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Buffering variability in cell regulation motifs close to criticality
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Bistable biological regulatory systems need to cope with stochastic noise to fine tune their function close to
bifurcation points. Here, we study stability properties of this regime in generic systems to demonstrate that
cooperative interactions buffer system variability, hampering noise-induced regime shifts. Our analysis also
shows that, in the considered cooperativity range, impending regime shifts can be generically detected by
statistical early warning signals from distributional data. Our generic framework, based on minimal models,
can be used to extract robustness and variability properties of more complex models and empirical data close to
criticality.
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Many biological systems self-regulate their functions
through bistable circuits, which have been associated to ge-
netic [1,2] as well as growth feedbacks [3]. In particular,
positive feedback loops have long been studied in systems and
synthetic biology [4–6]. They regulate crucial functions like
enzymatic activity or gene transcriptional changes during cell
fate decisions [7,8]. Autoactivating positive feedback loops,
simple circuit motifs promoting bistability, and fine regula-
tion of dynamical states close to self-organized criticality are
of particular importance [9,10]. Cellular heterogeneity, i.e.,
random cell-to-cell variations [11], can further direct tran-
sitions [12,13] and induce regime shifts between alternative
stable states of gene expression or of protein concentra-
tions [14]. Positive feedback loops with stochastic fluctuations
have been observed in a variety of systems including the
transcription network of E. coli [15] or in the regulation of
β-galactosidase [16], which results from a sudden transition
from low (“off”) to high (“on”) level states of the lac operon
at a critical point of an inducer concentration.

There are mainly two ways in which bistable systems
can switch between alternative steady states [17]: transi-
tions driven by bifurcations (which, due to loss of system
resilience [18], may be anticipated by small random fluctu-
ations) and transitions driven by large random jumps. Cells
and other biological systems are hypothesized to live close
to criticality to quickly respond to changing environmen-
tal conditions [19], but they should not respond to random
environmental changes (noise) in order to maintain their evo-
lutionary fitness. Close to criticality, the dynamical motifs
have reduced resilience and the system can exhibit increas-
ing variability in response to noise [20,21]. This is typical
of nonlinear systems approaching a critical bifurcation and
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corresponds to augmented sensitivity to random perturbations
and diverging response time, a phenomenon known as critical
slowing down (CSD) [22,23].

Mechanisms to buffer variability while maintaining the
critical state are thus necessary to finely regulate desired tran-
sitions [16] or to better cope with undesired shifts [18]. To this
end, two main strategies can cooperate: moving the system
state away from the bifurcation point, or deepening the basin
of attraction to avoid random fluctuations pushing the system
state to undesired attractors. These strategies correspond to
changes in different environmental or regulatory conditions in
cellular systems [24], allowing organisms to exploit different
mechanisms to buffer variability close to criticality. In monos-
table systems, noise can be bound by the action of molecular
compounds like microRNAs [25] as well as by temporal re-
lays of signaling molecules [26,27]. For critical regimes in
bistable processes, a key mechanism to buffer variability is
identified as the cooperative interactions tuning the activation
function of positive feedback loops.

This buffering mechanism can be analyzed by considering
the simple and well-known adimensional model for stochastic
autoactivating positive feedbacks [28,29]:

ẋ = f (x) + η(t ) = K + c
xn

1 + xn
− x + η(t ). (1)

This model describes the Michaelis-Menten kinetics of a
transcriptional factor activator (denoted by x) [13,30], which
activates its own transcriptions when bound to a responsive
element (Fig. S1) [31]. System (1) arises from a model re-
duction of a two-variable genetic toggle switch, under the
assumption of fast-slow timescale separation between the two
variables [29]. Here, f (x) groups the deterministic terms, with
steady state x̃ (ẋ|x̃ = 0), K is the basal expression rate, and c
is the maximum production rate with critical value c0 marking
a saddle-node bifurcation (Fig. 1). The dissociation constant
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FIG. 1. Bifurcation diagrams (x̃, c) of Eq. (1) for different Hill
coefficients n. Stable and unstable branches are represented by blue
and red colors, respectively. Black dots identify the bifurcation
(saddle-node) points c0. Each value of n is displayed close to its
corresponding diagram.

in the denominator of the Hill function was normalized to 1
without loss of generality [32]. The noise term η(t ) accounts
for intrinsic stochasticity of biological processes [33]. We
consider additive Gaussian white noise to approximate the fast
degrees of freedom associated to a mean field regime [21,34],
with the statistical properties 〈η〉 = 0, 〈η(t )η(t ′)〉 = 2σδ(t −
t ′), where σ represents its intensity.

