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Probabilistic cellular automata provide a simple framework for exploring classical nonequilibrium processes.
Recently, quantum cellular automata have been proposed that rely on the propagation of a one-dimensional
quantum state along a fictitious discrete time dimension via the sequential application of quantum gates. The
resulting (1 + 1)-dimensional space-time structure makes these automata special cases of recurrent quantum
neural networks which can implement broad classes of classical nonequilibrium processes. Here, we present a
general prescription by which these models can be extended into genuinely quantum nonequilibrium models via
the systematic inclusion of asynchronism. This is illustrated for the classical contact process, where the resulting
model is closely linked to the quantum contact process (QCP), developed in the framework of open quantum
systems. Studying the mean-field behavior of the model, we find evidence of an “asynchronism transition,” i.e.,
a sudden qualitative change in the phase transition behavior once a certain degree of asynchronicity is surpassed,
a phenomenon we link to observations in the QCP.
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Introduction. Nonequilibrium processes can display col-
lective effects and critical behavior. In the vicinity of
nonequilibrium phase transitions (NEPTs), the resulting phe-
nomenology can show macroscopic features that are shared
by different models. This so-called universality allows for
diverse systems to be gathered into few classes, enabling the
investigation of emergent phenomena through the analysis of
minimal models within a class [1,2]. For classical systems,
a paradigmatic setting for exploring nonequilibrium univer-
sality is that of (1 + 1)-dimensional cellular automata (CA).
These consist of two-dimensional (2D) models realizing an
effective 1D system discrete-time dynamics, as shown in
Fig. 1(a). The propagation of the 1D state from time t to
t + 1 occurs through the sequential application of local gates
(or rules) operating on the (target) row t + 1, controlled by
the state of row t ; see Fig. 1(a). Such classical dynamics can
either be deterministic, usually implemented through unitary
gates, or probabilistic, with nonunitary local updates. In the
latter case, by suitably choosing the gates, these automata
provide discrete-time versions of continuous-time dynam-
ics [1]. Owing to their simple structure, this has allowed
for a deep understanding of several classical nonequilibrium
processes [1–7].

Recently, quantum versions of these automata have been
introduced and dubbed (1 + 1)D quantum cellular automata
(QCA) [8–10]. These models are particularly appealing for
at least two reasons. First, they can be realized on current
quantum simulators [11–14]. Second, while closely linked to
unitary 1D QCA [15–19], (1 + 1)D QCA are equivalent to
quantum neural networks (QNNs) applied in quantum ma-

chine learning (QML) [20]. In the language of QNNs, the
first and last rows of the QCA correspond to input and output
layers, respectively, while the intermediate rows are the hid-
den layers [cf. Fig. 1(a)]. The local gate of the QCA is then
a N-input, one-output quantum perceptron, and a quantum
evolution proceeds by applying the gate layer by layer, just as
in QNNs. Since every perceptron is identical, QCA are in fact
recurrent QNNs. With regards to the study of nonequilibrium
processes, (1 + 1)D QCA are also particularly effective as
they include their classical counterparts as a limiting case, re-
quiring only synchronous updates—i.e., commuting gates. For
instance, probabilistic cellular automata (PCA) can be repro-
duced through commuting unitary quantum gates. The QCA
state displays nonclassical properties [8,21], but nonetheless
captures the classical model, with diagonal elements coincid-
ing with the probabilities of the associated PCA.

