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We analyze the effect of small-amplitude noise and heterogeneity in a network of coupled excitable oscillators
with strong timescale separation. Using mean-field analysis, we uncover the mechanism of a nontrivial effect—
diversity-induced decoherence (DIDC)—in which heterogeneity modulates the mechanism of self-induced
stochastic resonance to inhibit the coherence of oscillations. We argue that DIDC may offer one possible mech-
anism via which, in excitable neural systems, generic heterogeneity and background noise can synergistically
prevent unwanted resonances that may be related to hyperkinetic movement disorders.
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The role of disorder in the dynamics of complex networks
has been extensively studied in terms of noise and diver-
sity (i.e., heterogeneity) effects [1–6]. For example, Shibata
and Kaneko showed that heterogeneity enhances regularity
in the collective dynamics of coupled map lattices, even if
each element has chaotic dynamics [7]. Later, Cartwright
observed the emergence of collective network oscillations in a
cubic lattice of locally coupled and diverse FitzHugh-Nagumo
(FHN) units, none of which were individually in an oscilla-
tory state [8]. Tessone et al. demonstrated an amplification
of the response of a coupled oscillator network to an ex-
ternal signal, driven by an optimal level of heterogeneity of
its elements, and named this effect diversity-induced reso-
nance (DIR) [9–18]. Other authors showed that DIR can occur
even in the absence of an external forcing [19,20]. Some of
these studies concluded that stochastic resonance and DIR are
substantially analogous phenomena [9,21] to the point that
diversity may be viewed as a form of quenched noise.

Diversity in complex networks dynamics has also been
studied in terms of its interaction with noise by introducing
both types of disorder in a system. Most of this research high-
lighted the possibility to amplify resonance effects caused by
noise thanks to diversity optimization, and vice versa [22–25].
Recently, Scialla et al. [26] showed that the impact of diversity
on network dynamics can be significantly different from that
of noise and may result in an antagonistic effect, depending on
the specific network configuration. At the same time, however,
various regions of synergy between the two types of disorder,
giving rise to strong resonance effects, were observed. Also,
it has been shown that diversity in a network of FHN neurons
can enhance coherence resonance (CR) [27], which is a regu-
lar response (i.e., a limit cycle behavior) to an optimal noise
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amplitude [28], occurring when the system is bounded near
the bifurcation thresholds [29,30].

Another form of noise-induced resonance is self-induced
stochastic resonance (SISR), which has a different mechanism
from CR for the emergence of regular oscillations [31,32].
SISR occurs when a small-amplitude noise perturbing the
fast variable of an excitable system with a strong timescale
separation results in the onset of coherent oscillations [32,33].
Due to the peculiarity of operating at relatively weak noise,
SISR represents a particularly interesting case to study the
effects of the interplay between noise and diversity. This is
relevant to the potential role of SISR as a signal amplifica-
tion mechanism in biological systems, given that diversity is
inherent to networks of neurons or other cells.

In this Letter, we demonstrate that in contrast to previous
literature, showing that network diversity can be optimized to
enhance collective behaviors such as synchronization or co-
herence [7–21,26,27], the effect of diversity on SISR, instead,
can only be antagonistic. This indicates that the enhancement
or deterioration of a noise-induced resonance phenomenon by
diversity strongly depends on the underlying mechanism.

We point out that not only constructive but also destructive
resonance effects may have significant biological conse-
quences. For instance, an increasing number of studies on
Parkinson’s disease [34] indicate that dopaminergic neurons
are characterized by a relatively high degree of heterogeneity
and disease progression is associated with the death of only
one or a few specific dopaminergic neuron subpopulations,
leading to a loss of neuron diversity with respect to healthy
brain tissues. Thus, the role of diversity in biological systems
might be also to inhibit unwanted resonances through com-
pensatory mechanisms between different neuron subtypes,
which can result in pathological conditions, if missing.

There is still a very limited understanding of the named
phenomena from a complex systems modeling viewpoint,
as previous works have focused mostly on systems and
conditions that favor constructive resonance effects. In this
paper, we uncover a diversity-induced decoherence (DIDC)
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mechanism, where, in contrast to its effect on CR, diversity
deteriorates the coherence of oscillations due to SISR.

As a paradigmatic model with well-known biological rel-
evance, we study the effects of diversity in a network of
globally coupled FHN units [35–37]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dvi

dt
= vi(ai − vi )(vi − 1) − wi

+ K
N∑

j=1

(v j − vi ) + ηi(t )

dwi

dt
= ε(bvi − cwi ).

