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While there are many physical processes showing subdiffusion and some useful particle models for under-
standing the underlying mechanisms have been established, a systematic study of subdiffusive energy transport
is still lacking. Here we present convincing evidence that, in the range of system size investigated, the energy
subdiffusion can take place in a Hamiltonian lattice system with both harmonic nearest-neighbor and anhar-
monic long-range interactions. In particular, we show that the interaction range dependence of antipersistent
energy-current correlations are relevant to this special type of energy subdiffusion. The underlying mechanisms
are related to the various scattering processes of phonons and discrete breathers. Our results shed light on
understanding the extremely slow energy transport.
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Subdiffusive motion differs from normal diffusion in that
the mean squared displacement (MSD) does not grow lin-
early in time t , but scales as tβ with β < 1 [1]. This type
of significantly slow diffusion motion was observed in many
diverse complex systems, ranging from amorphous semicon-
ductors [2] to geology [3], from weak turbulence in liquid
crystals [4] to particle motion in living cells [5–7], and from
the suspension of colloidal beads [8] to quantum and spin
systems [9,10]. To understand the underlying mechanisms,
several prominent physical models such as the confined con-
tinuous time random walk and the fractional Brownian motion
were proposed [11–13]. However, most of these models were
devoted to the motion of particles, the counterparts of energy
transport of subdiffusion type which are ubiquitous as well,
are less studied. What causes the underlying mechanisms of
energy subdiffusion and how the features of energy subdif-
fusion emerge when dealing with a many-body Hamiltonian
system are still challenging.

Due to the finiteness of the Poincaré recurrence time, it
is argued that the subdiffusive motion cannot be achieved in
conventional Hamiltonian systems in the absence of disorder
[14]. Therefore, up to now only quite a few examples of
subdiffusive energy transport in Hamiltonian systems were
reported. The first convincing one is the thermal transport
in a billiard channel model in a very special configuration,
which shows β � 0.86 [15]. However, in billiards the heat
transport is performed by diffusing particles. Thus the billiard
is essentially a particle model [16], in contrast to the many-
body lattice Hamiltonian systems where the energy transport
is conducted by phonons, i.e., the collective excitation modes
or quasiparticles. This raises the interesting question of if
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energy subdiffusion can exist in lattices [17]. Recently, some
cues for subdiffusive energy transport, such as the vanishing
of heat current, were revealed in a special Hamiltonian mean-
field model [18,19]. However, some of the more significant
features, such as the antipersistent [20] energy-current corre-
lations that were frequently observed in the subdiffusion of
particles, have never been explored in Hamiltonian systems.
Furthermore, the origin of this antipersistence is still open.

In this Letter we first show that some features of energy
subdiffusion, such as the sublinear increase of MSD in t and
the subdiffusive scaling of the probability distribution func-
tion, can emerge in a many-body Hamiltonian lattice system
with both harmonic nearest-neighbor (NN) and anharmonic
long-range interactions (LRIs). We further explore the more
convincing features of the antipersistent heat current autocor-
relation. By adjusting the interaction range of the system, we
reveal that the NN harmonic interaction enables the excitation
of phonons, while the anharmonic LRIs, with appropriate
strengths, favor the excitation of discrete breathers (DBs)
[21]. These DBs can be the scatters of phonons. Therefore,
various scattering processes invoke rich transports and present
different antipersistence for energy subdiffusion. In this sense
our result unveils new underlying physical pictures for subd-
iffusive motion.

We consider a one-dimensional Hamiltonian lattice of N
particles under the Born–von Karman periodic boundary con-
ditions [22] represented by

H =
N∑

i=1

[
p2

i

2
+ 1

2
(xi+1 − xi )

2 + 1

4

Ñ∑
r=1

(xi+r − xi )
4

]
. (1)

Here, xi and pi are two canonically conjugated variables with
i the index of the particle; all other relevant quantities like
the particle’s mass and the lattice constant are dimensionless
and set to be unity. The interparticle interactions include two
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separate terms. The first one denotes the harmonic NN cou-
pling and the second one is the anharmonic LRIs [23]. The
periodic boundary conditions make our system like a ring.
Similar to our previous studies [24], we do not include the
Kac prefactor as that was usually performed in long-ranged
systems [19]. Including this will cost that both the phonon’s
group velocity and the strength of nonlinearity should depend
on system size, which are unwanted effects for studying en-
ergy transport.

For the LRIs we first consider the system in the presence of
global interactions, i.e., Ñ = N

2 − 1. This setup is thus seem-
ingly similar to that of the Hamiltonian mean-field model, but
we note that the phonon dispersions for both models are quite
different. In particular, the latter type of LRIs in our model,
together with the harmonic NN interaction, can favor the ex-
citation of both phonons and DBs. Therefore, even though the
Hamiltonian mean-field model with both NN and LRIs always
supports superdiffusive transport [19], here and fortunately,
we are able to reveal the subdiffusive motion.