In this paper, we present a prescription for extending a
given classical model into a genuinely quantum model via
the systematic inclusion of asynchronism in the (1 + 1)D
QCA framework [cf. Fig. 1(b)]. Asynchronism alone is not
necessarily a quantum feature [22–24]. However, in QCA,
asynchronous—noncommuting—gates can generate a depen-
dence between diagonal observables of one time slice and
coherence in the previous one [Fig. 1(c)]. After presenting
the general prescription, we analyze the case of the classical
contact process (CCP). Remarkably, we find that the QCA
resulting from the introduction of asynchronism is closely
connected to the continuous-time quantum contact process
(QCP) [25–30]. To make the link precise, we compare the
mean-field equations of the QCP and of the asynchronous
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FIG. 1. Asynchronism in classical CA and (1 + 1)D QCA. (a) A
CA consists of a 2D lattice of two-level systems, which can either be
in an occupied or empty state. The vertical dimension of the lattice
provides an effective discrete-time dimension and propagation along
the time direction is achieved through the sequential application of
local gates. These perform operations on a target site at row t + 1 and
in position k according to the state of three control sites (at position
k − 1, k, k + 1) in the previous row. After the row t + 1 has been
completely updated, its state represents the state of an effective 1D
system at time t + 1. (b) During a single time update, if the local
gates do not modify the control sites, the order of their application is
irrelevant (synchronous dynamics). If local gates change the control
sites, the order of their application is relevant and can produce differ-
ent final states (asynchronous dynamics). (c) While in a classical CA,
the occupation of a target site solely depends on occupation proba-
bilities of control sites, asynchronism in a QCA is linked to quantum
coherent processes. In the panel, it is shown how an asynchronous
gate can generate, in addition to classical asynchronous terms, a
coupling between the occupation in the target site and coherence in
the control sites.

QCA. We find that the quantum Hamiltonian contribution
in the QCP is analogous to the one due to asynchronism in
the QCA. In addition, we investigate the QCA mean-field
phase diagram. While for low asynchronism it displays a
second-order NEPT in the directed percolation (DP) univer-
sality class, as expected from the corresponding PCA [3],
there exists a critical value of asynchronism above which the
NEPT qualitatively changes and becomes first order. We thus
term this an “asynchronism transition.” We compare this with
the phase diagram estimated using tensor-network techniques
and with similar behavior in the QCP.

Our results present a framework to study the role of quan-
tum effects in nonequilibrium collective behavior. Given that
noncommuting gates are required for universal computation
with qubit-based QNNs [20], our work hints at further in-
teresting links between asynchronism, quantum many-body
dynamics, and quantum machine learning.

Synchronous (1 + 1)D QCA. In the 2D lattice of the QCA,
sites can be in the empty |◦〉 or occupied |•〉 state; see
Fig. 1(a). The lattice initial state, |ψ0〉, is chosen as a product
state, where row t = 0 contains the initial 1D configuration,
while the other sites are initialized in |◦〉. The 2D lattice
evolves iteratively as |ψt+1〉 = Gt |ψt 〉, where Gt acts on rows
t and t + 1. This global update is made of the product of local
gates Gt,k , updating the target site at (t + 1, k). For example,
a given ordering could be Gt = . . . Gt,k . . . Gt,2Gt,1. The time-
evolved 1D system state is ρt = Tr′(|ψt 〉〈ψt |), with the trace
taken over all sites except those in row t [cf. Fig. 1(a)]. See
Refs. [9,10,21] for further details on (1 + 1)D QCA.

The simplest local unitary gate is of the form

Gt,k =
∑

N
PN ⊗ UN . (1)

Here, N labels the basis states of the “control” sites in the
neighborhood of site k on row t . For example, a three-site
neighborhood has eight basis states, N = (◦◦◦, ◦◦•, . . . , ••
•). The unitary operator UN “rotates” the target (on row t + 1
and in position k) conditioned on the state of the control
sites. This is enforced by the projector PN = |N 〉〈N | acting
on them. We will use the symbol ⊗ to separate control sites
(to the left) and target sites (to the right). Since in Eq. (1)
only orthogonal projectors act on control sites, gates Gt,k

acting on different target sites commute and the dynamics is
synchronous, i.e., target sites can be updated simultaneously
[see Fig. 1(b)].

