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Self-diffusion in inhomogeneous granular shearing flows
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In this Letter, we discuss how flow inhomogeneity affects the self-diffusion behavior in granular flows.
Whereas self-diffusion scalings have been well characterized in the past for homogeneous shearing, the effect of
shear localization and nonlocality of the flow has not been studied. We, therefore, present measurements of self-
diffusion coefficients in discrete numerical simulations of steady, inhomogeneous, and collisional shearing flows
of nearly identical, frictional, and inelastic spheres. We focus on a wide range of dense solid volume fractions,
that correspond to geophysical and industrial shearing flows that are dominated by collisional interactions. We
compare the measured values first with a scaling based on shear rate and, then, on a scaling based on the granular
temperature. We find that the latter does much better than the former in collapsing the data. The results lay the
foundations of diffusion models for inhomogeneous shearing flows, which should be useful in treating problems
of mixing and segregation.
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Introduction. Diffusion is a key mechanism for mass trans-
fer in granular shearing flows. In such flows, collisions
between spheres induce velocity fluctuations of the grains that
drive the motion of particles in a way that is analogous to the
thermal diffusion in dense gases, or the dispersion induced
by eddies in turbulent flows. Such shear-induced diffusion is
important for applications in industrial and natural granular
flows involving mixing and segregation. The problems en-
countered share many features with other research involved
with transport phenomena and motion of discrete bodies, and,
therefore, advances in the comprehension of diffusion are
profitable to several soft matter fields (granular materials,
suspensions, traffic, and crowd dynamics, active matter,...).
Experimental and numerical studies have been devoted to
characterize diffusion in various flow geometries, often in
connection with segregation: granular shear cells or simple
shear flows [1–3]; vertical channels [4,5]; inclined chutes [6];
rotating drums [7,8]. Phenomenological theories of segrega-
tion during flow [9,10], that produce plausible predictions of
species’ concentrations and mixture velocity for appropriate
choices of parameters, generally involve simple models for
the mechanism of diffusion.

Despite the amount of studies, few have addressed in detail
the anisotropic nature of self-diffusion and its scaling with
the relevant kinematic parameters. For dilute systems (solid
fraction lower than 0.5), Campbell [11] measured the self-
diffusivity tensor by means of numerical simulations of a
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homogeneously sheared system of frictional inelastic spheres.
Utter and Behringer [12] performed experiments on slow,
rate-independent, and inhomogeneous shearing of a dense ag-
gregate of disks in a Couette cell, pointing to the existence of
anisotropy and showing that in the dense limit, self-diffusion
coefficients scale approximately as D = kd2γ̇ , where γ̇ is the
shear rate, and d is the particle diameter. It was later shown
that in three dimensions, k is a constant on the order of 0.05
[13–15]. More recently, we [13] extended Campbell’s work by
numerically studying dense systems (solid volume fraction in
the range of 0.49 to 0.587) under homogeneous shear, charac-
terizing the full self-diffusion tensor and discussing different
scalings for the transverse diffusivity. For the same simplified
flow configuration, Macaulay and Rognon [16] investigated
the effect of intergranular cohesive forces on diffusion.

Nearly all these studies dealt with homogeneous shearing.
Inhomogeneous shearing flows are obviously more complex.
In regions of shear localization and creep, and those influ-
enced by boundaries [17], the rheology is known to become
nonlocal, which means that the local effective friction is not
simply determined by a balance between shear and confine-
ment. In analogy with molecular theories, the introduction of
velocity fluctuations as an additional variable seems a promis-
ing path. The strength of velocity fluctuations is a classical
ingredient of diffusion theories, and dense kinetic theories for
the segregation of binary mixtures of inelastic spheres [18–22]
predict diffusion coefficients that exhibit explicit dependence
on the volume fraction, the strength of the particle velocity
fluctuations, and the particles’ size, mass, and collision prop-
erties. The important question we address here in detail is how
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FIG. 1. The two flow configurations studied in this Letter: (a) ho-
mogeneous shear flow and (b) concave flow. Cell height is 20d . The
lighter yellow corresponds to the largest velocity to the right, and the
darker blue corresponds to the largest velocity to the left.

the inhomogeneity of the flow affects self-diffusion, and, in
particular, whether the scaling of diffusivity on shear rate has
to be replaced by one based on granular temperature, inspired
by kinetic theory [13].

