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Geometric heat pump and no-go restrictions of nonreciprocity in modulated thermal diffusion
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Thermodynamics strongly restricts the direction of heat flow in static macroscopic thermal diffusive systems.
To overcome this constraint, spatiotemporal modulated systems are used instead. Here, we unveil the underlying
geometric heat pump effect in macroscopic driven thermal diffusion, which is crucial for achieving thermal
nonreciprocity. We obtain a geometric expression to formulate the nontrivial current in a driven system,
manifesting as an extra pumped heat ably diffusing from cold to hot that has no analogy in static setups.
Moreover, we analyze the underlying geometric curvature of driven diffusive systems and derive no-pumping
restriction theorems that constrain the thermal action under modulations and guide the optimization of driving
protocols. Following the restrictions from geometry, we finally implement a minimum experiment and observe
the predicted pumped heat in the absence of thermal bias at every instant, which is independent of the driving
speed in the adiabatic limit, clearly validating the geometric theory. An extension of the geometric pump effect
and no-pumping restrictions to macroscopic mass diffusion governed by Fick’s law is also discussed. These
results pave the way for designing and implementing nonreciprocal and topological diffusive systems under
spatiotemporal modulations.
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Introduction. Recently, there has been a surge of inter-
est in thermal transport [1–4], which is also fundamentally
central in nonequilibrium statistical physics [5–7]. Versa-
tile thermal devices [8–11] and heat manipulations have
been realized by delicately designing the spatial parame-
ter distribution [12–16], where heat always flows from hot
to cold as restricted by thermodynamics. To construct ther-
mal nonreciprocity and cold-to-hot heat pumps to break the
constraint, temporal drivings are applied to quantum sys-
tems [17–20] and thermal systems, producing novel effects,
such as ratcheting heat flow [21,22], driven heat engines [23],
nonreciprocal thermal metamaterials [24], dynamic refriger-
ation [25], radiative heat shuttling [26], adiabatic thermal
radiation pumps [27], as well as intriguing experimental ob-
servations, such as superior electrocaloric cooling [28], and
non-Hermitian thermal [29] and topological thermal [30]
dynamics.

Considering the versatility caused by driving, it is chal-
lenging to grasp the underlying universal mechanisms. The
geometry emerges as one of the most insightful ideas. A
geometric phase was originally proposed in closed quan-
tum systems [31,32], and later generalized to the scattering
process in open quantum systems [33] and also to the full
counting statistics [34] in stochastic pumps [35–37], which
is manifested as an additional term obtained after a periodic
modulation. Concerning the heat transport process, a similar
geometric effect was unveiled in an anharmonic quantum
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junction [38], which induced an additional pumped heat from
cold to hot during periodic driving, a so-called geometric heat
pump. Subsequently, the geometric heat pump effect caused
a plethora of research on its manifestation in nanosized open
quantum [39–41] and classical coupled oscillators [42]. Also,
recently, connections of the geometric effect with entropy
production [43], heat engines [44–46], and nonadiabatic con-
trols [47,48] have been established. These works emphasize
the fertile status of the geometric heat pump effect [49].

Despite massive theoretical attention and broad impli-
cations, the theory of the geometric heat pump effect has
been confined so far to quantum nanoscale and microscopic
stochastic systems, and has not yet been observed exper-
imentally. Therefore, in view of the extensive interest in
nonreciprocal spatiotemporal thermal devices at the macro-
scopic scale, fundamental questions naturally arise: Is the
geometric heat pump effect universally present in macro-
scopic driven thermal diffusion? What is the general theory
of geometric pumping and no-go restrictions on thermal non-
reciprocity? How can we observe the effect macroscopically?

Here, we resolve the above questions. We excavate the
geometric heat contribution in addition to the conventional dy-
namic heat flow in general driven diffusive systems, illustrated
in Fig. 1. This geometric theory establishes a universal frame-
work for studying the driven diffusion. It automatically yields
no-pumping theorems that constrain the thermal nonreciproc-
ity under spatiotemporal modulations. We further elaborate a
minimal experimental setup to successfully demonstrate our
theory. Our work may further advance the field of nonrecipro-
cal thermal transport, geometric heat engines, and topological
thermal devices. The extension of the geometric pump effect
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FIG. 1. A diagram of driven diffusive systems from continuous
protocols to Trotterized discrete protocols. (a) The anomalous heat
transport as a competition between cold-to-hot geometric heat Qgeo

and hot-to-cold dynamic heat Qdyn. (b) The continuous driving path.
Solid dots denote states in the parameter space λ (reservoir temper-
ature, thermal conductance, etc.). Qgeo is induced by the intrinsic
geometric curvature F(λ). Tss denotes the instantaneous steady state
temperature and vector k is determined by the diffusion dynamics
dual to the space of Tss. (c) A Trotterized discrete state protocol
forming a triangle cycle. (d) The minimum two-state switching
protocol.

and no-pumping restrictions to general Fick’s diffusions is
straightforward.