(1)

Here (vi,wi ) ∈ R2 represent the fast membrane potential
and slow recovery current variables of the elements, respec-
tively; the index i = 1, ..., N stands for nodes; K > 0 is
the synaptic coupling strength; 0 < ε � 1 is the timescale
separation between vi and wi; and b, c > 0 are constant pa-
rameters. Diversity is introduced by assigning to each network
element i a different value of ai, as specified below. The
terms ηi (i = 1, ..., N) are independent Gaussian noises with
zero mean, standard deviation σn, and correlation function
〈ηi(t ), η j (t ′)〉 = σ 2

n δi j (t − t ′). The noise intensity applied to
each neuron will be measured by σn.

The excitable regime where the network defined by Eq. (1)
has a unique and stable fixed point is the required determin-
istic state for the occurrence of SISR [38–40]. When ηi = 0,
the point (v,w) = (0, 0) becomes a fixed point of Eq. (1) and
is unique if and only if

(ai − 1)2

4
<

b

c
. (2)

For the fixed point (v f ,w f ) = (0, 0) to be stable, we must
have trJi j < 0 and detJi j > 0, where Ji j is the Jacobian matrix
of the linearized Eq. (1). Since ε, c > 0, we have trJi j < 0 and
detJi j > 0 only if

−3v2
f + 2(ai + 1)v f − ai < 0. (3)

To ensure that the network defined by Eq. (1) lies in the ex-
citable regime required for SISR, in the following we set b =
1 and c = 2. We also set ε = 0.001, K = 0.1, and N = 100.
To introduce diversity, the values of ai are drawn from a trun-
cated Gaussian distribution in the interval ai ∈ (0, 1 + √

2),
and are randomly assigned to network elements. The standard
deviation σd and mean am of the distribution measure diver-
sity and how far the network is from the oscillatory regime
(corresponding to ai � 0), respectively.

To study the effects of diversity σd on SISR analytically,
we apply the mean-field approach, introducing the global vari-
ables V (t ) = N−1 ∑N

i=1 vi(t ) and W (t ) = N−1 ∑N
i=1 wi(t ).

Adapting the method used in Refs. [9,26,41], we set vi =
V + δi in Eq. (1), alongside the assumptions that

∑N
i=1 δi � 0,∑N

i=1 δ3
i � 0.

We further assume that the standard deviation σd of the ai

distribution is small, allowing the approximation〈
ai[(V + δi )

2 − (V + δi )]
〉
� 〈ai〉

〈
(V + δi )

2 − (V + δi )
〉
, (4)

where 〈. . . 〉 denotes an average over the N neurons. We note
that the Gaussian distribution of ai ∼ N (am, σd ) in the range
(0, 1 + √

2) is always truncated whenever a given value of am
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FIG. 1. W nullcline (blue line) and V nullcline (red curve) of
Eq. (5) intersect at a unique fixed point (Vf ,Wf ). Note that if Vf <

Vmin, then (Vf ,Wf ) is stable and, in addition, if W ∈ [Wmin,Wmax],
then W ∗

L ,Wf ∈ [Wmin,Wmax]. The black loop represents a typical
stochastic trajectory induced by SISR, where the horizontal parts
with triple arrows indicate the fast escape at points W ∗

L and W ∗
R from

the left and right stable branches of the V nullcline, respectively. The
almost vertical parts of the trajectory, with single arrow, represent
the slow motion of W governed by Eqs. (6). Note that W ∗

L > Wf .
A = 0.1, M = 0.045.

and/or σd pushes ai out of bounds, especially when am is very
close to the boundaries of (0, 1 + √

2).
Using these assumptions and averaging Eq. (1) over the N

neurons, we obtain the following dynamical equations for the
global variables V and W :⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dV

dt
= V [(A − V )(V − 1) − 3M]

+ M(A + 1) − W + ηG (t )
dW

dt
= ε(bV − cW ),

(5)

where M = N−1 ∑N
i=1 δ2

i and A = N−1 ∑N
i=1 ai. M can be

considered as a diversity parameter in that it increases with
diversity in the network and M = 0 for a homogeneous system
(σd = 0). Noise effects are represented by a global white
noise term ηG = N−1 ∑N

i=1 ηi with zero mean and correlation
function 〈ηG (t ), ηG (t ′)〉 = N−1σ 2

n δ(t − t ′).
When there is no noise in the first equation of Eq. (5),

ηG (t ) = 0, then in the adiabatic limit ε → 0, for any ini-
tial condition of Eq. (5) the system relaxes to V = V ∗

R (W )
and then to V = V ∗

L (W ), where V ∗
R (W ) and V ∗

L (W ) are the
right and left stable branches of the V nullcline, respectively.
Solving V [(A − V )(V − 1) − 3M] + M(A + 1) − W = 0 for
V , we get three real and ordered solutions, namely, V ∗

L (W ) �
V ∗

S (W ) � V ∗
R (W ), which are all functions of W .