The Hill coefficient n, which describes the nonlinear co-
operative binding mechanisms, is usually interpreted as the
number of transcription factors that cooperatively promote
transcription [28]. The smallest value inducing bistability in
the circuit is n = 2, while n → ∞ yields the logic approxi-
mation for the activating Hill function,

lim
n→∞

xn

1 + xn
= �(x − 1), (2)

where �(·) is the Heaviside step function, making system (1)
a discrete switch without bistability nor CSD.

This Letter investigates the dependence of resilience prop-
erties [24] on the cooperativity index n. In this manner, we
test how cells can keep production rates c close to their critical
values and nonetheless increase resilience and buffer variabil-
ity using other regulation mechanisms. As shown in Fig. 1,
increasing n from 2 yields different bifurcation diagrams,
where critical points shift to the left and the distance between
the upper stable manifold and the unstable manifold decreases
when the system gets close to criticality. We focus on systems
residing on the upper branch (to be consistent with the mean
field assumption) and moving left toward the saddle-node
bifurcation point. This way, we investigate how biological cir-
cuits can buffer variability close to critical states by exploiting
dynamical mechanisms. We also assess the parameter range
where CSD-based early warning signals correctly indicate
impending regime shifts.

To characterize the system stability properties, we ana-
lyze the stationary potentials and probability density functions

FIG. 2. Effect of the Hill coefficient n on the stochastic potential
φ(x) (left column) and on the stationary probability density function
Ps(x) (right column), when only additive white noise is present.
(a), (b) c = 0.8 (“off” state); (c), (d) c = c0(n) + 0.05 (multistable
region); (e), (f) c = 2.7 (“on” state favoured). In all cases, K = 0.1
and σ = 0.05.

(PDF) depending on n, in analogy to previous works [35,36].
Consider the forward Fokker-Plank equation for the probabil-
ity density function P(x, t ) associated with Eq. (1):

∂P(x, t )

∂t
= − ∂

∂x
[ f (x)P(x, t )] + ∂2

∂x2
[σP(x, t )], (3)

where f (x) lumps the deterministic terms of Eq. (1). The
stationary solution Ps(x) takes the form [37]

Ps(x) = Nce−φ(x), (4)

φ(x) = 1

2
ln σ − 1

σ

∫ x

f (x′)dx′, (5)

where φ(x) describes the adjoint stochastic potential whose
depth is related to system resilience, i.e., its ability to recover
after a perturbation. Nc is a normalization constant such that∫
	

Ps(x) = 1 (	 is the domain).
Figure 2 shows the dependency of φ(x) and Ps(x) on n

when the system is either in an “off” state far away from crit-
icality [Figs. 2(a) and 2(b)], close to the criticality [Figs. 2(c)
and 2(d)] or beyond it, where the “on” state is favoured
[Figs. 2(e) and 2(f)]. Increasing the cooperativity index n does
not alter the underlying bistability, but modifies the depth of
the potential and increases the separation of alternative states
(Fig. S2) [31]. For the “off” and “on” states, the corresponding
equilibria exhibit significantly deep attractor basins with only
minor dependence on n, as also indicated in the bifurcation
diagrams (Fig. 1) and by Ps(x). Close to critical points, the pic-
ture changes. The potential φ(x) displays two commensurable
wells, which are more evident and symmetric for larger n,
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suggesting that both states become equally occupied in noisy
environments. For increasing n, Ps(x) displays sharper peak
separation between the bistable states. The system diffuses
less to intermediate states and is more constrained around
single equilibrium values as anticipated, due to the steeper
potential barriers in φ(x). Random deviations are therefore
suppressed faster and transitions from one state to another are
sharper and thus more robust against noise.