Here, we focus on flows in the range of volume fractions
between 0.35 and 0.6. This comprises the range of volume
fraction important in geophysical flows on Earth. Above a
volume fraction of 0.49, long range order can appear in an
equilibrated system of identical elastic spheres [23], and at
a volume fraction of about φc = 0.587, collisional flow be-
comes impossible, when the coefficient of sliding friction is
0.5 [24]. In order to address the question raised above, we
measure the components of self-diffusion parallel and per-
pendicular to the flow in discrete numerical simulations of
inelastic spheres in dense, steady, and inhomogeneous shear-
ing flows. We test the scaling based on the shear rate with that
based on the granular temperature and determine that the ki-
netic theory scaling does far better than the shear rate scaling
in collapsing the data for inhomogeneous flows over a range
of very dense volume fractions and strength of inhomogeneity.

Flow configurations. Discrete element method simulations
were performed by means of the open source LAMMPS plat-
form [25]. The numerical samples were slightly polydisperse,
characterized by uniform (number-based) particle size distri-
bution in the range of 0.9d–1.1d , where d is the characteristic
particle diameter. Masses were nondimensionalized with re-
spect to the mass m of a particle with size d (in practice, this
corresponds to take a normalized density of 6/π ). Simulations
were performed in a cuboidal fixed volume cell (L = 20d). A
classical linear spring-dashpot model with tangential elastic-
ity and friction was chosen as a contact model. The viscous
damping coefficient was adjusted to yield a normal coefficient
of restitution en = 0.7, and the interparticle friction coeffi-
cient was taken equal to μ = 0.5. Tangential stiffness was
taken proportional to the normal one kt/kn = 2/7; a classical
assumption which ensures that the period of tangential oscil-
lations is the same as the period of normal oscillations after a
contact.

Results from two types of flows (displayed in Fig. 1)
are presented in the following. The flows are steady, fully
developed, and quasibidimensional. For flow configurations,
we identify x as the flow, or streamwise, direction, z as the
direction in which we impose a velocity gradient, and y as the

transverse direction. In terms of the mean velocity field �v =
[vx(z), 0, 0], the first configuration is homogeneous shearing
without gravity, which was the subject of a previous work
[13], and which is taken here as the reference case. Homoge-
neous shear was obtained by means of fully periodic boundary
conditions coupled with continuous domain deformation as in
LAMMPS’s “fix deform” scheme. The solid fraction was varied
in the range of 0.49–0.587 in this configuration. Given that
the volume was fixed, this was simply obtained by tuning
the number of particles N . The second configuration may
be referred to—after the shape of the shearing profile—as a
concave flow [26]. The shearing profile results from a non-
trivial pattern of external forces given by Fz = mg z−z0

|z−z0| where
z0 is the midpoint of the system. The shearing takes place at
constant volume by imposing the velocity (±V ) of two layers
at the extremes of the cell in the z direction, each layer being
2d thick (the effective flow height being, therefore, H = 16d).
Periodic boundary conditions hold in the other directions. In
practice, the global shear rate (i.e., 2V/H) was kept constant,
and the gravitational acceleration g was varied in order to
vary the z heterogeneity of the system. The initial state of the
system was extracted from homogeneous shear tests at three
different global solid fractions (φ ≈ 0.53, 0.55, 0.57).

The systems studied possess three time scales: one re-
lated to contact stiffness τs = √

m/kn, one related to shearing
τγ = 1/γ̇ , and one related to pressure τp = d/

√
p/ρ. The

latter, τp and τγ have to be much larger than the former τs

to keep the particle contacts sufficiently rigid. This guided
the choice of the shear rate, which was chosen in order to
ensure τγ ∼ 103τs locally for the homogeneous shear, and
globally for the concave flow simulation (where it was verified
that locally, even for the larger shear rates τγ > 2 × 102τs).
The condition τp � τs was also verified. As is well known,
the timescales relative to shearing and pressure can be com-
bined into a dimensionless number, called the inertial number,
which is sometimes used to characterize the flow regimes :
I = τp

τγ
= γ̇ d√

p/ρ
. In the concave flow configuration, a global

estimate considering all the acceleration values used (g ∼
10−7–10−5 dkn

m ) yields Iglob = V d
H

√
gH

= 0.14–1.4 for the range
of parameters used in this Letter. Considering the local shear
rate (which is, in principle, different from 2V/H due to the
heterogeneity of the flow), yields a range of local inertial
numbers Iloc = 4 × 10−2–5, which means that our data are
relevant for dense-to-rapid granular flows. Please note that
during preparation, the material was subject to a global cumu-
lative deformation of about γ̇ �t ∼ 104 (locally >103). We
indeed checked that this is enough to obtain a system at the
stationary state.