Inserting V = V ∗
L (W ) and V = V ∗

R (W ) in the equation for
W in Eq. (5) gives⎧⎪⎨

⎪⎩
dW

dt
= ε[bV ∗

L (W ) − cW ]

dW

dt
= ε[bV ∗

R (W ) − cW ].
(6)

The first (second) equation of Eq. (6) together with the ex-
pression of V ∗

L (W ) [V ∗
R (W )] governs the slow motion of W

down (up) the left (right) stable branch of the V nullcline (see
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Fig. 1) to the leading order arising on the O(ε−1) timescale
when ε → 0.

Now, if we switch on the noise, i.e., ηG (t ) �= 0 with a
small amplitude, 0 < σn � 1, the first equation of Eq. (6) is
not valid all the way down to the stable fixed point (Vf ,Wf )
[in fact, for SISR to occur, the point (Vf ,Wf ) should never
be reached, otherwise, the trajectory would be trapped in
the basin of attraction of the stable fixed point for a long
time, thereby invoking a Poissonian spike train, leading to the
nonoccurrence of SISR], which is located on the left stable
branch of the V nullcline, i.e., Vf < Vmin (see Fig. 1). But
the first equation of Eq. (6) still governs the slow motion of
W until the well-defined point W ∗

L > Wf , where a horizontal
escape (invoked by noise) of a trajectory from the left stable
branch of the V nullcline occurs.

The same dynamics occur for the second equation of
Eq. (6) except that the horizontal escape from the right stable
branch of the V nullcline certainly occurs with or without
noise. This is because the right (unlike the left) stable branch
of the V nullcline has no fixed point to trap the trajectories
and destroy the regularity of spikes. Thus, our analysis focuses
only on the stochastic dynamics of the trajectories on the left
stable branch.

To understand the escape mechanism of a trajectory from
the left stable branch of the V nullcline at point W ∗

L , we con-
sider the limit ε → 0, where the timescale separation between
V and W becomes very large and Eq. (5) reduces to the 1D
Langevin equation:

dV

dt
= −∂U (V,W )

∂V
+ ηG (t ). (7)

In this limit, W which comes from the solution of the first
equation of Eq. (6) is practically frozen and can be considered
as a fixed parameter, its time variation providing only a O(ε)
contribution to the dynamics governed by Eq. (7). The func-
tion U (V,W ) in Eq. (7) is an effective double-well potential
parametrically dependent on M:

U (V,W ) = V 4

4
− (1 + A)

3
V 3 + (3M + A)

2
V 2

− [W − M(1 + A)]V. (8)

Based on large deviations theory [42,43] and Kramers’
law [44], we write for Eq. (5) the generic conditions for the
occurrence of SISR in slow-fast dynamical systems in the
standard form [45,46] as follows [33,39,47]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Vf < Vmin

lim
(σn,ε)→(0,0)

[
σ 2

n

2
ln(ε−1)

]
∈ (�U L(W ∗

L ),�)

W ∗
L > Wf

�U L(W ),�U R(W ) ↗ W ∈ [Wmin,Wmax].

(9)

Here, (Vmin,Wmin) and (Vmax,Wmax) are, respectively, the min-
imum and maximum points of the V nullcline, (Vf ,Wf ) is
the unique (and stable) fixed point of Eq. (5), and W ∗

L is the
value of W that satisfies the first equation of Eq. (6) and at
which the trajectories escape almost surely from the left stable
branch of the V nullcine. The left (�U L(W ) � 0) and right
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FIG. 2. Landscape of U (V,W ) and energy barriers �U L,R(W )
for different values of M. (a) U (V,W ) is asymmetric [�U L (W ) >

�U R(W )] when W (= 0.07) > Ws. (b) U (V,W ) is asymmetric
[�U L (W ) < �U R(W )] when W (= 0.04) < Ws. (c) U (V,W ) is sym-
metric [�U L (W ) = �U R(W )] at Ws = 0.0621 > Wf = 0.0376. A =
0.1.