To illustrate that such synchronous (1 + 1)D QCA allows
for the implementation of a range of canonical nonequilib-
rium models [4,5,31,32] we consider the realization of the
so-called contact process [3,6]. The contact process features
three elementary ingredients: decay, i.e., the transition of a
site from occupied to empty (• � ◦), coagulation, which is
also the transition of a site from full to empty but facili-
tated (conditioned) by one of its neighbors (•• � •◦), and
branching, which is facilitated excitation of the form •◦ �
••. Note that the contact process possesses the absorbing
state . . . ◦◦◦ . . . from which no escape is possible. Whether
this state is reached at stationarity depends on the rates (or
probabilities) of the elementary processes. An instance of the
contact process on a (1 + 1)D QCA is realized by the gate

Gt,k = �knk ⊗ U◦•◦ + �knk ⊗ 1

+ �̄knk ⊗ U• + �̄knk ⊗ U◦, (2)

which has the form of Eq. (1). Here nk = |•〉〈•|k and nk =
|◦〉〈◦|k = 1 − nk project onto the occupied and empty state
of site k, respectively. Furthermore, we have defined the pro-
jectors �k = n̄k−1n̄k+1 and their complements �̄k = 1 − �k .
The unitaries Uα , with labels α = (◦•◦, •, ◦), perform a (co-
herent) flip of the target site, which is conditioned on the
state of the controls. Note that the first unitary considers the
case of empty left-right control sites, while the latter two
unitaries act on the target only if at least one of the left-right
control sites is occupied. They are parametrized as U◦•◦ =√

p◦•◦ 1 − i
√

q◦•◦ σ x and U◦/• = √
q◦/• 1 − i

√
p◦/• σ x with

σ x = |•〉〈◦| + |◦〉〈•|. The parameters q◦•◦ and p◦/• ∈ [0, 1]
are the flipping probabilities and qα = 1 − pα .

L032103-2



ASYNCHRONISM AND NONEQUILIBRIUM PHASE … PHYSICAL REVIEW E 106, L032103 (2022)

In the gate in Eq. (2), the control sites have been separated
by singling out the central one, so that we can associate to
the target site [in position (t + 1, k)] a specific control site
[the one in position (t, k)], which we regard as its “past.” This
allows for the mean occupation number, 〈nk〉t+1, of the target
to be calculated iteratively as

〈nk〉t+1 = q◦•◦〈�knk〉t + p•〈�̄knk〉t + p◦〈�̄kn̄k〉t

≈ q◦•◦〈�k〉t 〈nk〉t + p•〈�̄k〉t 〈nk〉t + p◦〈�̄k〉t 〈n̄k〉t ,

(3)

where we performed a mean-field decoupling in the second
line [33]. This form makes the interpretation of the probabil-
ities entering the unitaries Uα rather transparent: q◦•◦ is the
probability that the target site k gets occupied given that the
control site k is occupied while its neighbors are empty. Since
the occupation number can only decrease under this process
this effectively implements • � ◦. The probability p• is the
probability of having an occupied target when there is at least
one of the external controls and the central one occupied.
This also describes a decay process, but here in combination
with the so-called coagulation process, i.e., the annihilation of
two adjacent occupied sites, e.g., •• � •◦. Finally, the prob-
ability p◦ parametrizes the strength of a branching process
(•◦ � ••). All these ingredients yield the contact process [6].
Finally, by taking the continuous-time limit of Eq. (3), i.e.,
expanding 〈nk〉t+1 ≈ 〈nk〉t + �t d

dt 〈nk〉t , with small time step
�t , one obtains a continuous-time contact process [6] with
coagulation rate κc = (q◦•◦ − p•)/�t , branching rate κb =
p◦/�t , and decay rate γ = p◦•◦/�t [33].

Asynchronous (1 + 1)D QCA. The dynamics in Eq. (3) is
classical as it only connects diagonal observables. A natural
question is what is a minimal modification to the gate Gt,k

which makes diagonal observables at time t + 1 depend on
coherence at the previous time? We achieve this through asyn-
chronism [cf. Figs. 1(b) and 1(c)].