We now focus on how n influences variability measures,
like variance and autocorrelation, close to criticality. Obtain-
ing globally analytic expressions is challenging, in particular
for high values of n. Hence, we focus on a local analysis
close to the bifurcation points and employ a geometrical
methodology. To derive generic results for critical manifolds,
we use their local topological equivalence to bifurcation nor-
mal forms [38]. The normal forms associated with dynamical
systems are simplified minimal-order forms to which all
systems exhibiting a certain type of bifurcation are, around
the equilibrium, topologically equivalent [39]. Supplementary
Material [31] provides a brief background to normal forms
and terminology used in this work. For saddle-node bifurca-
tions like in Fig. 1, the associated normal form is [39]

ẋ = p − x2, (6)

with two equilibrium manifolds x̃1,2 = ±√
p, one stable (+)

and the other unstable (−). Note that the normal form cor-
responds to a parabola. To study the behavior of stochastic
solutions near the stable manifold, consider the evolution of
its first-order perturbation, y = δx|x̃1 exposed to the same ad-
ditive white noise η(t ) as in Eq. (1) [40]. Since k = 2

√
p is the

distance of the control parameter value from its critical value
p0 = 0, note that k is proportional to c − c0 from the original
system, following normal form properties. The correspond-
ing Langevin equation accounting for mean field fluctuations
around the stable equilibrium is then given by

ẏ = −ky + η(t ). (7)

Equation (7) is a typical Ornstein-Uhlenbeck (OU) process
with exact solutions for statistical moments [37].

To connect the quantitative effects of n with the more
qualitative topological form Eq. (6), recall that n widens or
narrows the local parabolic shape of the original bifurcation
diagram for Eq. (1) (Fig. 1). Equation (6) thus needs to be
augmented with a term ρ to modify the focal width of its
parabolic stable manifold, which corresponds to the width of
the parabola at the focal point. This leads to

ẋ = p − ρx2. (8)

In this formulation, ρ corresponds to the focal width of the
normal form. Supplementary Material [31] contains analyt-
ical derivations for the approximation of system (1) to the
normal form (8), and its relationships with the geometrical
results. Propagating ρ into Eq. (7) adds a tuning term to the
bifurcation parameter, k → √

ρk. Hence, the corresponding
OU process for a semi-quantitative saddle-node normal form
is

ẏ = −√
ρky + η(t ). (9)

Among its statistical moments and power spectral proper-
ties, we are primarily interested in quasi-steady-state variance

FIG. 3. Theoretical dependence of EWS measures (a) Var and
(b) AC1 on ρ (related to focal width) and k (distance measure
from critical parameter values). Vertical lines represent slices for
fixed values of ρ̂ (Eq. (13)) corresponding to the mean FW shown
in panel (c). The associated n values increase from left to right.
(c) Relationship between FW [Eq. (11)] and corresponding values
of n, with best fit. Error bars correspond to one standard deviation
[Eq. (12)]. (d) Generic escape rate τ as a function of noise level σ

and k [Eq. (15)].

(Var) and lag-1 autocorrelation (AC1), measures of system
variability close to criticality. They have been proposed as
proxies for system resilience and early warning signals (EWS)
of impending bifurcation points [18,41]. Based on our map-
ping to the OU process [Eq. (9)], the analytical solutions for
Var and AC1 take the form [37]:

Var = σ√
ρk

, AC1 = e−√
ρk. (10)

Equations (10) are generic for noisy saddle-node bifurca-
tions. Figures 3(a) and 3(b) show them as functions of ρ and k.
To connect with the original autoactivating feedback system,
we estimate the focal width of the bifurcation diagrams for
each n by fitting a parabolic form c = αx̃2 + β x̃ + γ to the
data points of each bifurcation diagram in the vicinity of
the saddle point. Using the MATLAB Curve Fitting toolbox
also provides uncertainties over �θ = [α, β, γ ], resulting from
small deviations from a perfect parabolic shape. By definition,
the fitted focal width is

FW = 2|x̃(cF ) − x̃F |, (11)

where (x̃F , cF ) are the coordinates of the parabolic focus. To
get a reasonable estimate of the corresponding uncertainties,
the associated standard deviation is derived from the fitted pa-
rameter uncertainties std(θ̄i ) using a first-order approximated
propagation method [42]:

std(FW ) =
[∑

i

(
∂FW

∂θi
std(θi )

)2
] 1

2

. (12)
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The relationship between FW and n is plotted in Fig. 3(c),
with the corresponding std(FW ). The pattern decreases
quadratically, thereby marking a rapid decrease followed by
almost plateauing. Hence, a bounded and relatively small
cooperativity index is, in principle, sufficient to effectively
buffer variability close to criticality.