(�U R(W ) � 0) energy barriers of U (V,W ) are

{
�U L(W ) = U (V ∗

S (W ),W ) − U (V ∗
L (W ),W )

�U R(W ) = U (V ∗
S (W ),W ) − U (V ∗

R (W ),W ),
(10)

which are both non-negative and monotonic functions of W ,
see Fig. 3(a). Figure 2 shows the landscape of U (V,W ) and
how �U {L,R}(W ) varies with M. We note that the asymmetry
of U (V,W ) is governed by W and the double-well tends
to disappear upon increasing M, resulting in a loss of the
bistability required for SISR occurrence. � represents the
intersection point of �U L(W ) and �U R(W ) at Ws, a point
at which the two energy barriers are equal to each other. This
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FIG. 3. (a) Variation of �U L (dashed lines) and �U R (solid
lines) versus W intersecting at W = Ws = 0.0621 for values of M =
{0.001, 0.01, 0.045, 0.065} shown in Fig. 2. (b) Variation of � versus
M. A = 0.1.

happens when U (V,Ws) is symmetric at Ws > Wf , i.e.,

� := {�U L(Ws) : �U L(Ws) = �U R(Ws),Ws > Wf }. (11)

At point Ws, the escape of a trajectory V from the left stable
branch and from the right stable branch of the V nullcline are
both equally less probable.

In Eq. (9), the first condition ensures that the fixed point
is unique and stable; the second condition ensures that a tra-
jectory can escape (almost surely) from the left stable branch
of the V nullcline at the escape point W = W ∗

L ; the third
condition ensures that the trajectory escapes before it reaches
the stable fixed point, so it does not get trapped into the basin
of attraction of this fixed point for too long; and in the fourth
condition, the monotonicity of �U L(W ) and �U R(W ) in the
interval [Wmin,Wmax] ensures that the escape points W ∗

L and
W ∗

R on the left and right stable branches of the V nullcline
are unique, which would in turn ensure the periodicity of the
trajectory leading to coherent spiking.

Since Wf is the lowest attainable point of a trajectory
on the left stable branch of the V nullcline and the interval
(�U L(Wf ),�) in the second condition in Eq. (9) is open,
SISR deteriorates (i.e., the spiking becomes less coherent) and
eventually disappears, moving away from the center of the
interval. Thus, for a given ε � 1, we use the boundaries of
this interval to calculate the minimum (σ min

n ) and maximum
(σ max

n ) noise intensity between which the highest degree of
SISR can be achieved:

σ min
n =

√
2�U L(Wf )

ln(ε−1)
, σ max

n =
√

2�

ln(ε−1)
. (12)

The quantities σ min
n and σ max

n have a dependence on the diver-
sity parameter M through U (V,W ) and V ∗

L,S,R(W ). Thus, the
length of the interval (σ min

n , σ max
n ) can be controlled by M. It is

worth noting that when σn = 0, diversity alone cannot induce
SISR. This is because no single neuron in the network can
spike as long as the excitability parameter (which is also the
heterogeneity parameter) ai ∼ N (am, σd ) lies in (0, 1 + √

2),
i.e., the excitable regime.

The occurrence of SISR depends on whether the parameter
values of the system, including M, satisfy the four conditions
Eq. (9) in the double limit (σn, ε) → (0, 0). Hence, it suffices
to study the variation of � versus M to uncover the effect
of diversity on the degree of SISR. This is done in Fig. 3,
showing that � decreases upon increasing M. Thus, DIDC
occurs when diversity in the network increases, leading to a
deterioration and eventually destruction of the coherence of
the spike train due to SISR, by shrinking the length of the
interval (σ min

n , σ max
n ) toward zero.

We corroborate the theoretical analysis via numerical
simulations. We numerically integrate Eq. (1) for N = 100
neurons using the fourth-order Runge-Kutta algorithm for
stochastic processes [48] and the Box-Muller algorithm [49].
The integration time step is dt = 0.01 and the total simulation
time is T = 1.5 × 106. For each realization, we choose for
the ith neuron random initial conditions [vi(0),wi(0)], with
uniform probability in the ranges vi(0) ∈ (−1, 1) and wi(0) ∈
(0.2, 1). After an initial transient time T0 = 2.5 × 105, we
start recording the neuron spiking times t	

i (	 ∈ N counts the
spiking times). Averages are taken over 15 realizations, which
warrant appropriate statistical accuracy.