To break the commutativity of the gates, we consider
terms modifying control sites along with the target one, see
Fig. 1(b), via the gates,

Gt,k =
∑

N
PN ⊗ UN +

∑

N 
=N ′
|N 〉〈N ′| ⊗ ON ,N ′ , (4)

where unitarity of Gt,k constrains the operators ON ,N ′ . The
minimal modification beyond Eq. (1) affects a single con-
trol site, i.e., |N 〉〈N ′| = |N 〉〈N | σ±

k , where σ+ = |•〉〈◦| and
σ− = |◦〉〈•|, such that

Gt,k =
∑

N
PN ⊗ UN +

∑

N ,±
PNσ±

c ⊗ ON ,±. (5)

Here σ±
c acts on a chosen site, labeled c. This equation con-

stitutes a prescription for extending any classical model into a
quantum one by choosing the operators ON ,±, subject to the
constraints of unitarity and any desired physics of the original
model.

As an example, we consider the CCP in Eq. (2). In this
case, the additional constraints are the presence of the absorb-
ing state and that the update depends only on whether there
are any particles present, but not on their quantity or position.

FIG. 2. Nonequilibrium phase transition in (1 + 1)D QCA.
(a) Stationary phase diagram for the model described by the gate (6).
An absorbing state phase transition is displayed as a function of the
asynchronism parameter λ and the branching probability p◦. The
stationary density is estimated by performing 1000 iterations of the
mean-field equations [33]. For strong asychronicity, i.e., λ � 0.92,
the phase transition changes from continuous (in the directed per-
colation universality) to discontinuous. (b) Phase diagram obtained
for a (1 + 1)D QCA using tensor networks [21]. Here, the density is
calculated using bond dimension χ = 64, lattice size L = 64, and by
iterating over 100 time steps.

Applying the prescription gives

Gt,k = �knk ⊗ U◦•◦ + �knk ⊗ 1

+ √
1 − λ [�̄knk ⊗ U• + �̄knk ⊗ U◦]

+
√

λ �̄k
[
σ+

k ⊗ U•U+ − σ−
k ⊗ U◦U †

+
]
. (6)

This gate contains just one additional unitary beyond the
synchronous model, U+ = i

√
q1 − √

pσ x, and features two
additional parameters, p and λ, with λ ∈ [0, 1] controlling the
strength of the asynchronism. When λ = 0 we recover Eq. (2).
As λ is increased, gates acting on adjacent target sites do not
commute, with the norm of the commutator increasing with λ.
Considering the analog of Eq. (3) for the gate in Eq. (6), we
find after a mean-field decoupling [33]

〈n〉t+1 = r◦•◦〈�k〉t 〈nk〉t + r•〈�̄k〉t 〈nk〉t + r◦〈�̄k〉t 〈n̄k〉t

+ r∗〈�̄k〉t 〈σ y
k 〉t , (7)

with σ y = −i |•〉〈◦| + i |◦〉〈•|. The coefficients are

r◦•◦ = q◦•◦,

r• = (1 − λ)p• + λ(
√

p◦
√

q + √
p
√

q◦)2
,

r◦ = (1 − λ)p◦ + λ(
√

p•
√

q − √
p
√

q•)2,

r∗ =
√

λ
√

1 − λ[
√

q(p• + p◦)

+ √
p(

√
p◦

√
q◦ − √

p•
√

q•)]. (8)

Crucially, we see that this equation connects the density oper-
ator n of the target site with the coherence observable σ y for
the central control, which, as mentioned before, we interpret
as the “past” of the target. Only when r∗ = 0 does the equa-
tion close on diagonal observables.