Geometric heat pump effect. We begin by recapitulating
the well-known classical thermal diffusion, governed by the
Fourier’s law [50] J = −κ∇T (x, t ) and the continuity equa-
tion ∂t E = −∇ · J, where E is the internal energy density
and κ is the conductivity. We consider the diffusion on a
conduction network. Describing the central system temper-
ature using vector Tc and taking into account the boundary
reservoirs Tb, the heat flow during the linear conduction is
given by J = KcTc + KbTb, where the conduction matrix Kc

(Kb) depicts the heat conduction induced within the system
itself (by coupling to thermal reservoirs). The heat flow J is
a column vector containing current distributions. Consider-
ing the continuity equation, we have ∂t Tc = LJ [24]. Here,
L ≡ C−1D. The diagonal matrix C contains the heat capacity
and D is the negative divergence matrix (the discrete version
of −∇·).

The evolution of the system’s temperature distribution
follows

∂

∂t
Tc = McTc + MbTb, (1)

where Mc ≡ LKc and Mb ≡ LKb. The invertible Laplacian
matrix Mc depicts the heat diffusion within the central system
itself and the noninvertible Mb depicts the heat diffusion from
boundary reservoirs to the central system. The notation is
exemplified in Sec. I of the Supplemental Material [51].

As shown in Fig. 1(a), the system is generally modulated
by nonadiabatic and cyclic protocols λ(t + τp) = λ(t ), where
τp is the temporal period. We rewrite Eq. (1) as Tc = Tss +
M−1

c ∂t Tc, with Tss ≡ −M−1
c MbTb being the instantaneous

steady state temperature. One can see that the accumulated
current Q ≡ ∫ τp

0 dt1 · J(t ) during one driving period τp is

FIG. 2. The geometric heat pump effect and the origin of its
geometric curvature in a driven one-dimensional diffusive chain.
(a) The heat pumped by the driving reservoir Tb and the conductance
Kc and Kb. τp is the driving period. (b) The origin of Qgeo as a non-
trivial curvature Fφc,Tb . The sinusoidal line represents the protocol.
The integration of F encircled by the arrowed contour is Qgeo. The
protocol of the reservoir temperature is Tb(t ) = T0[sin(2πt )/2 +
1](1, 1)T and that of conductance at the edge n (n = 0, 1, . . . , nv) is
κn = κ

2 [sin(φn + φc ) + 1]. φn ≡ 2πnpn/(nv + 1) designates differ-
ent edges with out-of-phase conductance. φc ≡ 2πt/τp (0 � t < τp)
parametrizes the conductance protocol. np is the number of space
periods and nv is the number of vertices in the chain. In this figure, we
select T0 = 30 ◦C, nv = 12, np = 3, κ = 1.20 W/K, and the vertex
heat capacity is uniform Cn = 0.833 J/K (n = 1, . . . , nv).

naturally composed of two contributions, termed the dynamic
and geometric components, respectively:

Qdyn :=
∫ τp

0
dt1 · (KcTss + KbTb), (2)

Qgeo :=
∫ τp

0
dt1 · KcM−1

c · ∂t Tc. (3)

Here, 1 is a constant vector projecting J onto the interested
current component. For example, we may choose 1 j = δi j ,
with δi j being the Kronecker delta, to study the current
component i. The other normalized 1 is useful for studying
even a linear combination of several currents. These two
contributions to Q = Qgeo + Qdyn are distinguished by their
different natures. Qdyn is simply an average of instantaneous
steady current, while the nontrivial Qgeo has no analogy in
static systems, rendering more flexible modulated diffusion.
It is worthy noting that Qgeo is reminiscent of the nonadi-
abatic Aharonov-Anandan phase in a general cyclic driven
Hamiltonian [52].

