fluctuation theorems (FTs) unlocked a vari-
ety of new results in nonequilibrium thermodynamics [1–13].
In this context, the entropy production � plays a major role as
it is connected to different thermodynamic observables, such
as irreversible work and heat transfer. In small systems far
from equilibrium, the entropy production behaves randomly
with fluctuations that satisfy some form of FT.

Among the FTs, the strong detailed fluctuation theorem
(DFT) [14–17] is a relation about the asymmetry of the prob-
ability density function of the entropy production between
positive and negative values of �,

p(�)

p(−�)
= e�. (1)

The DFT arises in different situations, as observed in the
setup of the exchange fluctuation theorem [17–22], the Evan-
Searles fluctuation theorem [23,24], and the Gallavotti-Cohen
relation [9]. The DFT (1) shows that a positive entropy pro-
duction is more likely to be observed when compared to the
negative counterpart.

Some constraints for the statistics of � are derived directly
from the DFT. For instance, the most famous constraint that
follows from (1) is certainly the second law of thermodynam-
ics [1],

〈�〉 � 0, (2)

now expressed as the ensemble average over p(�).
Another constraint for the statistics of � is the thermo-

dynamic uncertainty relation (TUR) [25–31]. In the setup of
the strong DFT (1), when written in terms of the entropy
production, the TUR derived from the exchange fluctuation
theorem [14,19,30] is a lower bound for the coefficient of
variation, σ/〈�〉, derived solely from the DFT (1) and it reads

σ

〈�〉 � sinh

(
g(〈�〉)

2

)−1

, (3)

for σ := 〈(� − 〈�〉)2〉1/2 and g(x) is the inverse of
x tanh(x/2) for x � 0. The TUR found applications in classic
and quantum systems [1], where it is typically written in terms
of currents.

Note that the objects of the second law (2) and the TUR (3)
are the mean and variance of the distribution of the entropy
production, p(�). Although the first and second cumulants are
sufficient to define a Gaussian distribution, there are several
cases in which the distribution of the entropy production (and
currents) might display non-Gaussian or asymmetric behavior
[14,31–34], which makes the higher order cumulants impor-
tant. In this case, the dependency between p(�) and p(−�)
imposed by the DFT might impact higher order cumulants,
such as the skewness.

In that context, skewness has been used to characterize
asymmetry of distributions in several situations. For instance,
skewness was used to characterize current fluctuations in a
semiconductor quantum dot [35] and dusty plasma [36], the
first passage time in stochastic thermodynamics [25,37], and
transport in multiterminal junctions [38]. Particularly, in con-
nection to fluctuation theorems, skewness and higher order
moments were analyzed in relation to transport coefficients
[12,39] and quantum work close to equilibrium [40].

In this paper, in the same spirit of the second law (2) and the
TUR (3), we ask if the strong DFT also influences the skew-
ness, here defined as 〈(� − 〈�〉)〉3/σ 3, where 〈(� − 〈�〉)〉3

is the third central moment (or third cumulant) of the entropy
production. In other words, assuming the strong DFT (1)
and given a known mean 〈�〉, can the distribution p(�) be
arbitrarily skewed? Or is there a thermodynamic skewness
relation? In fact, we show that the skewness of the entropy
production is bounded by the mean:

〈(� − 〈�〉)3〉
σ 3

� −2 sinh

(
g(〈�〉)

2

)
. (4)
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It means that the DFT (1) allows the skewness of the
distribution p(�) to be positive, null (as in the Gaussian case),
or negative, but not arbitrarily negative. The bound is tight and
saturated by the same distribution that saturates both the TUR
(3) and the bound for apparent violations of the second law
[41].

The paper is organized as follows. First, we present the
formalism, where we define the skewness and prove that it
is lower bounded by the mean (4) using a technique based
on Jensen’s inequality. Alternatively, we also show that the
skewness is not upper bounded by a function of the mean
presenting an explicit counterexample. Then, as applications,
we show how the entropy production of a nonequilibrium
system operating in finite time behaves when compared to the
lower bound: the entropy produced by a qubit swap engine.
Finally, we discuss the results and some perspectives.