Asynchronism transition. To assess the impact of asynchro-
nism on our (1 + 1)D QCA, we investigate the mean-field
stationary state [33]. For the following analysis we fix q◦•◦ =
p• = p = 0.1. As shown in Fig. 2(a), for any given value of λ

the QCA displays an NEPT from the absorbing state with all
empty sites to a state with a finite density of occupied sites,

L032103-3



GILLMAN, CAROLLO, AND LESANOVSKY PHYSICAL REVIEW E 106, L032103 (2022)

〈n〉∞ 
= 0. The critical curve separating those two phases can
be parametrized by the strength of asynchronism, λ = λc(p◦).
For λ = 0 (not shown) the QCA represents a discrete-time
contact process and thus shares with it a continuous phase
transition in the DP universality class. This continuous transi-
tion persists when increasing λ. However, beyond λ∗ ≈ 0.92
the phase transition becomes of first order.

Since this change in the nonequilibrium physics occurs for
increasing λ along the critical curve λc, we call this an “asyn-
chronism transition.” This mean-field transition is expected to
be strictly observable above the upper-critical dimension of
the model. Instead, to study the (1 + 1)D QCA, we resort to
tensor network methods [21]; see Fig. 2(b). Here, qualitative
agreement with the mean-field solution is found, although the
NEPT appears to be continuous throughout. Nevertheless, the
emergence of the mean-field phase transition may be signaling
a changing universality class in the (1 + 1)D QCA [33]. As
we discuss below, this is analogous to the QCP [28–30], which
displays a similar phenomenology.

Relation to the quantum contact process. The QCP is a
continuous-time Markovian open quantum system that fea-
tures the same processes as the CCP, with an additional
coherent term known as “quantum branching” (•◦ ↔ ••) with
rate � [25,26]. This process is implemented by a quantum
Hamiltonian, which describes constrained (Rabi) oscillations:
sites can only change state when at least one neighbor is
occupied. The QCP, as defined in Refs. [25,26], displays a
phase transition from an absorbing state to an active phase. At
the mean-field level one finds a change of universal behavior
from DP to a first-order transition at a certain critical ratio g∗
of quantum and classical branching rates, g = �/κb [25–27].
In 1D, numerical simulations show that the phase transition
in fact remains continuous throughout. However, there is still
a critical value of g above which one finds deviations from
DP universality [28–30]. Thus the QCP displays a change in
its universal physics, which, at least at a qualitative level, is
indicated by mean field.

The close resemblance between the phenomenology of the
QCA (6) and the QCP suggests that the inclusion of asyn-
chronism in the QCA introduces a microscopic process akin
to quantum branching [21,25–30,34–36]. To verify this, we
consider the Heisenberg equation for n of the QCP [25,26,33].
Upon discretization with time step �t , this is indeed equiva-
lent to Eq. (7) with coefficients,

r◦•◦ = 1 − γ�t, r• = 1 − γ�t − κc�t,

r◦ = κb�t, r∗ = ��t . (9)

Comparing Eq. (9) with Eq. (8), we see that removing
asynchronism (λ → 0) is equivalent to removing coherent
branching (��t → 0) in the QCP.

Finally, we link the asynchronism transition observed pre-
viously with similar behavior in the QCP by recharacterizing
it in terms of the processes of the QCP. Equating Eqs. (9)
and (8), we define the parameter g = �/κb for our QCA; see

FIG. 3. Quantum and classical processes in asynchronous (1 +
1)D QCA. (a) By equating Eqs. (8) and (9), the relative strength
of quantum to classical branching, g = �/κb, can be examined for
the gate in Eq. (6). As can be seen, g (shown as lines of constant
value, with colored areas indicating regions between these values)
increases monotonically with the strength of asynchronism in the
QCA, parametrized by λ. The solid red line indicates the critical
curve of the QCA, estimated by taking the line of constant n = 0.1 in
the mean-field phase diagram of Fig. 2(a). (b) The behavior of g along
the critical line, denoted as gc here, is shown for λ ∈ [0.5, 1], and dis-
plays a rapid increase with λ. The critical point of the asynchronism
transition, λ∗, can be identified with a critical value of g∗ = 4.05.