We illustrate the effect of diversity, synaptic noise, and
distance of the excitable network from the oscillatory regime,
measured by σd , σn, and am, respectively, on the degree of co-
herence of the spikes induced by SISR. We use the coefficient
of variation (cv) given by the normalized standard deviation of
the mean interspike interval (ISI) [28]. For N coupled neurons,
the cv is given by [50]

cv =
√

〈τ 2〉 − 〈τ 〉2

〈τ 〉 , (13)

where 〈τ 〉 = N−1 ∑N
i=1〈τi〉 and 〈τ 2〉 = N−1 ∑N

i=1〈τ 2
i 〉, with

〈τi〉 and 〈τ 2
i 〉 representing the mean and mean squared ISI

(over time), τi = t	+1
i − t	

i > 0, of neuron i.
We determine the spike occurrence times from the instant

the membrane potential variable vi crosses the threshold vth =
0.3. The cv will be higher the more variable the mean ISIs are.
Thus, since Poisson spike train events are independent and all
have a normalized standard deviation of unity (i.e., cv = 1),
they can be used as reference for the average variability of
spike trains of the network [51]. When cv > 1, the average
variability of spike trains of the network is higher than a Pois-
son process. When cv < 1, the average spiking activity of the
network becomes more coherent, with cv = 0 corresponding
to perfectly periodic spike trains. The degree of coherence
is illustrated in Fig. 4, which depicts cv against the synaptic
noise σn and diversity parameter σd at two different values of
am.
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(a)

(b)

FIG. 4. (a) cv versus σn and σd in 3D with the 2D projection onto
(σn, σd ) plane when am = 0.05. (b) cv versus σn and σd in 3D with
the 2D projection onto (σn, σd ) plane when am = 1.2. In both panels,
the black and grey colors indicate values of cv < 1. Larger values of
σd inhibit SISR leading to larger cv values.

In Fig. 4(a), the mean value am = 0.05 is close to the lower
bound of the interval (0, 1 + √

2), i.e., close to the oscillatory
regime. It can be observed that when σn ∈ [10−4, 10−3] and
σd ∈ [0.0001, 0.7), we have a low cv ∈ [0.107, 0.207], indi-
cating a high degree of coherence due to SISR. For σd > 0.7,
the σn interval in which cv < 0.207 has shrunk to zero, i.e.,
cv � 0.276 for all σn values, indicating a significant deteriora-
tion and eventual destruction of the coherence as σd increases.

In Fig. 4(b), the mean of the diversity distribution is fixed
at a higher value am = 1.2. In this case, the unique fixed point
(v f ,w f ) = (0, 0) becomes even more stable than in Fig. 4(a).
Small diversities σd ∈ [0.0001, 0.3) and weak synaptic noise
intensities σn < 6 × 10−3 are not strong enough to induce
spiking; thus the network remains inactive and the value of
cv is undefined.

For σn < 9 × 10−4 and σd > 2, neurons respond differ-
ently to the synaptic noise due to the diverse strengths of
the excitable regimes. Due to the all-to-all coupling in the
network, the large diversity boosts the weak synaptic noise,
leading to the production of spikes. However, because the
diversity is large, the conditions required for SISR are violated
and the spikes produced are incoherent—see in Fig. 4(b) the
yellow region bounded by σn < 9 × 10−4 and σd ∈ [1.7, 2.4],

where cv > 1.5. At a relatively stronger synaptic noise in-
tensity, i.e., σn = 4 × 10−3 and a very small diversity of
σd = 0.001, the degree of coherence due to SISR is best and
cv = 0.14. As σd increases while the synaptic noise is fixed at
σn = 4 × 10−3, the degree of SISR deteriorates and cv > 1.

The results in Fig. 4 were obtained for a specific value
of the time scale parameter (ε = 0.001), which is a crucial
parameter for SISR. Moreover, additional simulations per-
formed for other values of ε � 1 and K ∈ (0.025, 1.0) (not
shown) lead to qualitatively similar results.

In conclusion, we have provided evidence that there are
complex network configurations and parameter regimes where
diversity can only cause a deterioration of well-known res-
onance phenomena, such as SISR. This is predicted by our
mean field analysis and confirmed by numerical simulations.

The decoherence effect appears as soon as there is a mini-
mal degree of diversity in the system and rapidly grows up to
a complete resonance muting as diversity increases. The basic
mechanism of this effect is that diversity causes a partial or
complete disappearance of the energy barrier in the mean field
double-well potential, responsible for the coherent spiking
corresponding to SISR. The fact that in this system diversity
cannot be optimized to enhance coherence, but can only dis-
rupt it, is a nontrivial result. This is because the possibility
to adjust diversity to amplify collective network behaviors has
been previously demonstrated across a broad range of network
types, configurations, and conditions and is, therefore, a very
general phenomenon [7–21,26].

We have illustrated the effect of DIDC in a prototypical ex-
citable model network, which suggests that the effect may be
common to other physical, chemical, and biological systems.
Based on our analysis and on experimental evidence that a
neuron diversity loss can be associated to hyperkinetic disor-
ders characterized by involuntary movements, we hypothesize
that diversity may be used in biological systems not only to
amplify weak signals, as suggested by previous literature, but
also as an efficient control mechanism to prevent undesired
resonances.
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