Formalism. We prove a general result for the statistics of
p(�), assuming that p(�) satisfies the strong DFT (1). Sim-
ilar strategies have been used in the TUR (3) [14,31,42,43]
and apparent violations of the second law [41]. First, let the
skewness be defined as

〈(� − 〈�〉)3〉
σ 3

= 〈�3〉
σ 3

− 3
〈�〉
σ

− 〈�〉3

σ 3
. (5)

The averages 〈.〉 are taken with respect to p(�). Now
we use a known property of odd functions under the DFT
[14,30,33,41]: let u(�) be an odd function, u(�) = −u(�);
then we have the property

〈u(�)〉 = 〈u(�) tanh(�/2)〉. (6)

By setting the specific odd function u(�) := �3, we have
from (6)

〈�3〉 = 〈�3 tanh(�/2)〉 = 〈g(h(�))2h(�)〉 = 〈w(h(�))〉,
(7)

for w(h) := g(h)2h and h(�) = � tanh(�/2), g(h(�)) = |�|
for any �. Using w′′(h) � 0 (see the Appendix), we have from
Jensen’s inequality,

〈w(h(�))〉 � w(〈h(�)〉), (8)

and replacing (8) in (7) results in

〈�3〉 � w(〈h(�)〉) = g(〈h(�)〉)2〈h(�)〉 = g(〈�〉)2〈�〉, (9)

where we used (6) for ũ(�) = �, 〈�〉 = 〈� tanh(�/2)〉 =
〈h(�)〉. Finally, replacing (9) in (5), we obtain

〈(� − 〈�〉)3〉
σ 3

� 〈�〉3

σ 3

(
g(〈�〉)2

〈�〉2
− 1

)
− 3

〈�〉
σ

. (10)

From definitions of h and g, we have

h(g(〈�〉)) = g(〈�〉) tanh[g(〈�〉)/2] = 〈�〉, (11)

since h(g(〈�〉)) = 〈�〉, for 〈�〉 � 0 (2), which can be conve-
niently rewritten as

g(〈�〉)2

〈�〉2
− 1 = sinh[g(〈�〉)/2]−2. (12)

Replacing (12) in (10) results in

〈(� − 〈�〉)3〉
σ 3

� 〈�〉
σ

( 〈�〉2

σ 2
sinh[g(〈�〉)/2]−2 − 3

)
. (13)

Now we rewrite the right-hand side of (13) using the short-
hand notation y := 〈�〉/{σ sinh[g(〈�〉)/2]}:

〈(� − 〈�〉)3〉
σ 3

� sinh

(
g(〈�〉)

2

)
y(y2 − 3). (14)

Finally, as y > 0 and sinh[g(〈�〉)/2] � 0, we use y(y2 − 3) =
−2 + (y − 1)2(y + 2) � −2 in (14) and obtain

〈(� − 〈�〉)3〉
σ 3

� −2 sinh

(
g(〈�〉)

2

)
. (15)

Remarks. One could check by inspection that the bound
is actually the skewness of the minimal distribution, p(�) =
[e−a/2δ(� + a) + ea/2δ(� − a)]/[2 cosh(a/2)], with a given
average, 〈�〉 = a tanh(a/2) = h(a), which means a =
g(〈�〉). Interestingly, this distribution also saturates the
TUR (3) [14,31]. For the skewness, we have for the
minimal distribution 〈�2〉 = a2, σ = a/ cosh(a/2), and
〈�3〉 = a3 tanh(a/2) = a2〈�〉. In this particular case, the
skewness (5) is given by

〈(� − 〈�〉)3〉
σ 3

= −2 sinh(a/2) = −2 sinh[g(〈�〉)/2], (16)

which saturates the lower bound (4). Therefore, for a given
mean, the minimal distribution minimizes the skewness and
the variance simultaneously.

The behavior of the bound near equilibrium, 〈�〉 ≈ 0, is
given by

〈(� − 〈�〉)3〉
σ 3

� −2 sinh

(
g(〈�〉)

2

)
≈ −

√
2〈�〉, (17)

and since h(x) ≈ x2/2 for x � 1, we have g(x) ≈ √
2x and

sinh(x) ≈ x.
The bound is particularly useful in situations where the

entropy production is simply written in terms of a current, J;
one has � = AJ , where A is some affinity coefficient. In these
cases, we have a thermodynamic skewness relation (TSR) for
the current,

sgn(A)
〈(J − 〈J〉)3〉

σ 3
J

� −2 sinh

(
g(A〈J〉)

2

)
, (18)

where σJ := 〈(J − 〈J〉)2〉1/2. Note that (18) is a lower (upper)
bound for the skewness of the current if A > 0 (A < 0).