Fig. 3(a). Clearly, increasing the value of λ corresponds to
increasing g. The critical curve, λ = λc(p◦), can then also be
parametrized by values of g; see Fig. 3(b). In terms of g, the
critical point of the asynchronism transition, λ∗, is the point
g∗, where quantum branching is sufficiently stronger than
classical branching, leading to a change of universal physics
in the mean-field phase diagrams and, for 1D QCP, in the
(nonperturbative) universality class also.

Conclusion. Building on the connection between classical
probabilistic CA and continuous-time nonequilibrium dynam-
ics [3,6], we have demonstrated how asynchronism can be
leveraged to gradually introduce genuine quantum effects to
an otherwise classical contact process dynamics, and can lead
to quantum models that are closely related to those studied
in other frameworks. Due to the connection between QCA
and QNNs, this analysis might find application in quantum
machine learning, for instance, in providing physical insights
into the dynamics of information retrieval and the impact
of quantum effects—e.g., caused by asynchronism—on their
capability of performing computational tasks.

Acknowledgments. We acknowledge support from EP-
SRC (Grant No. EP/R04421X/1), from the “Wissenschaftler
Rückkehrprogramm GSO/CZS” of the Carl-Zeiss-Stiftung
and the German Scholars Organization e.V., as well as
through The Leverhulme Trust (Grant No. RPG-2018-181),
and the Deutsche Forschungsgemeinschaft through SPP 1929
(GiRyd), Grant No. 428276754, as well as through Grant No.
435696605. We are grateful for access to the University of
Nottingham’s Augusta HPC service.

[1] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium
Phase Transitions (Springer, Netherlands, 2008).

[2] M. Henkel and M. Pleimling, Non-Equilibrium Phase Transi-
tions (Springer, Netherlands, 2010).

L032103-4



ASYNCHRONISM AND NONEQUILIBRIUM PHASE … PHYSICAL REVIEW E 106, L032103 (2022)

[3] E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984).
[4] F. Bagnoli, N. Boccara, and R. Rechtman, Phys. Rev. E 63,

046116 (2001).
[5] F. Bagnoli and R. Rechtman, arXiv:1409.4284.
[6] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[7] S. Lübeck, Int. J. Mod. Phys. B 18, 3977 (2004).
[8] I. Lesanovsky, K. Macieszczak, and J. P. Garrahan, Quantum

Sci. Technol. 4, 02LT02 (2019).
[9] E. Gillman, F. Carollo, and I. Lesanovsky, Phys. Rev. Lett. 125,

100403 (2020).
[10] E. Gillman, F. Carollo, and I. Lesanovsky, Phys. Rev. A 103,

L040201 (2021).
[11] J. Zeiher, R. Van Bijnen, P. Schauß, S. Hild, J.-y. Choi, T. Pohl,

I. Bloch, and C. Gross, Nat. Phys. 12, 1095 (2016).
[12] H. Kim, Y. J. Park, K. Kim, H.-S. Sim, and J. Ahn, Phys. Rev.

Lett. 120, 180502 (2018).
[13] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[14] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A.

Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho et al.,
Nature (London) 595, 227 (2021).

[15] K. Wiesner, Quantum cellular automata, in Encyclopedia of
Complexity and Systems Science, edited by R. A. Meyers
(Springer, New York, 2009), pp. 7154–7164.

[16] J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, J. Stat.
Mech. (2017) 083105.

[17] P. Arrighi, Nat. Comput. 18, 885 (2019).
[18] T. Farrelly, Quantum 4, 368 (2020).
[19] L. E. Hillberry, M. T. Jones, D. L. Vargas, P. Rall, N. Y.

Halpern, N. Bao, S. Notarnicola, S. Montangero, and L. D. Carr,
Quantum Sci. Technol. 6, 045017 (2021).