In the fast driving regime around the infinite-frequency
limit, Tc(t ) is nearly frozen, due to the separation of the
timescale between the driving and the system’s response [53].
The geometric Qgeo vanishes and Qdyn ∝ τp remains, as
shown by the dashed line in Fig. 2(a). We prove that in the
infinite-frequency limit, Q is determined by the renormal-
ized stroboscopic state, so that the average heat flow 〈J〉 ≡
Q/τp is independent on τp. Specifically, we find that 〈J〉 =
1 · (〈Kc〉 Tst + 〈KbTb〉), where Tst ≡ −M−1

eff 〈MbTb〉 is the
stroboscopic system temperature, with the effective operator
being Meff ≡ 〈Mc〉. Here, 〈O〉 ≡ (1/τp)

∫ τp

0 dtO(t ) is a time
average of an arbitrary temporal periodic quantity O.

In slow driving regime, Tc approaches the instantaneous
steady states Tss, according to the adiabatic perturbation
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theory [54]. The geometric heat component

Qgeo =
∫ τp

0
dtk · ∂Tss

∂λμ

λ̇μ =
∮

∂	

dλ · A (4)

is now independent of τp and completely determined by the
geometric connection Aμ = k · ∇λμ

Tss with the driven param-
eters λ(t ) = {λμ(t )} (0 � t < τp) forming the closed path ∂	.
k ≡ 1 · KcM−1

c is the row vector mapping the variation of Tss

into the interested heat current and is in the dual space of Tss.
Aμ here is reminiscent of the original Berry connection [31]
and the counterpart in microscopic stochastic systems [38,42].
With the aid of the Stokes formula, Qgeo can also be formu-
lated as

Qgeo =
∫

	

Fμν (λ)dSμν,

Fμν (λ) := ∂k
∂λμ

· ∂Tss

∂λν

− ∂k
∂λν

· ∂Tss

∂λμ

. (5)

The antisymmetric tensor Fμν (λ) = −Fνμ(λ) clearly has the
meaning of geometric curvature [shown in Fig. 1(b)] and
the area 	 is encircled by ∂	. dSμν is the surface element.
For a detailed derivation, see Sec. II of the Supplemental
Material [51].

Considering a protocol parametrized by the phase φc of
the traveling-wave-like conductance configuration and the os-
cillating temperature Tb of two-terminal unbiased reservoirs
Tb(t ) = Tb(t )(1, 1)T, the saturated geometric pumped heat
Qgeo is reached when the driving period τp becomes large
enough, as shown in Fig. 2(a). Qgeo results from the nontrivial
geometric curvature Fμν in the area encircled by the arrowed
contour, as shown in Fig. 2(b).

Geometric no-pumping restrictions. Following our geo-
metric theory, we derive here its consequence on two sets
of no-pumping theorems. First, fixing unbiased Tb, we show
Qgeo = 0 as long as the thermal conductance and capacity
are not simultaneously driven. The vanishing of Qgeo is valid
both for currents inside the system and that exchanged with
reservoirs. This no-go restriction is not dependent on the num-
ber of reservoirs. In this class of protocols, the steady state
Tss remains intact in equilibrium with reservoirs during the
whole process, resulting in zero geometric connection Aμ and
curvature Fμν . Obviously no geometric pump effect is present
here.

Second, we consider two-terminal systems with nonzero
static thermal bias, which are generally focused on in recent
discussions of diffusive nonreciprocity [24,55,56]. We prove
that Qgeo between the system and reservoirs is always zero
if either capacity or the conductance is driven. In the case of
driving C, Qgeo = 0 is easily shown by observing the inde-
pendence of Tss on C. In contrast, Qgeo = 0 in the situation
of driven conductance is a consequence of a symmetry in
Fμν , i.e., (Fμν )T = −Fμν . Since Fμν as a number satisfies
(Fμν )T = Fμν , we obtain Fμν = 0 and Qgeo = 0 for this set of
protocols so that the no-go restriction is present. For a detailed
explanation, see Sec. III of the Supplemental Material [51].

Therefore, to introduce nontrivial Fμν , one should simulta-
neously modulate the conductance and reservoir temperature
Tb, or in addition modulate the capacity. As an illustration, we
show in Fig. 3 the no-pumping restriction and its implication

FIG. 3. The no-pumping condition and its implication on thermal
nonreciprocity. (a) The no-pumping situation where the conduc-
tance is spatiotemporally driven while the reservoirs are fixed at
Tb = (Tb1, Tb2). The heat transferred during a driving period (τi, i =
1, 2, 3) is reciprocal with respect to the thermal bias �T ≡ Tb1 − Tb2.
(b) The pumping and nonreciprocal situation. The conductance is
driven in the form of a traveling wave and Tb is driven in phase. The
protocol of the reservoir temperature is Tb(t ) = [sin(2πt/τi )/2 +
1](Tb1, Tb2)T. Here, Tb1 = 30 ◦C. The driving periods are respectively
τ1 = 2.47 × 104 s, τ2 = 7.02 × 104 s, and τ3 = 2.00 × 105 s. Other
parameters are the same as in Fig. 2.