The estimated ρ̂ values from fitted focal widths, for n = 2
to n = 8, are obtained as

ρ̂ = ξ (FW )−1, (13)

where ξ is a tuning parameter proportional to the Hill function
(Supplementary Material [31]). Mean ρ̂ values are marked in
Figs. 3(a) and 3(b) with solid vertical lines. Consistently with
the trend observed in Fig. 3(c), the mean values spread as n
increases (from left to right). Low n values yield higher sensi-
tivity to noise, as both Var and AC1 show substantially higher
values for small cooperativity indices n, even when k is large
(i.e., further away from the critical point, but still within the
bistable region, cf. Fig. 1). Thus, values of ρ can belong to two
regions: one, where the values for both metrics are high for all
k [left side of Figs. 3(a) and 3(b)], or another one where both
metrics maintain low values for most k and increase rapidly
close to criticality [right side of Figs. 3(a) and 3(b)]. The re-
gion ρ̂ → ∞ corresponds to the logic approximation (2) with
n → ∞, where Var and AC1 also change abruptly in a step-
wise manner. The ultra-sensitive region ρ̂ → 0 is spanned
by increasing dissociation constants (Fig. S3 [31]), and po-
tentially by changing other parameters, here not explicitly
considered, or by different activation functions describing,
for example, wild-type versus mutant organisms [33]. Other
pathways like growth feedbacks [3] will likely correspond to
additional regions in the parameter space. These investiga-
tions are left to future studies.

We finally investigate the performance of EWS against
impending bifurcation points. The motivation is to consider
complex systems lacking validated mechanistic models. In our
case, this would translate to a scenario where n—or even the
precise activation function—of an eukaryotic cell is poorly
identifiable [33]. This consideration leads to questioning if
we can identify statistical signals, computed on empirical
data, that provide reliable information about the system’s loss
of resilience. Increasing trends of Var and AC1 have been
widely suggested to work as EWS [18,41] but their robust-
ness remains elusive. To study how generic they are in the
identified parameter range and to account for mean trends and
uncertainties, we numerically integrate the original stochastic
system (1) using the Euler-Maruyama method. To mimic cell
populations slowly evolving close to equilibrium, we sample
104 time points over 200 repeated experiments in dependence
of c. This leads to a distribution of statistical indicators e.g.,
see Fig. 4(a), inset].

To distinguish between bifurcation-induced transitions, an-
ticipated by loss of resilience, and noise-induced transitions,
we measure the scale between the distance to the bifurca-
tion point and the noise level by the Kramers escape rate
τ = 2π (

√|U ′′(x̃1)U ′′(x̃2)|)−1 exp[(U (x̃2) − U (x̃1))/σ ] [37].
For any saddle-node bifurcation manifold (8) equipped
with additive noise, U (x̃2) − U (x̃1) = (4/3)(k3/

√
ρ) and

FIG. 4. Average trends of (a) Var and (b) AC1 as a function of c
close to bifurcation c0, in the regime where noise-induced transitions
might occur [blue area of Fig. 3(d)]. Simulations are presented over
200 realizations for different n. For each c, the indicators spread into
distributions, as exemplified for two c values in inset (a). (c),(d) Av-
erage trends of Var and AC1 farther from bifurcation c0. (e),(f)
Evolution of p-values between Var and AC1 distributions at each
c − c0 and the “reference” distribution. The “reference” distribution
corresponds to (e) c − c0 = 0.2 (starting “closer to bifurcation”) and
(f) c − c0 = 0.35 (“farther from bifurcation”). Dashed lines represent
typically used p-values in biological experiments.

|U ′′(x̃1,2)| = 2
√

pρ. Hence,

τ = π

k
√

ρ
exp

[
4

3

k3

√
ρσ

]
. (14)

Values lying at the exponential boundary of

τ 	 O(exp[k3/σ ]) (15)

[Fig. 3(d)] provide comparable ranges of control parameters
and noise levels for all simulations with different n. They
distinguish two regimes, one where few noise-induced tran-
sitions might occur [τ � 2, Figs. 4(a) and 4(b)] and another
regime primarily determined by bifurcation-driven resilience
loss [τ � 2, Figs. 4(c) and 4(d)]. For the considered σ = 0.02,
the system is very close to critical points.