[20] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R.
Salzmann, D. Scheiermann, and R. Wolf, Nat. Commun. 11,
808 (2020).

[21] E. Gillman, F. Carollo, and I. Lesanovsky, Phys. Rev. Lett. 127,
230502 (2021).

[22] O. Bouré, N. Fatès, and V. Chevrier, Nat. Comput. 11, 553
(2012).

[23] S. Bandini, A. Bonomi, and G. Vizzari, Nat. Comput. 11, 277
(2012).

[24] N. Fatès, in Cellular Automata and Discrete Complex Systems,
edited by J. Kari, M. Kutrib, and A. Malcher (Springer, Berlin,
2013), pp. 15–30.

[25] M. Marcuzzi, M. Buchhold, S. Diehl, and I. Lesanovsky, Phys.
Rev. Lett. 116, 245701 (2016).

[26] M. Buchhold, B. Everest, M. Marcuzzi, I. Lesanovsky, and S.
Diehl, Phys. Rev. B 95, 014308 (2017).

[27] D. Roscher, S. Diehl, and M. Buchhold, Phys. Rev. A 98,
062117 (2018).

[28] F. Carollo, E. Gillman, H. Weimer, and I. Lesanovsky, Phys.
Rev. Lett. 123, 100604 (2019).

[29] E. Gillman, F. Carollo, and I. Lesanovsky, New J. Phys. 21,
093064 (2019).

[30] M. Jo, J. Lee, K. Choi, and B. Kahng, Phys. Rev. Research 3,
013238 (2021).

[31] S. Wolfram, Rev. Mod. Phys. 55, 601 (1983).
[32] S. Wolfram, A New Kind of Science (Wolfram Media, Cham-

paign, IL, 2002).
[33] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.106.L032103 for details on the derivation of
the mean-field equations presented in the main-text, along with
background on the quantum contact process.

[34] M. Jo, J. Um, and B. Kahng, Phys. Rev. E 99, 032131
(2019).

[35] M. Jo and B. Kahng, Phys. Rev. E 101, 022121 (2020).
[36] R. Nigmatullin, E. Wagner, and G. K. Brennen, Phys. Rev.

Research 3, 043167 (2021).

L032103-5

https://doi.org/10.1103/PhysRevLett.53.311
https://doi.org/10.1103/PhysRevE.63.046116
http://arxiv.org/abs/arXiv:1409.4284
https://doi.org/10.1080/00018730050198152
https://doi.org/10.1142/S0217979204027748
https://doi.org/10.1088/2058-9565/aaf831
https://doi.org/10.1103/PhysRevLett.125.100403
https://doi.org/10.1103/PhysRevA.103.L040201
https://doi.org/10.1038/nphys3835
https://doi.org/10.1103/PhysRevLett.120.180502
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1088/1742-5468/aa7e55
https://doi.org/10.1007/s11047-019-09762-6
https://doi.org/10.22331/q-2020-11-30-368
https://doi.org/10.1088/2058-9565/ac1c41
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1103/PhysRevLett.127.230502
https://doi.org/10.1007/s11047-012-9340-y
https://doi.org/10.1007/s11047-012-9310-4
https://doi.org/10.1103/PhysRevLett.116.245701
https://doi.org/10.1103/PhysRevB.95.014308
https://doi.org/10.1103/PhysRevA.98.062117
https://doi.org/10.1103/PhysRevLett.123.100604
https://doi.org/10.1088/1367-2630/ab43b0
https://doi.org/10.1103/PhysRevResearch.3.013238
https://doi.org/10.1103/RevModPhys.55.601
http://link.aps.org/supplemental/10.1103/PhysRevE.106.L032103
https://doi.org/10.1103/PhysRevE.99.032131
https://doi.org/10.1103/PhysRevE.101.022121
https://doi.org/10.1103/PhysRevResearch.3.043167