Inhomogeneous flow profiles. In order to highlight the het-
erogeneity of the concave flow configuration, we display in
Fig. 2 the profiles of average streamwise velocity, granular
temperature, and solid fraction. Averages were performed on
layers of thickness equal to 1d , and velocity fluctuations were
computed with a correction based on a gradient expansion as
in Ref. [27]. The profiles in the figure correspond to a global
solid fraction of φ ≈ 0.55 and different values of the acceler-
ation g. It is clear that the velocity profile becomes S shaped
with increasing g. A zone of higher shear appears, therefore,
in the middle of the sample, characterized also by higher
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FIG. 2. Average flow profiles in the concave flow, for a global
value of solid fraction of φ ≈ 0.55 and different values of accel-
eration g (respectively, g = 10−7, 10−6, 2 × 10−6, and 3 × 10−6 dkn

m
when going from dark blue to yellow): (a) streamwise velocity,
(b) granular temperature, and (c) solid fraction. The part of the
profiles in bold corresponds to data points which were used for the
self-diffusion analysis.

granular temperature and lower solid fraction. The central
zone becomes, therefore, increasingly collisional and dilute as
g increases, whereas, on the other hand, the peripheral zones
get denser. Note that above a certain value of g (which depends
on the average solid fraction, or N), the peripheral zones be-
come so dense that the central zone is empty of particles. The
system is then composed by two separate solid blocks (and
is of no more of interest). This sets a limit to the operational
range of g. We can conclude that the introduction of a complex
force pattern introduces a strong heterogeneity of the kine-
matic profiles and, particularly, yields gradients of granular
temperature. These gradients are strong (i.e., d∇T/T ∼ 1) in
the most heterogeneous cases. Granular temperature hetero-
geneity is often associated with the need of using nonlocal
rheologies [28], and the concave flow configuration has been
introduced to study such nonlocal effects [26]. The concave
flow configuration is also an interesting case for the under-
standing of how self-diffusivity scalings may be affected by
such nonlocal effects.

Self-diffusivity computation. As in previous works, we
characterize the self-diffusivity from the trajectories of the
particles via the mean squared displacements. For concave
flows, given that the flows are inhomogeneous, the analysis
is performed on layers one diameter in thickness, normal to z.
For each layer, the part of particle trajectories belonging to the
layer are considered and averaged to characterize the timescal-
ing of the mean squared displacements via the formula,

〈�xi�x j〉 ∝ �tα, (1)

where an exponent α close to unity is related to a diffusive
behavior. As it was previously shown, for short times α > 1
because particle velocity correlations yield a “superdiffusive”
behavior. In order to characterize the long-time behavior, we
analyze displacements for time lags larger than the correlation

time. In particular, we use an approximation for the corre-
lation time based on granular temperature, and, therefore,
we analyze displacements for rescaled time lags �t

√
T

d > 1.
On the other hand, the length of the trajectories is not con-
stant (and bounded) because the particles can exit the layers;
therefore, for long times there is not enough statistics. The
local granular temperature which measures the intensity of
fluctuations is relevant in giving a timescale for this problem.
We have seen that, in our numerical setup, enough statistics
is available for rescaled time lags �t

√
T

d < 15. Within the
identified range of time lags, a power law fit permits the
verification of the diffusive behavior and the computation of
the diffusivity.

Note, however, that the subdivision of the system in thin
layers limits the maximum observable displacement in the z
direction, which means that the diffusivity components related
to that direction [i.e. (zz), (xz), and (yz)] cannot be computed
by the method. Details on the timescaling of the mean squared
displacements with time is given in Supplemental Material
(SM) [29]. Here we limit ourselves to mentioning the main re-
sults. First of all, the transverse, (yy), component of the mean
squared displacement is clearly diffusive (α ≈ 1), whereas the
mixed (xy) appears to be close to zero. Regarding the stream-
wise (xx) component in order to compute the displacements,
the part of the displacement associated with the shear flow
was subtracted from the total displacement in order to avoid
considering Taylor dispersion effects.

As detailed in the SM, two types of averaging can be
adopted to determine the average shear flow: (i) instanta-
neous spatial and (ii) time spatial averaging. We find that
the type of averaging influences the observed scaling: when
subtracting the average velocity profile determined by global
time-space averaging, the mean square displacements may
display superdiffusive behavior. The observed superdiffu-
sivity is stronger where temperature gradients are larger
(d∇T/T → 1). On the other hand, using an instantaneous
average velocity profile to correct the displacement yields a
diffusive behavior.

Given that superdiffusion nearly disappears when changing
the definition of fluctuations, it seems reasonable to postulate
that its origin has to be found in multiparticle, “eddylike”
time correlations which are removed by instantaneous aver-
ages. This can be put in relation to the debated concept of
“granulence” and the findings of superdiffusion in quasistatic
flows [30], and to the concept of granular fluidity, which has
been related to velocity fluctuations defined with respect to
instantaneous averages [28]. Our results support the idea that
it may be important to analyze separately the fluctuations
at the scale of a particle from those at the scale of several
particles.