Figures 4(a)–4(d) display average values for Var and AC1
from numerical simulations. When the dynamics are mostly
characterized by the bifurcation [Figs. 4(c) and 4(d)], both
measures display patterns consistent with those predicted in
Figs. 3(a) and 3(b) and increasing n better buffers variability.
When the noise level becomes comparable to the potential
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depths, Vars for different n become very close to each other
due to the more prominent role of noise-induced uncertainties
[Fig. 4(a)]. By contrast, AC1s [Fig. 4(b)] remain separated
due to their lower sensitivity to noise cf. Eq. (10)], but with
less marked—and, therefore, harder to detect—trends, similar
to those observed in real-world data [43].

For online applications (i.e., as new data come in and
without future knowledge of the system evolution), it is nec-
essary to quantify whether an observed increasing trend is
statistically significant, assessing whether it corresponds to an
EWS or some spurious fluctuation [44]. To do so, we look for
significant p-values between the computed distributions close
to criticality and those far from the bifurcation (“reference”)
[inset in Fig. 4(a)]. Figures 4(e) and 4(f) show patterns of
p-values from Var and AC1, averaged over all n. The p-values
are computed closer to the bifurcation in Fig. 4(e) [c − c0

corresponding to the parameters in Figs. 4(a) and 4(b)] and
farther from the bifurcation in Fig. 4(f) [c − c0 correspond-
ing to the parameters in Figs. 4(c) and 4(d)]. The p-values
cross their significance levels [either 0.1 or 0.05 [45], dashed
lines in Figs. 4(e) and 4(f)] before the bifurcation point. This
assesses that significant increasing trends of statistical indica-
tors can be detected prior to the transitions, thus constituting
reliable early warning signals. This analysis thus certifies the
potential use of proposed EWS to detect approaching bifurca-
tion points in biological motifs, providing a quantification of
how much in advance the EWS become significant depending
on the reference and on the p-values threshold.

Overall, our study characterized fundamental dynamical
mechanisms to buffer systems’ variability in critical regimes.
We determined parameter ranges, corresponding to plausible
cooperativity values for the positive feedback loop motif,
where both variance and autocorrelation display low relative
sensitivity to additive noise. In other ranges, however, the sys-
tem poorly buffers its variability. Investigating whether these
ranges could correspond to other dynamical mechanisms is
demanded for future studies. Moreover, state-dependent noise
can be further incorporated in model (1) to make it closer
to biological reality [33]. Although it was not explicitly con-
sidered in this paper, primarily to focus on the effects of a
single parameter on the system’s stability properties, in the

Supplementary Material [31] (also including Refs [46–48])
we investigate its influence on the variability metrics consid-
ered above. Notably, it does not alter trends of AC(1) but does
affect those of Var (Fig. S4 [31]), as expected from depen-
dencies on σ in Eq. (10). This is relevant in further buffering
fluctuation amplitudes near criticality and calls for caution
when using Var as an EWS indicator in systems strongly
characterised by such type of noise. A deep investigation of
interplays between noise types and resilience properties is
left for future works. These may unravel alternative ways by
which cells regulate their states or support the hypothesis of a
self-organized fine-tuning in “safe” parameter spaces. Overall,
our analysis contributes with quantitative insights to analytical
and experimental studies of bistable systems’ resilience and
connects general and system-specific predictions [24].

We also assessed the sensitivity of proposed EWS to an
additional regulation mechanism and suggested how to online
quantify significant increasing trends from distributional data.
We showed that extra parameters in the dynamical system
do not alter the warning capabilities of indicators associated
with CSD. In the considered parameters’ range, they are
sufficiently generic to detect resilience loss. As several indi-
cators have been developed to detect cell-fate decisions [20]
and to possibly anticipate undesired shifts to, e.g., cancerous
states [49,50], our results constitute an important step to in-
terpret and apply them correctly. However, their use should
be treated carefully if other quantitative mechanisms between
noise and bifurcations might be at play, like certain types of
state-dependent noise, possibly shadowing theoretical trends.
Following our methodology, future studies might inquire other
indicators and their behavior under changing n and additional
conditions. Our framework can also be easily extended to
inquire the performance of buffers and EWS in different dy-
namical models and experimental setups.
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