To capture the probability distribution function of energy
diffusion in such a ring at a given temperature (T = 0.5 is
considered), we employ the equilibrium spatiotemporal cor-
relation function (see Refs. [24–27] for details)

ρE (m, t ) = 〈�Ei+m(t )�Ei(0)〉
〈�Ei(0)�Ei(0)〉 (2)

of the local energy Ei = p2
i

2 + 1
2 (xi+1 − xi )2 + 1

4

∑Ñ
r=1(xi+r −

xi )4 for a canonical system. Here, due to the translational
invariance, the correlation depends only on the relative dis-
tance m; 〈·〉 represents the spatiotemporal average; �Ei(t ) =
Ei(t ) − 〈E〉.

To calculate ρE (m, t ), we set the total system size N =
4096, which ensures that an initial energy fluctuation located
at the center can spread out at a time at least up to t = 2000.
We use the velocity-Verlet algorithm [28] with a small time
step 0.01 to evolve the system. We adopt a fast Fourier trans-
form [29] algorithm to accelerate our computations. We utilize
an ensemble of size about 8 × 109.

Figure 1(a) depicts ρE (m, t ) for several long times showing
an extremely slow spread of the local energy fluctuations
�Ei(t ), i.e., the probability distribution functions are quite
localized and only cover a few lattice sites. This gives the first
visual sign of subdiffusive energy transport. To further check
this, Fig. 1(b) depicts the MSD 〈rE (t )2〉 calculated by

〈rE (t )2〉 =
N/2∑

m=−N/2

m2ρE (m, t ) (3)

of ρE (m, t ). 〈rE (t )2〉 ∼ t0.48 for a short t and 〈rE (t )2〉 ∼ t0.21

at long times are numerically fitted [30]. Interestingly, it not
only confirms our above conjecture, but also suggests addition
insight, i.e., double sublinear scalings of MSD at short and
long times. With this finding in mind, we next check the time
dependence of ρE (0, t ) in Fig. 1(c). In the framework of the
random walk model, ρE (0, t ) means the probability of the
energy being at initial position at some t . For normal and super
energy diffusion, one expects ρE (0, t ) ∼ t−β with β = 1

2 and
β > 1

2 , respectively [1,31]. But for the subdiffusive regime
observed here, remarkably our best fitting no longer follows
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FIG. 1. Special type of subdiffusive energy transport in the sys-
tem with Ñ = N

2 − 1: (a) ρE (m, t ) for several times t ; (b) 〈rE (t )2〉
versus t showing double sublinear scalings with β1 � 0.48 and
β2 � 0.21; (c) ρE (0, t ) versus t showing a two-stage exponential
decay with characteristic times τ1 � 787 and τ2 � 1019; and (d) the
equilibrium heat current autocorrelation CJJ (t ) versus t indicating the
antipersistent correlations, where the first sharp negative minimum is
at t = 6.

a single scaling of ρE (0, t ) ∼ t−β , instead it shows a manner
of two-stage exponential decay ρE (0, t ) ∼ exp(− t

τ
) with two

characteristic times: τ1 � 787 for short times and τ2 � 1019
at long times. These two characteristic times (τ1 < τ2) seem
consistent with the judgment of double sublinear scalings
(β1 > β2) of MSD since the larger the τ , the more slowly the
MSD grows.

The more convincing evidence of subdiffusion can been
explored by studying the system’s equilibrium heat current
autocorrelation

CJJ (t ) = 〈Jtot (t )Jtot (0)〉, (4)

where Jtot = ∑N
i=1 pi[(xi+1 − xi ) + ∑Ñ

r=1(xi+r − xi )3] is the
total heat current along the lattice. CJJ (t ) is related to the
thermal conductivity κ based on the Green-Kubo formula
κ = limτ→∞ limN→∞ 1

kBNT 2

∫ τ

0 CJJ (t )dt . For diffusive and su-
perdiffusive transport, one would expect CJJ ∼ exp (− t

ν
) and

CJJ (t ) ∼ t−γ , respectively. So κ is finite (divergent) for dif-
fusive (superdiffusive) transport. For subdiffusive transport,
however, κ should be vanishing in the thermodynamic limit,
indicating the system to be a thermal insulator [16–19]. To
support this, mathematically CJJ (t ) has to change sign at
least once to cause the Green-Kubo integral vanishing since
it is a continuous function of t . Physically, particularly in the
framework of particle models for subdiffusion [11–13], this
means the property of antipersistence, i.e., a period of energy
transport with positive heat current, is typically followed by
a period of transport with negative current. Interestingly, in
Fig. 1(d) the heat current autocorrelation shows a first sharp
negative minimum at t = 6 and a few local negative minima
following behind. Beyond doubt, this antipersistence surely
supports the subdiffusive motion. Even though it is similar
to the antipersistent velocity autocorrelations in the particle
subdiffusion [1,5,6].