Self-diffusion scaling. Based on the above discussion, it
is evident that in concave flow, it is possible to evaluate a
self-diffusivity coefficient (yy) for the transverse direction,
and (xx) for the streamwise direction only when the particle
displacements are corrected with the instantaneous spatial
velocity gradients. These diffusivities are computed by fitting
the mean squared displacement data with the formula,

〈�x2
i 〉 = 2Dii�t . (2)
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FIG. 3. (a) Transverse (Dyy) and (b) streamwise (Dxx) self-
diffusivities as determined from numerical simulations, scaled by
shear rate, vs solid volume fraction. The blue filled squares ( ) corre-
spond to homogeneous shearing, and the empty symbols correspond
to concave flow. Colors correspond to different average solid fraction
values: 0.53 (violet), 0.55 (light blue), 0.57 (yellow), and symbols to
different values of gm

dkn
= 10−7 ( ), 10−6( ), 2 × 10−6 ( ), 3 × 10−6

( ), 5 × 10−6 ( ), and 10−5( ). Error bars correspond to the 95%
confidence interval of the diffusivities determined from the linear fit
of the respective averaged mean squared displacement.

We study scalings of Dxx and Dyy as a function of sys-
tem parameters and in comparison to previous homogeneous
shear results [13]. Following a scheme discussed in our previ-
ous work, we check the relevance of the simplest empirical
scaling, based on shear rate; in other words, we study the
functions Dii

γ̇ d2 vs φ. These scalings are displayed in Figs. 3(a)
and 3(b), where homogeneous shear flow results for Dxx and
Dyy are also reported for comparison. A first general com-
ment is that, in inhomogeneous shear flows, the hierarchy
of self-diffusivities is the same as in homogeneous shear
(Dxx > Dyy) and, as is well known [11], the self-diffusivities
increase (and the difference between Dxx and Dyy increases
as well) when φ decreases below 0.5. There is also a global
qualitative agreement between homogeneous shear flow and
the concave flow results; however, important deviations are
evident, particularly, for the more heterogeneous flows (e.g.,
simulations with large g, denoted by symbols.

Here we limit ourselves to test whether a scaling based
on the granular temperature (often associated with “nonlocal”
models of granular flows [31,32]) allows better representation
of the self-diffusivity results, encompassing also the most
heterogeneous simulation data. The scalings Dii

d
√

T
vs φ are

shown in Figs. 4(a) and 4(b). It is evident that the concave
flow data superpose (better here than in Fig. 3) to those of
homogeneous shearing. As we showed in our previous work
dealing with homogeneous shear flow [13], even in this case
the kinetic theory of granular gases [35] underestimates the
transverse self-diffusivity by a factor increasing with φ and
reaching a value of about 3 for denser systems. Neverthe-
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FIG. 4. (a) Transverse (Dyy) and (b) streamwise (Dxx) self-
diffusivities as determined from numerical simulations, scaled by the
square root of granular temperature, vs solid volume fraction. The
symbols have the same significance as in Fig. 3.

less, the physically based self-diffusivity scaling on granular
temperature behaves remarkably better than the empirical
scaling on the shear rate for both the transverse and the
streamwise components, and this is so, particularly, when tem-
perature gradients are important. Our data may, therefore, be
used to extend theoretical predictions for the self-diffusivity
tensor, which were developed for dilute flows [33,34] to dense
systems.

Conclusions. We have measured self-diffusion coefficients
in discrete numerical simulations of both homogeneous and
inhomogeneous shearing flows of nearly identical frictional
and inelastic spheres. The studied systems were relatively
dense, i.e., solid fractions from approximately 0.35 to ap-
proximately 0.59. In homogenous flows the diffusivity can be
estimated by using the grain size d and the inverse of the shear
rate 1/γ̇ as, respectively, the natural length and timescales,
i.e., γ̇ : D ∝ d2γ̇ . Yet, this purely local scaling does not hold
for inhomogeneous flows for which nonlocal effects are im-
portant. Here we measured Dxx and Dyy, i.e., the streamwise
and the transverse diffusivities, highlighted their anisotropy
(Dxx > Dyy), and showed that the scaling Dii/d

√
T with T as

the granular temperature leads to a better description of the
evolution of the transverse diffusivity with the solid fraction
than Dii/γ̇ d2. Besides explaining diffusive properties in in-
homogeneous granular shearing flows, this feature could help
understanding the nonlocal behavior of granular flows. Our
results are, therefore, of immediate interest for researchers
working on transport phenomena in dense shearing flows of
discrete enties, such as suspensions, traffic flow, crowd dy-
namics, and active matter.
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