on the nonreciprocity. The mere driving of conductance has
no pumping effect and the transport is reciprocal [Fig. 3(a)].
In contrast, when reservoir temperatures are also driven, the
emergent nontrivial Qgeo (Fig. 2) induces nonreciprocal trans-
port, as demonstrated in Fig. 3(b). This elucidates that the
nonzero Qgeo is a natural resource for generating thermal
nonreciprocity, since Qgeo is not constrained by the temporal
average thermal bias �T ≡ 〈Tb1〉 − 〈Tb2〉, but only reversed
upon the retrorse driving protocol. We note this does not con-
tradict the second law of thermodynamics. The total entropy
production as sum of the dynamic and geometric parts is
always non-negative.

A recent study involving both driven conductance and
capacity demonstrates nonreciprocal diffusion [55]. Also,
nonbroken thermal reciprocity has been observed in Ref. [56],
since the thermal capacity is not allowed to be freely
modulated. These concrete examples provide additional ex-
amples testifying to our geometric theory and no-pumping
restrictions.

Trotterized switching driving protocol. A continuous and
adiabatic driving protocol can be Trotterized into M pieces,
with the system parameters being constant within each τp/M
duration, as depicted in Figs. 1(c) and 1(d). Accordingly, the
dynamic and geometric components of the accumulated heat
are replaced by Qdyn = ∑M

m=1(1 · Km
c Tm

ss + 1 · Km
b Tm

b )τp/M,
Qgeo = ∑M

m=1 km · �Tm
ss. Qgeo has a nature comparable with

the Pancharatnam phase [57]. Km
c , Km

b , and km correspond
to the system parameters in the mth (1 � m � M) protocol
piece. The difference between the two adjacent steady states
defines �Tm

ss ≡ Tm
ss − Tm−1

ss (see Sec. IV in the Supplemental
Material [51] for details).

Our experiment concerns a limit case, where parameters
are cyclically switched between only two states, and the geo-
metrically pumped heat is

Qgeo = (k1 − k2) · (
T1

ss − T2
ss

)
. (6)

It is worth noting that the geometric effect of two-state switch-
ing is always zero in Hermitian quantum mechanics [58].
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To produce a nonzero geometric effect, a driven Hermitian
system at least requires a three-state cyclic switching to form
a finite area in parameter space. Here, owing to the non-
Hermicity of nonequilibrium diffusive systems, the geometric
effect for two-state switching exists once (km; Tm

ss) of two
states are different from each other [shown in Fig. 1(d)].
This can be intuitively understood as the effect induced by
the asymmetric rectified heat conduction in the time do-
main. Since km determines the accumulated current during
the system’s relaxation towards Tm

ss, the nonvanishing Qgeo

originates from the asymmetric response of the two differ-
ent states k1 and k2 to an inverse nonequilibrium variation
T1

ss − T2
ss. This behaves as a temporal thermal diode and

rectifier.
Experimental demonstration. Under the guidance of ge-

ometric no-pumping theorems, we devise a minimal ex-
periment setup to observe nonzero Qgeo, with both heat
conductances and reservoir temperatures being modulated,
as shown in Fig. 4(a). We connect both ends of the copper
plate to the thermal reservoirs with instantaneously identical
temperatures Tb. The thermal conductance between the copper
plate and two reservoirs, i.e., κ1 and κ2, are out of phase. The
protocol is shown in Fig. 4(b) (see Sec. V of the Supplemental
Material [51] for details). We calibrate the effective conduc-
tances κn with the maximum κ = 0.049 W/K to account for
the presence of dissipation in the surrounding atmosphere.
We also calibrate the maximum and minimum temperature
of the effective thermal reservoir Tb as Thot = 35.2 ◦C and
Tcold = 14.8 ◦C. Figure 4(c) is an infrared imaging snapshot
of Fig. 4(a). To conveniently modulate κ1 and κ2 in the ex-
periment, we construct the system-reservoir couplings with
two types of reversible shape memory alloys (SMAs). The
geometric configurations of SMA change rapidly as its tem-
perature varies, which is also applied in devising macroscopic
thermal diodes [59].