Since we mentioned upper bounds, another important as-
pect of the skewness (5) of distributions p(�) satisfying the
DFT (1) is that, although it is lower bounded, it is not upper
bounded for a given mean. In other words, the DFT allows the
skewness to be arbitrarily large. For that purpose, consider the
ansatz for the pdf p(�) ∈ R:

p+(�) = C(λ)

1 + (�/λ)4
, (19)

for � � 0 and λ > 0, and

p−(�) = C(λ)e�

1 + (�/λ)4
, (20)

for � < 0 and some C(λ) that normalizes p(�). One can
easily check that (19) and (20) satisfy the DFT (1). Moreover,
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FIG. 1. Examples of nonpositive skewness 〈(� − 〈�〉)3〉/σ 3 as a
function of the mean 〈�〉 for the swap engine (red), double minimal
distributions (green) and Gaussian distribution (blue), and the lower
bound (dashed), which is saturated by the minimal distribution. The
curves collapse at 〈�〉 ≈ 0, where the bound behaves as −√

2〈�〉,
which represents a near equilibrium situation.

p(�) has a finite mean and variance. One could set λ to fix a
given mean,

〈�〉 = C(λ)λ2
∫ ∞

0

x(1 − e−λx )

1 + x4
dx, (21)

by a change of variables � = λx. However, the third momen-
tum diverges for any λ > 0,

〈�3〉 = C(λ)λ4 lim
L→∞

∫ L

0

x3(1 − e−λx )

1 + x4
dx = ∞, (22)

which makes the skewness (5) unbounded for a given mean
under the DFT (1).

Application to a swap engine. We consider a pair
of qubits with energy gaps εA and εB, initially prepared
in thermal equilibrium, p(±) = exp(±βε)/[exp(−βε) +
exp(+βε)], for β ∈ {β1, β2} and ε ∈ {εA, εB}, with thermal
reservoirs at temperature T1 and T2. The energy is measured
in a two point measurement scheme performed before and
after a swap operation [44], where the swap operation is
defined as |xy〉 → |yx〉, for x, y ∈ {−,+}. The entropy pro-
duction is given by [31,44] by � = β1�EA + β2�EB, where
�EA = E f

A − Ei
A, �EB = E f

B − Ei
B are the variations of en-

ergy measurements before and after the swap. The possible
outcomes for the entropy production are � ∈ s = {0,±2a}
for 2a = 2(β2εB − β1εA) and the distribution p(�) is given
by p(�) = (1/Z0) exp(�/2), for � ∈ s. It satisfies the DFT
(1) and it has simple relations for the statistical moments,

〈�〉 = a(ea/2 − e−a/2)

1 + e−a/2 + ea/2
, (23)

〈�2〉 = a2(ea/2 + e−a/2)

1 + e−a/2 + ea/2
, (24)

〈�3〉 = a3(ea/2 − e−a/2)

1 + e−a/2 + ea/2
= a2〈�〉. (25)

Finally, using expressions (23)–(25), we compute the mean
(23) and the skewness using (5) for different values of a; then
we plot the skewness as a function of the mean 〈�〉 in Fig. 1.

Double minimal. We consider the double minimal distri-
bution as another example, defined as the sum � = �1 + �2,

such that each �i satisfies the minimal distribution
p(�i ) = [e−a/2δ(�i + a) + ea/2δ(�i − a)]/[2 cosh(a/2)],
for i = 1, 2. Note that the possible outcomes for
� = �1 + �2 are {−2a, 0, 2a} with corresponding
probabilities P(� = −2a) = p(�1 = −a)p(�2 = −a) =
D e−a, P(� = 2a) = p(�1 = a)p(�2 = a) = D ea, and
P(� = 0) = p(�1 = −a)p(�2 = a) + p(�1 = +a)p(�2 =
−a) = 2D, for D = 1/(ea + e−a + 2). Check that it satisfies
the DFT (1). In this case, we obtain for the moments