Combining the above evidence, we conjecture a phonon-
DBs scattering picture to understand the microscopic mech-
anism of this subdiffusive energy transport (for this picture
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in a momentum-nonconserving Hamiltonian system with on-
site potential, one can refer to Ref. [32]. For the properties
of DBs in nonlinear lattices with two conserved quanti-
ties, such as the discrete nonlinear Schrödinger equation,
one refers to Ref. [33]. For our system we made a vivid
animation for phonon-DBs scattering in zero-temperature
systems, see the Supplementary Material [34]). Indeed, the
harmonic NN coupling in the Hamiltonian (1) enables the
excitation of phonons (with a certain phonon dispersion).
Together with this phonon dispersion, the anharmonic LRIs
[19] (with appropriate strengths) favor the excitation of DBs.
One might regard phonons as the main heat carriers and DBs
as the viscoelastic elements [6], respectively. As the phonon
waves move through DBs, which is assumed as a scatter,
phonons will be partially reflected, partially pass through,
and accompanied with energy loss [35,36]. The antipersis-
tent correlations shown in Fig. 1(d) imply that the reflection
takes place for short times and that DBs are finally in the
majority. The double sublinear scalings (β2 < β1) of MSD
[Fig. 1(b)] and the double characteristic times (τ2 > τ1) of
ρE (0, t ) [Fig. 1(c)] thus suggest that, statistically, only a
few rounds of the phonon-DBs’ scattering processes play a
primary role. Therefore, one might infer that the first-stage
energy relaxation is induced by phonon-DBs scattering while
the second-stage relatively slow relaxation is mainly caused
by DBs.

To present evidence of the phonon-DBs’ scattering picture
in finite temperatures, we next consider a system with the
truncated LRIs. This means that we set Ñ < N

2 − 1. This
setup will weaken the strength of DBs and make the phonon-
DBs’ scattering more evident. This is indeed indicated in
Supplementary Material [34]. However, to show DBs in finite
temperatures is more challenging, and we study the spatiotem-
poral evolutions of local energy densities Ei(t ) under the
equilibrium state to achieve this [24]. To do this, the ring
is first thermalized to T = 0.5, then the thermal baths are
removed and the results are recorded and displayed for a time
scale t = 1000 by a suitable time step �t = 10. To avoid huge
data to display, we now consider a short ring of N = 512
instead. Figure 2 depicts the spatiotemporal evolutions of the
systems with Ñ = N

2 − 1 and several Ñ . As indicated, the DBs
represented by localizations for Ñ = N

2 − 1 are obviously
stronger than those in the truncated LRIs [see Figs. 2(a) and
2(b)]. In addition, with the decrease of Ñ , the phonon-DBs’
scattering leads DBs to be less evident and thus the spatiotem-
poral evolutions seem to show a mixed picture [see Fig. 2(c)].
Finally, if Ñ is further decreased to Ñ = 1, i.e., a system
with NN couplings only, we can clearly identify the signa-
tures of moving excitations [see Fig. 2(d)]. These excitations
correspond to the long wavelength phonons or solitary waves,
which are usually regarded as the microscopic origin of the
superdiffusive thermal transport in the short-range interacting
systems. So we here reveal that, even in the finite-temperature
systems, the competition between the harmonic NN couplings
and the anharmonic LRIs is important to the scattering of
phonons and DBs.

More evidence of phonon-DBs’ scattering in finite tem-
peratures can be revealed by studying the typical spec-
trum P(ω) of the thermal fluctuations. This is achieved
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FIG. 2. DBs in finite temperatures: Spatiotemporal evolution of
energy densities Ei(t ) for the system (N = 512) at thermal equilib-
rium for a timescale t = 1000 with a time step �t = 10 : (a) the
global LRIs (Ñ = N

2 − 1); (b)–(d) the truncated LRIs with Ñ = 64,
Ñ = 16, and Ñ = 1 (the NN coupling case), respectively. Those
marked regimes in (d) denote the mobile excitations.

by performing a frequency ω analysis of the equilibrium
one particle momentum p N