The measured result of pumped Q is shown in
Fig. 4(d) as dots. It is theoretically described by Q =
�TbC tanh[κτp/(4C)] shown as the black line, where C is
the heat capacity of the central system, �Tb ≡ Thot − Tcold. In
our experimental setup, C = 26.208 J/K and �Tb = 20.4 ◦C.
The dynamical heat component is Qdyn ≡ 0 due to the strict
instantaneous zero bias of the thermal reservoirs. The pumped
heat is singly attributed to the geometric contribution Qgeo.
To verify our general theory on driven thermal diffusion,
we concentrate on the limits (τp � τc ≡ 4C/κ and τp � τc).
After the system enters a cyclic state, we measure the heat
transferred during each period under different driving periods
τp. In the fast driving region, Q and τp are approximately
linearly correlated, consistent with Q ≈ κ�Tbτp/4. In the adi-
abatic limit (τp � τc), Q remains unchanged as τp varies, and
its experimental plateau value is Qgeo = 546 J. To verify our
general geometric theory, we note that steady states Tn

ss = T n
b

(n = I, II labeling different configurations). Also, defining the
positive direction of the current as left to right, Mn

c = −(κn
1 +

κn
2 )/C and Kn

b = (−κn
1 , κn

2 )T/C. Without losing generality, we
select 1 = (1, 0)T. Thus, k1 − k2 = C and Eq. (6) reduces
to Qgeo = C�Tb, in agreement with our measurement result,
showing Q in our experiment to be purely geometric. This
proves the existence of general geometric heat pump effects
in the classical diffusive transport.

FIG. 4. Observation of a geometric heat pump in a thermal dif-
fusion system. (a) The schematic diagram of the experimental setup,
where the identical temperature of two reservoirs Tb and the thermal
conductances κn (n = 1, 2) are driven periodically by (b). (c) A
snapshot of the experimental device generated by an infrared thermal
imager, corresponding to (a). (d) The heat transferred during a single
driving period vs different τp. The characteristic time τc ≡ 4C/κ =
2140 s signifies fast driving and slow driving, marked by the yellow
and green background color, respectively. The geometric heat pump
effect is observed as the plateau Qgeo = 546 J. (e) The evolution
of Tc in different τp situations, corresponding to the fast and slow
driving cases in (d). The maximum and minimum of Tc get closer to
that of the thermal reservoirs as τp gets longer. (f) A typical period
in the evolution of Tc (τp = 10 800 s), which contains four phases.
The background colors distinguish the different parameter states. (g)
Snapshots of the four phases in (f) in the adiabatic limit.

To further analyze the pump process, Fig. 4(e) shows
the variations of the copper plate’s temperature Tc in dif-
ferent driving periods τp, representing the two cases—the
fast driving (yellow background) and slow driving (green
background). In the adiabatic limit (e.g., τp = 10 800 s), the
thermodynamic process consists of four phases in one period,
which are marked as 1©, 2©, 3©, 4© in Fig. 4(f). We display the
details of the four phases with infrared imaging snapshots in
Fig. 4(g). From phase 1© to 2© and phase 3© to 4©, the middle
Tc shuttles heat between two reservoirs. This shuttled heat is
evidently independent of the driving period in the slow driving
limit. Our devised simple setup attributes the geometrically
pumped heat, expressed by Eqs. (5) and (6), to the changing
of system states and the intrinsic geometric properties of the
parameter space.
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Conclusion. By formulating a geometric theory on driven
thermal diffusion, we demonstrate straightforward ways of
determining no-pumping restrictions and construct thermal
nonreciprocity based on protocol designs. The nonvanishing
geometric heat flow works as a versatile and reliable re-
source in generating directional heat flow, harnessing thermal
energy, and generating thermal nonreciprocity by devising
a dynamical toolkit. Constructing geometric effect-induced
topologically protected phenomena in driven thermal radia-
tion [60] constitutes a promising task.

Although we focus here on thermal diffusion described
by Fourier’s law, our theory can be readily adapted to gen-
eral macroscopic diffusion. For example, by replacing the
thermal conductance (temperature, heat capacity) with mass
conductance (chemical potential, mass capacity) [55,61],

the geometric pump effect and no-pumping restrictions can
be readily transplanted to the driven mass diffusion gov-
erned by Fick’s law (shown in Fig. S1 of the Supplemental
Material [51]). The extension of geometric pumping and
no-go restriction to macroscopic systems involving coupled
diffusive dynamics, e.g., thermoelectric transport, coupled
heat-mass-charge transfer, complex convection-conduction
transport, etc., is also a promising topic for the future.
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ing Project of Shanghai Key Laboratory of Special Artificial
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