〈�〉 = 2a(ea − e−a)

2 + e−a + ea
, (26)

〈�2〉 = (2a)2(ea + e−a)

2 + e−a + ea
, (27)

〈�3〉 = (2a)3(ea − e−a)

2 + e−a + ea
= (2a)2〈�〉. (28)

Note that (26)–(28) resemble (23)–(25), with a slight differ-
ence that reflects in the skewness depicted in Fig. 1. Also
note that summing iid minimal random variables will make
the skewness depart from the lower bound, as expected.

Gaussian case. For completeness and due to its importance,
we include the Gaussian case,

p(�) = 1

2
√

π〈�〉 exp

(
− (� − 〈�〉)2

4〈�〉

)
, (29)

where the mean is given by 〈�〉 and it satisfies the DFT
(1), which actually fixes the variance in σ 2 = 2〈�〉. Thus,
differently from the general case, the Gaussian case has only
one free parameter. Because it is symmetric around the mean,
p(�) = p(〈�〉 − �); then the skewness (5) of (29) is zero for
any 〈�〉, also depicted in Fig. 1.

Discussion and conclusions. Using the strong detailed fluc-
tuation theorem (DFT), we showed that the skewness, here
defined as 〈(� − 〈�〉)3〉/σ 3, is lower bounded by the mean,
〈�〉. The lower bound is always negative, as depicted in Fig. 1.
Near equilibrium, 〈�〉, the lower bound approaches 0 as the
function −√

2〈�〉.
The lower bound is saturated by a simple two level system,

called the minimal distribution. It is minimal in the sense that
it is the most simple distribution (two point mass function)
satisfying the DFT with a given mean 〈�〉. We also showed
an explicit example of a distribution satisfying the DFT (1)
with arbitrarily positive skewness (19) and (20). Thus the
DFT allows the skewness to be arbitrarily positive, but not
arbitrarily negative.

Interestingly, the same minimal distribution that saturates
the skewness relation also saturates a form of thermodynamic
uncertainty relation (TUR) (3) and the lower bound for appar-
ent violations of the second law.

As applications, we considered the swap engine as a simple
form of entropy production, with a distribution p(�) given
by a three point mass function. As expected, as it departs
from the minimal distribution, Fig. 1 shows that the system
has negative skewness, but it is above the lower bound as
expected. Another example was the sum of two iid variables
satisfying the minimal distribution, where the distribution of
the sum is also a three point mass function. The Gaussian case
(zero skewness) was also included for completeness.
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As previous results derived from specific forms of fluctu-
ation theorems, our result is limited by the applicability of
the strong DFT. It might find straightforward applications,
for instance, in the context of heat exchange (exchange fluc-
tuation theorems). In this case, the bound written in terms
of an observable current (18) and the underlying affinity is
particularly useful.

APPENDIX

We prove that w′′(h) � 0, for w(h) := g(h)2h, where
h(x) := x tanh(x/2) and g(h(x))2 = x2, for any x ∈ R. We use
the notation w′ := dw/dh and ẇ := dw/dx. From definition,
we have w = x2h and w′ = ẇx′. The second derivative reads

w′′ = d

dh
(ẇx′) = ẅx′2 + ẇx′′, (A1)

where x′ = dx/dh = 1/ḣ and x′′ = x′(d/dx)(1/ḣ) =
−ḧx′/ḣ2 = −ḧ/ḣ3. Replacing x′ and x′′ in (A1) yields

w′′ = 1

ḣ2

(
ẅ − ẇ

ḧ

ḣ

)
. (A2)

Finally, using h(x) = x tanh(x/2) and w(h(x)) =
x3 tanh(x/2) explicitly to calculate ẅ, ẇ, ḣ, and ḧ, one
obtains

w′′ = 8 cosh
(

x
2

)4{
x2 + 3[cosh(x) − 1] + 3x tanh

(
x
2

)}
x2[1 + sinh(x)/x]3

.

(A3)

We have from (A3) that w′′ > 0 for all h � 0. Actually, for
x ≈ 0, we have w(h(x)) ≈ 4 + x2.
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