2
(t ) along the ring: P(ω) =

limτ→∞ 1
τ

∫ τ

0 p N
2

(t ) exp(− jωt )dt [37], where j2 = −1. Fig-
ure 3 depicts P(ω) for the same setups as Fig. 2. To distinguish
the long wavelength phonon waves, we adopt a log-log plot
to show the low frequency components clearly. First, for a
large-enough Ñ , most of the frequency components are lying
in above the Brillouin zone ω = 2 of linear phonons, confirm-
ing the properties of DBs [see Figs. 3(a) and 3(b)]. Second,
it is known that in lattices with only NN couplings support-
ing superdiffusive transport, the low frequency phonons are
weakly damped due to the conservative feature of momentum
[38,39]. As the NN anharmonicity increases we always see the
damping of phonons starting from the high frequency com-
ponents. This is indeed indicated in Fig. 3(d) where the low
frequency can be clearly identified (see also Ref. [38]). But
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The insets in (a) and (b) show ρE (0, t ) versus t . Note that the scale
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after introducing the anharmonic LRIs, the situation reverses,
i.e., as the anharmonicity increases we always see the attenu-
ation of phonons beginning at the low frequency components
[see Figs. 3(b) and 3(c)], and finally phonons are immersed
in the environment of DBs [see Fig. 3(a)]. This later property
seems to demonstrate the peculiarity of energy subdiffusion in
lattices. It seems consistent with the phonon-DBs’ scattering
picture.

We now capture the two-stage energy relaxation and the
antipersistent correlations in more detail. Toward that end,
we return to the results of ρE (m, t ) and CJJ (t ), but for the
systems with the truncated LRIs instead. From Fig. 4 one
expects that, for a relatively short Ñ , phonons will succeed
over DBs after the scattering, so the energy subdiffusion rep-
resented by ρE (m, t ) would not be seen [see Figs. 4(c) and
4(d)]. While for a relative large Ñ , DBs are in the majority
after the scattering, the subdiffusion can thus take place [see
Figs. 4(a) and 4(b)]. Interestingly, for all the subdiffusion
observed here, ρE (0, t ) always shows a two-stage relaxation
[see the insets of Figs. 4(a) and 4(b)]. Therefore, whether
DBs finally survive most after the scattering is crucial to the
emergence of subdiffusive energy transport, and if yes the
double-scaled subdiffusive motions seem always to happen.

The antipersistent correlations are still shown in the sys-
tems with the truncated LRIs [see Fig. 5]. If Ñ � 32, this
antipersistence will always present in our system at a universal
short time t = 6. But, compared with the systems with the
global LRIs, it turns from a sharp negative minimum to a posi-
tive dip. At present we do not know whether this is an intrinsic
property of such types of systems. However, the universality
of t = 6 shown in the systems must imply its same origin
from the phonon-DBs’ scattering. The only distinction is that
some kinds of phonon-DBs’ scattering is strong, leading to
the sharp negative minimum (see Fig. 1(d) and Supplementary
Material [34]); while other kinds of phonon-DBs’ scattering is
relatively weak and the antipersistence only presents as a dip
(see Figs. 5(a) to 5(c) and Supplementary Material [34]). An-
other important piece of information is that CJJ (t ) in Figs. 5(a)
and 5(b) show a second antipersistence with negative minima,
but these minima are not presented in Figs. 5(c) and 5(d).
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Combining the results of Figs. 4(c) and 4(d), one infers that
whether CJJ (t ) has negative correlations seems crucial for
signaling out the subdiffusive motion. Interestingly, the two
dips shown in Figs. 5(a) and 5(b) are again in accord with the
few rounds of phonon-DBs’ scattering pictures.

To summarize, we presented a detailed investigation of
subdiffusive energy transport in a many-body Hamiltonian
lattice with long-ranged interactions. In the range of system
size investigated, we observed a special type of energy sub-
diffusion. It shows important features of the antipersistent
energy-current correlations. Even though this property is quite
similar to the counterparts of particles, it would undoubtedly
invoke additional insight since the energy considered here
also contains the information of many-body interactions. In-
deed, the overall underlying physics is now related to the
phonon-DBs’ scattering, i.e., the collective linear and non-
linear excitations, rather than the real particles performing
random walks in complicated environments. Due to this, some
alternative and maybe general features, such as the two-stage
energy relaxation and a universal dip indicating the antipersis-
tent correlation emerge. Inspired by this, we are able to further
clarify that the negative velocity or current correlations are
crucial to judge subdiffusive motion.

Apart from these insights, to find subdiffusive energy trans-
port in Hamiltonian dynamics in itself has its theoretical
significance, which would help us check the validity of the
Kac lemma [14]. In addition, the thermal conductivity in such
types of systems will be vanishing in the thermodynamic
limit, which implies the system to be a thermal insulator. It
would thus be fascinating to expect our theoretical under-
standing here to invoke potential applications in designing
additional thermal devices.
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